
13 January 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Deep Sylvester Posterior Inference for
Adaptive Compressed Sensing in
Ultrasound Imaging

Simon W. Penninga1, Hans van Gorp1, Ruud J.G. van Sloun1

1. Department of Electrical Engineering, Eindhoven University of Technology, Netherlands

Ultrasound images are commonly formed by sequential acquisition of beam-steered scan-lines.

Minimizing the number of required scan-lines can signi�cantly enhance frame rate, �eld of view,

energy e�ciency, and data transfer speeds. Existing approaches typically use static subsampling

schemes in combination with sparsity-based or, more recently, deep-learning-based recovery. In

this work, we introduce an adaptive subsampling method that maximizes intrinsic information gain

in-situ, employing a Sylvester Normalizing Flow encoder to infer an approximate Bayesian posterior

under partial observation in real-time. Using the Bayesian posterior and a deep generative model for

future observations, we determine the subsampling scheme that maximizes the mutual information

between the subsampled observations, and the next frame of the video. We evaluate our approach

using the EchoNet cardiac ultrasound video dataset and demonstrate that our active sampling

method outperforms competitive baselines, including uniform and variable-density random

sampling, as well as equidistantly spaced scan-lines, improving mean absolute reconstruction error

by 15%. Moreover, posterior inference and the sampling scheme generation are performed in just

0.015 seconds (66Hz), making it fast enough for real-time 2D ultrasound imaging applications.

I. Introduction

Ultrasound systems perform sequences of pulse-echo experiments, called transmit events, to form an

image. Due to the physical speed of sound, the optimization of these transmit events constitutes a

trade-o� between frame rate, depth of view, and image quality, making acquisition time a major

limiting resource. By reducing the amount of transmit events required to form an image, the e�ective
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budget one can spend on this trade-o� improves greatly. In addition, subsampling can reduce data

transfer and battery drain, enabling cheaper and more portable ultrasound systems.

E�cient subsampling and signal recovery can be achieved with Compressed Sensing[1], in which

sparsity in some signal domain is used for e�ective reconstruction from compressed measurements,

such as an undersampled Fourier spectrum and or observations from sparse arrays. Contemporary

recovery methods go beyond signal sparsity and use deep learning to exploit the signal structure

learned from the training data. In particular, deep generative models explicitly learn signal priors that

can subsequently be used for inference. Such approaches have also been used in the context of

ultrasound imaging[2][3]. Deep learning also enables the optimization of the subsampling schemes

themselves[4]. For instance, Deep Probabilistic Subsampling (DPS)[5]  uses an end-to-end deep

learning training method that �nds the optimal subsampling strategy for downstream recovery tasks.

Additional examples include subsampling of RF data through deep learning[6]  and randomized

channel subsampling for increased ultrasound speeds[7]. However, the aforementioned methods have

in common that the learned subsampling masks are �xed, and their optimization does therefore not

bene�t from any information gained across the sequential sampling process at inference time.

Conversely, adaptive sensing methods exploit previously acquired data to optimize future sampling

schemes across a sequence of observations to improve performance[8].

In this paper, we propose an active subsampling method for ultrasound imaging that: (1) exploits a

deep generative latent variable model and combines it with a deep Bayesian posterior encoder that

performs fast inference of the parameters of its approximate latent posterior from partial

observations; (2) designs adaptive subsampling schemes that maximize information gain on the �y

across a sequence of ultrasound image frames in a video. Speci�cally, we optimize the evidence lower

bound and train a deep neural network to estimate the parameters of the intricate latent posterior

state distribution under partial observations, which we parameterize using a Sylvester normalizing

�ow[9]. Based on samples from this posterior, we subsequently design a new sampling scheme that

optimizes an estimate of the expected information gain, by maximizing the marginal entropy for

future observations. Both steps of the approach are illustrated in Fig. 1.
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Figure 1. Schematic overview of the active sampling loop of a single video frame. Partial observations of

the full frame are used to estimate the latent posterior distribution of the next frame of the video. Samples

from this posterior distribution are used to estimate mutual information between the state and the

observation, which in turn determines the next subsampling mask and results in new observations.

Most related to our approach, van de Camp et al. recently proposed the use of deep generative latent

variable models for adaptive subsampling designs[10]. While e�ective, the method relied on Markov

Chain Monte-Carlo methods for generating samples from the posterior, rendering inference

prohibitively slow for time-sensitive applications such as ultrasound imaging. Moreover, the scene

was considered static, and observations of this static scene were taken one at a time. In contrast, we

here operate on sequences of ultrasound frames and design full subsampling masks for each next

frame sequentially. Using the Sylvester normalizing �ow-based posterior encoder (requiring only a

single neural function evaluation), we reduce inference time by several orders of magnitude, enabling

real-time processing rates, while retaining the ability to �t intricate posteriors.

The remainder of this paper is organized as follows; Section II describes the problem setup for

ultrasound line-scanning, our approach to fast posterior inference, and the design of sampling

schemes based on mutual information. In Section III the method is applied to sequences of ultrasound

frames, and compared against non-adaptive baselines. Finally, in Section IV, we conclude and outline

future work.

II. Methods

A. Problem setup

Let a partial observation of a video frame at a given time-step   be de�ned as:yt

= + ,yt Atxt nt (1)
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where    is the binary subsampling matrix (with  ),    is the fully-sampled

vectorized video frame that we will refer to as the image state, and   is the added noise at the time of

observation  . The goal is to (1) perform e�cient estimation of the Bayesian posterior

for image states  , and (2) design an optimal future sampling matrix   that maximizes

expected information gain.

Unfortunately, computing the true Bayesian posterior quickly turns intractable in high dimensions. To

overcome this, we use a deep latent variable model that approximates the true distribution of signals 

  using a simpli�ed and lower-dimensional latent distribution  , with 

  and  . Our goal then becomes to infer  . When confronted with strongly

subsampled image states and highly ambiguous observations, i.e.  , this posterior will

nevertheless remain intricate and often multi-modal.

B. Deep Sylvester Posterior Inference

To model the complex distribution  , we use a Sylvester Normalizing Flow

(Sylvester-NF). The model architecture is an extension of the Variational Auto Encoder (VAE) [11] and

consists of a convolutional image encoder and decoder. The encoder    outputs the latent Gaussian

distribution parameters  ,   and Normalizing Flow [12] parameters   for

subsequent transformations of the Gaussian distribution, with   the parameters of the normalizing

�ow layers. To train the image encoder, we minimize its variational free energy. Given an observation 

 we can formulate the variational free energy as:

in which    is a sample drawn from    and    the same sample warped

through    �ow layers. Here,    denotes the Jacobian matrix and    the transform

parameters of layer  . Note that we leave the dependency on the subsampling mask that generates the

observations   implicit throughout this paper.

The generative latent variable model is �rst pre-trained using a dataset of full observations   to

capture the signal prior  , after which the weights   are frozen and the inference
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ŷ t

∈ χx̂t

∫ ( | )p( )dpθ xt z
K
t zKt zKt θ

qeios.com doi.org/10.32388/E4YL63 4

https://www.qeios.com/
https://doi.org/10.32388/E4YL63


model   can be trained for a dataset of partial observations.

C. Sampling Policy

Our sampling policy is to maximize the information gain of future observations, which is equivalent to

minimizing the expected posterior entropy  [13]. The action-conditional mutual information between

future latent states   and observations   for a greedy (one-step-ahead) policy is given by:

We leave the exploration of a longer action horizon to future work. Since the entropy of expected

observations   given   does not depend on   (it depends only on the noise  ), our policy

reduces to the maximization of the marginal entropy as:

The marginal entropy scales with the log determinant of the covariance matrix  , which we

estimate using the generative model    and a sample aggregate of the posterior  ,

assuming an identity transition  :

where    denotes the number of drawn posterior samples  . Because the action space for 

 scales with the binomial coe�cient  , the computation is generally intractable and we instead

explore only a subset of randomly selected actions  . We will refer to this policy as covariance

sampling:

Because this strategy is very computationally expensive, we propose an alternative sampling strategy

that assumes independence across the expected observations, computing the trace of the covariance

matrix instead. We will refer to this policy as trace sampling:

Since this method ignores the local correlation structure of closely-spaced ultrasound scan-lines

(which originates from the limited physical resolution), we explicitly prohibit the system from
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choosing neighbouring lines. As an example; given a set of candidate actions [5,4,6,12,11,13] sorted by

covariance traces that are of decreasing order, our approach samples lines 5 and 12 due to the

neighbour-exclusion of lines 4 and 6.

III. Experiments & Results

A. Experimental Setup

We evaluate our method using the EchoNet dataset[14], which contains 10,030 4-chamber cardiac

ultrasound videos. Each video includes 50-250 grayscale frames with a resolution of   pixels,

captured at 50 Hz. To standardize the data, the pixel values are normalized to the range [0,1], and

Gaussian noise   is added for improved generalization. The dataset is divided into 6,986

training videos, 500 validation videos for model selection, and 500 test videos for �nal evaluation. The

remaining 2,044 videos are excluded due to artifacts or missing data.

We convert Cartesian images into polar coordinates, with depth    and scan-line angle 

. To subsample full scan-lines,    becomes highly structured and selects 

 columns in the polar domain (i.e.  ,  ).

Our model architecture consists of a variational encoder, orthogonal Sylvester �ow layers, and

decoder. The encoder comprises 10 gated convolutional layers[15]  with stride 2, each using 

  channels, reducing the input to a 512-dimensional latent variable    with 

, as per the reparameterization trick. The latent space is further re�ned using 

  normalizing �ow steps, each parameterized by    orthogonal vectors ( , to

obtain the �nal latent representation  . The decoder uses 8 blocks of gated transpose convolutions

with stride 2, each using   channels. These layers are followed by Batch Normalization[16] and

GELU activations[17]. The �nal image is reconstructed through a head comprising 3 additional

convolutional layers, each with   channels.

We train the inference model with the loss function de�ned in (2) and we set   for both the

generative model and the inference model. We compensate for the polar coordinate transformation by

using the density of the inverse transformation as a per-pixel weighing on the training loss. In an

attempt to capture all modes for a given state of observation, the IWAE[18] algorithm is used, which

tightens the ELBO.
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We compare the two proposed sampling policies against three baseline methods: uniform random

sampling, variable density random sampling, and equispaced sampling. In uniform random sampling,

independent samples from a uniform distribution are used to select the    columns for each frame.

Variable density sampling uses a similar approach, but samples from a polynomial distribution

centered on the middle of the image with a decay factor of 6 are used. In the equispaced policy, the

system deterministically uses evenly spaced lines and shifts the set of lines by one index for each

subsequent video frame, maintaining uniform sampling density across all frames. For the trace and

covariance-based sampling policies, we use   posterior samples from our generative model and

generate    random sampling schemes to form the candidate set    every  . Increasing 

 and   beyond these values resulted in increased computational costs with minimal performance

improvement.

Although all subsampling methods share the same generative model, each has a distinct inference

model. The training procedure is given in Algorithm 1. The computational cost of the active methods is

determined by the summation of the costs of the inference, sampling, image generation, and action

selection steps.

l

= 3NS

S = 10, 000 SA t

NS S
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B. Results

Table I presents the quantitative reconstruction results, evaluated using the L1-loss, Structural

Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR) across four di�erent subsampling

ratios. The proposed trace sampling method outperforms the other methods at subsampling rates of 

,  , and   scan-lines. However, for   scan-lines, the equispaced sampling method

performs slightly better. As the number of sampled lines increases, the performance gap between

active and static sampling methods narrows, suggesting that active sampling is particularly

advantageous when using more aggressive subsampling strategies. For equispaced and trace

sampling, the upper bound for reconstruction is already approached with just   lines (13.4%).

 
l = 6

(5.4% observation)

l = 9

(8.0% observation)

l = 12

(10.7% observation)

l = 15

(13.4% observation)

  Active
L1-

Loss
SSIM PSNR

L1-

Loss
SSIM PSNR

L1-

Loss
SSIM PSNR

L1-

Loss
SSIM PSNR

Variable

density
No 0.086 0.401 65.53 0.078 0.428 66.09 0.073 0.450 66.44 0.070 0.456 66.75

Uniform

random
No 0.085 0.396 65.64 0.076 0.435 66.31 0.069 0.457 66.78 0.065 0.476 67.21

Equispaced No 0.073 0.447 66.54 0.064 0.477 67.28 0.060 0.494 67.73 0.058 0.502 67.89

Covariance

(ours)
Yes 0.082 0.407 65.92 0.071 0.451 66.77 0.065 0.474 67.23 0.061 0.491 67.60

Trace

(ours)
Yes 0.070 0.455 66.69 0.062 0.495 67.51 0.061 0.489 67.60 0.058 0.500 67.93

Table I. Evaluation of the sampling strategies for di�erent observation fractions. Performance is upper

bounded by the generative model, under full observation L1-Loss=0.053, SSIM=0.523, PSNR=68.33.

A typical example (median performance) from the test set is visualized in Fig. 2, illustrating the

reconstruction results for three consecutive frames for the proposed trace sampling method with 

l = 6 l = 9 l = 15 l = 12

l = 15
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  scan-lines. For comparison, we also present the results using equispaced sampling and full

sampling, which serves as the upper (representation) limit on performance. Since all methods share

the same generative model, the di�erences in performance can be attributed to the sampling

strategies only. As seen in the absolute-di�erence images, in this scenario the trace sampling

favoured sampling the left side of the image for   and  , leading to better reconstruction on the left

at the expense of a slightly worse reconstruction on the right with respect to equispaced sampling.

Interestingly, the trace-based sampling policy outperforms the covariance sampling method.

Figure 2. Reconstruction results for three consecutive frames   and   of an ultrasound video that

has median performance for trace-sampling (L1-Loss = 0.070). The �nal column shows the

representation limit that is given by the deep generative model (L1-Loss = 0.055). The smaller blue cones

show the absolute di�erence between the posterior mean and the ground truth.

To assess the computational e�ciency of our approach, we measured the time required for a complete

acquisition step, including posterior estimation, on an NVIDIA GeForce RTX 2080 Ti (13.45 TFLOPS @

FP32), using the PyTorch 2.2[19]  backend. No additional optimizations were applied, such as JIT

compilation, model pruning, or quantization. For trace sampling, a single acquisition step took 0.015

seconds, while covariance sampling required 0.112 seconds. This demonstrates that the proposed

approach can operate at approximately 66 Hz, or potentially faster with further optimizations,

making it suitable for real-time 2D ultrasound imaging applications.

l = 6

t12 t13

,t11 t12 t13
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IV. Discussion and conclusion

In this paper, we proposed an active subsampling method for ultrasound scan-line selection that uses

an information gain maximization policy in combination with a deep generative model and a neural

posterior encoder. The results demonstrate that inference can be performed successfully at

subsampling rates as low as 5.4% and at frame rates of up to 66 Hz, making real-time active sampling

feasible. Furthermore, we found that active sampling is especially bene�cial under harsh subsampling

regimes. This work opens up several avenues for future research. Firstly, because the sampling policy

generates the observations on which the inference model is trained, and the inference model in turn

a�ects the sampling policy, their optimization becomes intertwined. This may lead to collapse. In

addition, the in�uence of the  -parameter, which determines the trade-o� between accurate

reconstruction and diverse samples (both a�ecting the accuracy of the posterior proposition), should

be studied. Alternatively two separate models could be trained; one to perform accurate maximum

likelihood estimation for reconstruction, and one for posterior inference, driving sampling scheme

generation.

The proposed model also does not yet exploit long-term dependencies in the data, such as the cyclic

nature of a beating heart. Future research to incorporate memory into the system, for example,

through the use of self-attention[20] or LSTM[21], could further improve reconstruction results and/or

lead to even more aggressive subsampling schemes. Additionally, the use of a more powerful deep

generative model, such as the VD-VAE[22], would lead to a more accurate posterior approximation,

improving the active subsampling schemes even further. Lastly, the results on 2D ultrasound show

promise for application in 3D ultrasound, where the trade-o� between volume rate and image

resolution is far more challenging to manage.
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