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Abstract

Object detection, specifically fruitlet detection, is a crucial image processing technique in agricultural automation,

enabling the accurate identification of fruitlets on orchard trees within images. It is vital for early fruit load management

and overall crop management, facilitating the effective deployment of automation and robotics to optimize orchard

productivity and resource use. This study systematically performed an extensive evaluation of the performances of all

configurations of YOLOv8, YOLOv9, YOLOv10, and YOLO11 object detection algorithms in terms of precision, recall,

mean Average Precision at 50% Intersection over Union (mAP@50), and computational speeds including pre-

processing, inference, and post-processing times immature green apple (or fruitlet) detection in commercial orchards.

Additionally, this research performed and validated in-field counting of fruitlets using an iPhone and machine vision

sensors in 4 different apple varieties (Scifresh, Scilate, Honeycrisp & Cosmic crisp). This investigation of total 22

different configurations of YOLOv8, YOLOv9, YOLOv10 and YOLO11 (5 for YOLOv8, 6 for YOLOv9, 6 for YOLOv10,

and 5 for YOLO11) revealed that YOLOv9 gelan-base and YOLO11s outperforms all other configurations of YOLOv10,

YOLOv9 and YOLOv8 in terms of mAP@50 with a score of 0.935 and 0.933 respectively. In terms of precision,

specifically, YOLOv9 Gelan-e achieved the highest mAP@50 of 0.935, outperforming YOLOv11s's 0.0.933,

YOLOv10s’s 0.924, and YOLOv8s's 0.924. In terms of recall, YOLOv9 gelan-base achieved highest value among

YOLOv9 configurations (0.899), and YOLO11m performed the best among the YOLO11 configurations (0.897). In

comparison for inference speeds, YOLO11n demonstrated fastest inference speeds of only 2.4 ms, while the fastest

inference speed across YOLOv10, YOLOv9 and YOLOv8 were 5.5, 11.5 and 4.1 ms for YOLOv10n, YOLOv9 gelan-s

and YOLOv8n respectively.

1. Introduction

Object detection in commercial orchards is the foundation to developing agricultural automation and robotics solutions for

labor intensive tasks such as harvesting, thinning, and pruning[1][2][3]. One such labor-intensive operations in apple
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orchards is thinning green fruit in their early growth stage (fruitlets), which is crucial due to its role in enhancing crop yield

and quality. Automating fruitlet thinning process is essential for minimizing the dependence of rapidly depleting farm labor,

which requires a robust machine vision system for fruitlet detection and localization in orchard environments[4].

Most of the tree fruit crops often set a greater number of fruit per tree than the desired number which causes fruit-to-fruit

competition for water, sunlight, and nutrients, resulting inadequate exposure of the fruits to the sun, less space to grow,

and overall reduced fruit quality[4]. Additionally, too many fruits can result in reduced cold hardiness, breakage of tree

limbs, and exhaustion of tree reserves[5]. Fruitlet thinning in the commercial production of tree fruit crops such as apples,

kiwifruit, pears, peaches and plums has been practiced for thousands of years[5] to address these challenges and ensure

optimal fruit size and quality[6][7].

Apples is the third most consumed fruit in the United States (U.S.). U.S. also produces an average of 4.6 million tons of

apples yearly, making the country the world's second-largest contributor in apple production[8][9]. Around 382 thousand

acres of land in the U.S. is used for farming apples commercially, which contributes to exporting 42 million bushels of

apples worldwide with an estimated downstream value of $21 billion dollars each year[10]. In the U.S., approximately 1.5

million hired workers are employed in agriculture annually, with about three-fourths or 1.1 million working in crop-

production activities[11]. One of the most labor-intensive operations in apple production is fruitlet thinning, and therefore

developing robotic fruitlet thinning solutions is essential for sustainable apple production in U.S and around the world.[11]

The availability of farm labor has continued to decline over the past decade, a situation worsened by the global pandemic,

which led to an estimated loss of $309 million in agricultural production from March 2020 to March 2021[12][13]. On the

other hand, global urbanization has been transforming rural areas, causing 68% of the population to reside in urban

environments by 2050 (United Nations). which would further increase the labor shortage in agriculture. On top of that,

labor costs on specialty crop farms in the United States are 3 times higher than the average cost of labor in all U.S. farms

(USDA, 2018), which further emphasizes the need for automating labor-intensive operations in apple and other specialty

crop fields.

In commercial apple orchards, the demand for labor-intensive fruitlet thinning peaks during the summer months. Figure 1a

demonstrates the overcrowding of fruitlet in tree branches as each flower cluster leads to several fruits requiring fruitlet

thinning to optimize the number of fruit in each branch based the branch diameter. sunlight, space, and water. Figure 1b

shows farm workers manually thinning apple clusters, a process that is both time-consuming and laborious, requiring a

significant number of seasonal workers.
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Figure 1. Fruitlet thinning in commercial orchards:  (a) High-density clusters of apple fruitlets on a Scilate apple tree during the peak thinning period

in June 2022 (A commercial orchard in Prosser, WA), illustrating the typical overcropping seen in commercial orchards; (b) Top: Laborers utilizing

an height-adjustable platform for efficiently thinning fruitlet in various parts of tree canopies; b) Bottom: A worker in a Scifresh apple orchard

manually thinning excess fruitlets using an aluminum ladder, a common practice that highlights the labor-intensive nature of this crucial agricultural

task.

As the U.S. agricultural workforce continues to decline, maintaining competitiveness in the global market necessitates the

adoption of labor-saving technologies. Agricultural robots, which can replicate human tasks such as fruitlet thinning during

the early growing season, offer a promising solution to labor-intensive operations[14]. In addition to reducing dependance

on manual labor, automated and robotic systems for fruit thinning can also contribute to enhancing worker health and

safety. Occupational health studies highlight the significant risks associated with manual labor in orchards. For instance,

May et al.[15] reveals that farmworkers suffer from a high incidence of musculoskeletal injuries, skin diseases, and other

health issues, with the agricultural sector experiencing a fatality rate seven times the national average. Further supporting

this need, the study by Earle-Richardson et al.[16] documents the detrimental effects of prolonged physical labor on

migrant orchard workers, demonstrating significant decreases in muscle strength within a single workday.[17]

The first crucial step in automating the fruit thinning process is developing a robust vision system capable of detecting

green apple fruitlets during the early thinning stage in commercial orchards. Green apple detection is fundamentally an

object detection challenge, a domain extensively studied within computer vision. Apple detection systems in orchard

environments for possible automation have been reported since the late 90s[17]. In the past, many studies have reported

apple detection models for supporting robotic harvesting using traditional image processing techniques such as image

color segmentation in RGB, HIS (hue, saturation, and intensity), and/or HSL (hue, saturation, luminance) color

spaces[18][19][20][21]. However, the accuracy of these traditional methods has been relatively low, and the approach is
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limited to a specific environmental condition such as uniform lighting and background conditions created artificially in

orchards. It is challenging to implement these image processing algorithms to detect apples in a natural environment with

high level of occlusion, fluctuating illumination, and complex backgrounds[22].

During the last few years, machine learning (ML) has become widely adopted for object detection in agriculture, providing

more robust detection capabilities with reduced level of image pre-processing and feature extraction[23]. Some of the

recent ML models used in detecting apples have been Simple Linear Iterative Clustering (SLIC), Support Vector Machine

(SVM) and Random Forest (RF) to detect apples[24][25]. Additionally, deep learning (DL)-based models have become one

of the most effective methods for performing object detection in agriculture as it provides end-to-end processing capability

without any manual feature extraction. To perform apple detection in orchards, researchers have implemented DL models

such as Faster R-CNN models based on AlexNet and based on ResNet101[26]. More recently, Kang et al.[27] have

purposed a deep-learning-based detector called ‘LedNet’, which is able to perform real-time and accurate apple detection

in orchards. The LedNet architecture utilizes the 3-levels feature pyramid network (FPN) and Atrous Spatial Pyramid

Pooling (ASPP), a semantic segmentation module used in the feature processing block of the DL module.

Although researchers have been successful in detecting mature apples for robotic harvesting, there are only a few

reported studies on the detection of apples during their early growing season for robotic thinning applications. During the

early growing season of apples in the natural environment, the color of apples and light reflection is similar to that of

leaves, which poses a great challenge in accurately detecting apple fruitlet. Additionally, factors such as occlusion and

overlap of fruits with leaves and branches, and uncertain illumination make it difficult to detect fruitlet effectively[28][29].

Xia et al.[30] used improved Hough transform algorithm and SVM to detect green apples in a natural environment and

reported an F1 score of 90.3%. The author used an iterative threshold segmentation (ITS) algorithm to detect regions of

interest (ROI) that contained potential apple fruitlet pixels. However, this technique was limited to detecting only non-

overlapping apples. Recently, to detect young apples, Tian et. al[31] implemented a YOLOv3 model called ‘Densenet’ and

reported an F1 score of 83.2%. Additionally, to detect apples, Huang et al.[32] recently used an improved YOLOv3 model

based on the CSPDarknet53 DL network. The study reported an inference speed of 8.6 ms in detecting immature apples.

However, F1 and mAP achieved by the proposed model were only 0.65 and 0.67. Most recently, Wang at al.[33] presented

a YOLOv5s-based deep learning technique to detect apple fruitlet before thinning activity in the natural environment. The

author of this study implemented transfer learning through a channel pruned YOLOv5s object detection model and fine-

tuned the model to achieve a higher detection rate. However, the model size implemented in this study was very small

(1.4MB) and the author reported a false detection of 4.2%.

Recent advancements in deep learning models for object detection have significantly enhanced fruitlet detection

performance in field environments. The You Only Look Once (YOLO) framework, modified for specific agricultural needs,

has shown promising results. For instance,[34] reported that a tailored YOLO model improved the detection of green citrus

in complex orchard environments with a substantially better accuracy and speed compared to YOLO v4[35]. Similarly, a

lightweight version of YOLOv8 was developed for detecting pomegranate fruitlets, achieving high precision with reduced

model complexity, making it suitable for mobile devices[36]. Additionally, a channel-pruned YOLO V5s model effectively
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detected apple fruitlets under varying conditions, outperforming several methods while maintaining a compact size for

potential use in mobile fruit thinning terminals[37].

Similarly, an adaptation of the YOLOX-m model, optimized for robust feature extraction and enhanced by a feature fusion

pyramid network with an Atrous Spatial Pyramid Pooling (ASPP) module, has shown improvements in detecting fruitlets.

The ASPP module-based network achieved an average precision of 64.3% for apples and 74.7% for persimmons,

outperforming several common detection models and providing a solid reference for diverse fruit and vegetable detection

tasks[34]. Similarly, the YOLO-P model, a modified version of YOLOv5 designed specifically for pear detection in orchards,

incorporated advanced architectural changes such as shuffle blocks and a convolutional block attention module (CBAN).

These modifications improved feature extraction capabilities, allowing the model to perform well under challenging

environmental conditions including complex backgrounds and varied lighting. This model not only supports rapid and

precise pear detection but also offers insights for enhancing fruit detection systems in similar unstructured

environments[38].

Moreover, a YOLO v4-based method specifically tailored for fig detection in dense foliage has shown improvements over

previous models including Faster R-CNN, emphasizing YOLO's capability in challenging conditions[39]. YOLOv8 has also

been successfully applied to size immature green apples using geometric shape fitting techniques, showcasing high

precision and robustness against occlusions in orchard environments[4]. Furthermore, an enhanced YOLOv8 model has

proven to be effective for detecting Yunnan Xiaomila peppers, integrating attention mechanisms and deformable

convolutions to handle small targets against complex backgrounds[40]. Additionally, modifications to YOLOv5 have

improved plum recognition, adapting the algorithm to handle fruit occlusions and environmental variability[41]. Another

study with YOLOv7-based model equipped with attention mechanisms and specialized pooling has shown to achieve high

precision in detecting plums in natural settings[42].

In orchard automation, YOLO object detection models have been pivotal in enhancing the accuracy and efficiency of fruit

detection[4][43][44], flower identification[45][46][47], and automated harvesting processes[48][49][50]. These models adeptly

identify and classify fruits at various stages of ripeness, detect flowers with high precision, and facilitate efficient

harvesting operations. The development of YOLO models has introduced significant improvements specifically tailored to

meet the challenges faced in agricultural environments. For instance, the introduction of multi-scale predictions in

YOLOv5 has improved the detection of small and clustered objects like flowers and young fruits, which are crucial during

the early stages of crop yield management[51].

The rapid advancement of YOLO-based models has significantly enhanced their precision and processing speeds, vital

for implementing robotic solutions such as fruitlet thinning in orchards. Given these swift innovations, continuous

evaluation of newer models is essential to harness these improvements for agricultural automation.

This study provides a comprehensive evaluation of the latest YOLO versions: YOLO11, YOLOv10, YOLOv9, and

YOLOv8, targeting fruitlet detection in commercial apple orchards by examining 22 configurations across these models

and utilizing a commercial orchard’s dataset of RGB images from an iPhone 14 across four apple varieties: Scifresh,
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Scilate, Honeycrisp, and Cosmic Crisp. Each image was annotated with a complete count of visible and occluded apples

directly observed in the field, providing a comprehensive dataset for validation. The study also validates the top-

performing models using machine vision sensor.

The specific contributions of this study are:

Model Training and Configuration: Comprehensive evaluation of the latest YOLO object detection models

implemented across 22 configurations: YOLOv8 (5 configurations), YOLOv9 (6 configurations), YOLOv10 (6

configurations), specifically optimized for detecting green fruitlets in commercial apple orchards, and YOLO11 (5

configurations).

Comprehensive Metrics: Detailed examination of detection precision metrices, computational efficiency, and

processing speeds at 3 steps (preprocess, inference and post-process) of the deep learning workflow.

Validation Across Varieties: In-field counting accuracy validation using four apple varieties not included in the training

set, to test generalizability and robustness of the models under varied agricultural conditions.

Integration of Smartphone Technology: Utilization of high-resolution RGB images from an iPhone 14 Pro Max for

adaptability of advanced smartphone imaging in field setting.

The remainder of this paper is organized as follows. First, a detailed background and overview of the YOLO models,

specifically YOLOv8, YOLOv9, YOLOv10 and YOLO11, elucidating their architectural differences and enhancements are

provided. The subsequent sections delve into the methodology employed in configuring and testing these models,

followed by an extensive presentation of results and discussions that highlight key findings and performance metrics. The

paper concludes with a discussion on the implications of these results for future work and potential improvements.

2. YOLO Background and Overview: Insights into YOLOv8, YOLOv9, YOLOv10 and

YOLO11 Models

Figure 2 shows the timeline history of the YOLO from its release to upto date version as YOLO11. The YOLO object

detection algorithm was first introduced by Joseph Redmon et al.[52] in 2015, revolutionized real-time object detection by

combining region proposal and classification into a single neural network, significantly reducing computation time. YOLO's

unified architecture divides the image into a grid, predicting bounding boxes and class probabilities directly for each cell,

enabling end-to-end learning[52]. YOLO is versatile, and its real-time detection capabilities have revolutionized not only

agriculture[53], but also many other field such as medical object detection[54], autonomous vehicle industry[55], security

and surveillance systems[56], and industrial manufacturing[57] where accuracy and speed are paramount. The current

state-of-the-art iteration of YOLO version is YOLOv10, and Figure 2b shows the FPS and mAP of each model starting

from YOLOv1 to YOLO11.
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Figure 2. Evolution of YOLO and Performance of YOLO models from 2015-2024: (a) Timeline of YOLO version releases, showcasing

advancements from YOLOv1 to YOLO11

After the release of first YOLO version, YOLOv2, or YOLO9000[58][59], expanded on this foundation by improving the

resolution at which the system operated and by being capable of detecting over 9000 object categories, thus enhancing its

versatility and accuracy. YOLOv3 further advanced these capabilities by implementing multi-scale predictions and a

deeper network architecture, which allowed better detection of smaller objects[60]. The series continued to evolve with

YOLOv4 and YOLOv5, each introducing more refined techniques and optimizations to improve detection performance

(i.e., accuracy and speed) even further[61][62]. YOLOv4 incorporated features like Cross-Stage Partial (CSP) connections

and Mosaic data augmentation, while YOLOv5, developed by Ultralytics, brought significant improvements in terms of

ease of use and performance, establishing itself as a popular choice in the computer vision community. Subsequent

versions, YOLOv6 through YOLO11, have continued to build on this success, focusing on enhancing model scalability,

reducing computational demands, and improving real-time performance metrics[63]. Each iteration of the YOLO series has

set new benchmarks for object detection capabilities and significantly impacted various application areas, from

autonomous driving and traffic monitoring to healthcare and industrial automation[63].

Starting with YOLOv1, the foundational model introduced significant capabilities with an mAP of 63.4%, although it

experienced higher latencies[61][63].This was followed by YOLOv2 and YOLOv3, which further improved detection

accuracy, achieving mAPs of 76.8% and 57.9%, respectively, at the cost of increased latency. YOLOv4 continued this

trend, reaching an mAP of 43.5% and serving as a bridge to more refined models. YOLOv5 emerged as a popular choice,

balancing performance and efficiency with a competitive mAP of 50.7% and a latency of 140 ms[64]. The YOLOv6 series,

including variants from YOLOv6-N to YOLOv6-L, offered mAP scores ranging from 37.0% to 51.8%, with moderate

latencies, marking a significant milestone in optimizing detection speed and accuracy[63]. Lastly, YOLOv7, including the

YOLOv7-tiny and standard YOLOv7 models, achieved mAPs of 56.4% and 51.2% respectively, but with significantly

higher latencies, indicating a shift towards prioritizing accuracy over speed.

Likewise, YOLOv8 demonstrates commendable performance with mAP scores ranging from 37.3% to 53.9%, and

latencies between 6.16 ms to 16.86 ms. While it made significant strides, YOLOv8 falls slightly short in terms of efficiency

and accuracy when compared to its successors. Progressing to YOLOv9[65], this iteration includes models like YOLOv9-

N, YOLOv9-S, YOLOv9-M, YOLOv9-C, and YOLOv9-X, which achieve mAP scores from 39.5% to 54.4%[65]. Although

YOLOv9 matches YOLOv10 in top mAP scores, its latency figures, particularly for YOLOv9-X, are higher, reflecting lesser

efficiency than YOLOv10. This discrepancy highlights YOLOv10’s advancements in balancing high accuracy with reduced

computational demands. The recent variant in the lineup, YOLOv10[66], introduces a range of variants: YOLOv10-N,

YOLOv10-S, YOLOv10-M, YOLOv10-B, YOLOv10-L, and YOLOv10-X offering precision scores from 38.5% to 54.4% on
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the MS-COCO dataset.

YOLO11 (Glenn Jocher 2024)represents the latest advancement in the YOLO family, building on the strengths of its

predecessors while introducing innovative features and optimizations aimed at enhancing performance across various

computer vision tasks. Specifically, YOLO11 architecture as shown in Figure 3(d) optimized feature extraction capabilities,

enabling it to capture intricate details in images. This model supports a range of applications, including real-time object

detection, instance segmentation, pose estimation, and which allows it to accurately identify objects regardless of their

orientation, scale, or size., making it versatile for industries like agriculture and surveillance. The YOLO11 model utilizes

enhanced training techniques that have led to improved results on benchmark datasets. Notably, as depicted in Figure 3

(e), YOLO11m achieved a mean Average Precision (mAP) score of 95.0% on the COCO dataset while utilizing 22% fewer

parameters compared to YOLOv8m, demonstrating greater efficiency without compromising accuracy. With an average

inference speed that is 2% faster than YOLOv10, YOLO11 is optimized for real-time applications, ensuring quick

processing even in demanding environments. These specifications position YOLO11 as a powerful tool for advancing AI

applications, particularly in sectors where rapid and accurate image analysis is crucial.
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Figure 3. Architecture diagrams of YOLOv8, YOLOv9 and YOLOv10 object detection algorithms: (a) YOLOv8 architecture integrates a convolutional

backbone and a Feature Pyramid Network for enhanced multi-scale detection ;  (b) YOLOv9 architecture  incorporates CSPNet, ELAN, and GELAN

modules to optimize feature integration and computational efficiency; (c) YOLOv10 architecture advances with a dual label assignment strategy and

a Path Aggregation Network, improving precision in object localization and classification; and (d) YOLO11 architecture for immature green fruit

detection and;  (e) Performance results on benchmark datasets over YOLOv10, YOLOv9, YOLOv8, YOLOv7, YOLOv6, YOLOv5 and PP-YOLOE+

3. Methods

This study was conducted across commercial apple orchards in Prosser and Naches, Washington State, USA, focusing

on evaluating datasets of apple fruitlets before thinning from four varieties: Scifresh, Scilate, Cosmic Crisp, and

Honeycrisp as described by Figure 4. RGB images were acquired using a machine vision sensor IntelRealsense 435i

(Intel Corporation, California, USA). These images were then manually labeled to prepare consistent datasets for training

all configurations of YOLOv8, YOLOv9, and YOLOv10 models as illustrated by Figure 4. A total of 22 model

configurations were examined: 5 for YOLOv8, 6 for YOLOv9, 6 for YOLOv10, and 5 for YOLO11 each trained under

standardized hyperparameter settings on the same computational system to ensure consistency and comparability

throughout the process. The trained models' performance was then evaluated using the prepared datasets, followed by in-

field counting validation using additional RGB images captured with an Apple iPhone 14 Pro Max smartphone (Apple Inc.,

California, USA). This validation process aimed to assess each model’s fruit counting accuracy against manually counted

ground truths, which included scenarios with occluded apples. Furthermore, this validation step was designed to

rigorously test the highest-performing models in terms of speed and accuracy using images from different sensors. The

details of this comprehensive methodology are illustrated in Figure 4, providing a visual reference for the experimental

setup and data collection approach employed in this study.
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Figure 4. Flow diagram of this study of comparison of YOLOv8, YOLOv9, YOLOv10, and YOLO11 illustrating the study's methodology, including

data collection, model training, and validation across multiple sensors and apple varieties in commercial orchards

3.1. Study Site and Data Acquisition

The image data collection for this study was conducted at Allan Brothers Orchard in Prosser, Washington State, USA,

focusing on datasets of immature green apples for training models. RGB images were acquired using an Intel RealSense

435i camera during the month of June 2024. For validation, additional datasets were collected from different locations and

times: Cosmic Crisp apple images from the ROZA experiment station at WSU IAREC in Prosser, Honeycrisp apple

images from an orchard in Naches owned by Allan Brothers Fruit Company. Furthermore, validation of apple counts using

the Intel RealSense camera was conducted in June 2023 in Scifresh apple orchard. All images were captured prior to the

fruitlet thinning process conducted by orchard workers. The details of each machine vision sensor used in data collection

of this study are:

Intel RealSense D435i: This camera features a 2-megapixel RGB sensor capable of capturing high-quality images.

Operating at a resolution of 1280×720 pixels, it provides a comprehensive view with a 69.4° horizontal and 42.5° vertical

field-of-view, ensuring broad coverage in various environments. The Intel RealSense D435i is designed to be compact

and lightweight, making it highly effective for capturing RGB data in diverse settings.

Apple Iphone14 Pro Max: The Apple iPhone 14 Pro Max features an advanced 48-megapixel RGB camera featuring a

24 mm lens with an f/1.78 aperture and second-generation sensor-shift optical image stabilization, ensuring high-

resolution image capture with enhanced clarity. The camera's field of view spans 120° horizontally and 90° vertically,

supported by a seven-element lens for minimized optical aberrations. It offers up to 15x digital zoom and 4K video

recording capabilities. Additionally, the integration of Photonic Engine and Smart HDR 4 technologies optimizes
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performance in low-light conditions and dynamic range, making it ideal for detailed visual data collection in varying lighting

environments.

3.2. Data Preparation and Model Training

A total of 1,147 images were manually annotated with bounding boxes using the online labeling platform provided by

Roboflow. These images were allocated into training and validation at the ration of 8:2 respectively, facilitated by

Roboflow's distribution tools. No image preprocessing steps were undertaken in this study, as the objective was not to

enhance any specific model but rather to compare and evaluate the performance of these models using raw data

collected in natural orchard settings.

The computational analyses for this study were conducted on a high-performance workstation equipped with an Intel

Xeon(R) W-2155 CPU, featuring a base clock speed of 3.30 GHz across 20 cores. This setup provided substantial

processing power necessary for handling intensive data processing tasks. The workstation was also outfitted with NVIDIA

Corporation GP102 [TITAN Xp] graphics cards, enhancing its ability to perform complex image processing and machine

learning tasks efficiently. The system included a substantial storage capacity of 7.0 TB, facilitating extensive data

management and analysis. It operated under Ubuntu 20.04.6 LTS, a robust and stable 64-bit operating system, using

GNOME version 3.36.8 for its graphical interface and X11 as its windowing system.

The analysis of YOLOv8, YOLOv9, YOLOv10 and YOLO11 encompassed a total of 22 configurations (five for YOLOv8,

six for YOLOv9, six for YOLOv10, and five for YOLOv11). Each model configuration was rigorously tested for precision,

recall, mAP@0.5, and image processing speed. For the training of all models, a consistent configuration was rigorously

maintained to ensure uniformity and comparability across experiments. Each model was trained for 700 epochs, reflecting

a substantial duration to adequately learn and adapt to the dataset's complexities. The batch size was set at 8, optimizing

the balance between memory usage and processing speed. Images were resized to a uniform resolution of 640x640

pixels to standardize the input data size across all models. The Stochastic Gradient Descent (SGD) optimizer was

employed to update model weights effectively, favored for its efficiency in handling large-scale and complex data.

Additionally, the configuration threshold for confidence was set at 0.25, and the Intersection over Union (IoU) threshold

was maintained at 0.7, criteria chosen to optimize the balance between precision and recall during object detection tasks.

The hyperparameter settings outlined in table 1 provide a detailed framework for optimizing the training of YOLO models

in the study. Key parameters such as the initial and final learning rates were set at 0.01, facilitating a controlled

adjustment of learning throughout the training process. Momentum was maintained at 0.937 to ensure consistent updates

across epochs, while a minimal weight decay of 0.0005 helped prevent overfitting. The training initiated with a warmup

phase spanning 3 epochs to stabilize the learning parameters early in the training. Loss adjustments were specifically

tuned, with box loss, class loss, and definition loss set at 7.5, 0.5, and 1.5 respectively, to balance the contributions of

different components of the loss function. Image augmentation techniques such as hue, saturation, and value adjustments

were precisely defined to enhance model robustness under varied lighting conditions typically found in orchard

environments. Specific settings for geometric transformations like rotation, translation, and scaling were employed to
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simulate different orientations and sizes of objects, crucial for improving the model's ability to generalize across diverse

scenarios. The table also highlights the use of flipping and mosaic data augmentation to further enrich the training

dataset, ensuring comprehensive exposure to potential real-world variations.

Hyperparameter Value Description

Initial Learning Rate (lr0) 0.01 Sets the starting learning rate.

Final Learning Rate (lrf) 0.01 Determines the learning rate at the end of training.

Momentum 0.937 Controls the momentum for the SGD optimizer

Weight Decay 0.0005 Helps in regularizing and preventing overfitting.

Warmup Epochs 3.0
Number of initial epochs for learning rate
stabilization.

Box Loss Gain (box) 7.5 Weight of the bounding box loss component.

Class Loss Gain (cls) 0.5 Weight of the class prediction loss component.

Definition Loss Gain (dfl) 1.5 Weight of the definition loss component

Table 1. Hyperparameter Settings for YOLOv8, YOLOv9, YOLOv10 and YOLO11

used in training YOLO models for fruitlet detection in commercial apple orchards

3.3. Performance Evaluation

To evaluate the detection capabilities of each configuration of YOLOv8, YOLOv9, YOLOv10, and YOLO11, the metrics of

precision, recall, and mean Average Precision at Intersection over Union (IoU) threshold of 0.50 (mAP@50) were

employed. Precision was calculated as the ratio of true positive detections to the total predicted positives, given by

equation 1, where TP denotes true positives and FP denotes false positives. Recall measured the ratio of true positive

detections to the actual positives, formulated as equation 2 where FN represents false negatives. The mAP@50 was

determined by averaging the precision across all recall levels for an IoU > 0.50. Additionally, the image processing speed

for each model was analyzed and compared across three categories: preprocessing, inference, and postprocessing.

These evaluations were systematically conducted across 22 configurations of the YOLO models: YOLOv8m, YOLOv8s,

YOLOv8l, YOLOv8x, YOLOv8c for YOLOv8; YOLOv9 Gelan-e, YOLOv9 Gelan-c, YOLOv9 Gelan-s, YOLOv9 Gelan-t,

YOLOv9 Gelan-m, and YOLOv9 Gelan for YOLOv9, YOLOv10m, YOLOv10s, YOLOv10l, YOLOv10x, YOLOv10c,

YOLOv10d for YOLOv10, and YOLO11n, YOLO11s, YOLO11m, YOLO11l, and YOLO11x for YOLO11 to evaluate their

efficiency in detecting fruitlets in commercial orchards.

 Precision =

TP
TP + FP (Equation 1)

 Recall =

TP
TP + FN (Equation 2)

Additionally, the assessment involved analyzing preprocessing, inference, and postprocessing speeds for each model

configuration, as these metrics are critical for real-time object detection systems. Preprocessing speed determines how

quickly a model can prepare images for detection, inference speed measures the time taken to identify objects within
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images, and postprocessing speed reflects how swiftly the model finalizes the outputs after detection. Each of these

stages is essential for efficient operation in agricultural applications, where timely and accurate detection can significantly

impact decision-making and resource management. The computational efficiency of these models directly influences their

practical utility in automated fruit detection systems, making this evaluation crucial for advancing agricultural technology

solutions.

3.4. In-Field Counting Validation

Upon evaluating the performance metrics of each YOLOv8, YOLOv9, YOLOv10, and YOLO11 configuration for detecting

fruitlets, the most effective model from each version was selected based on the highest accuracy achieved at mAP@0.5.

These top-performing models from YOLOv8, YOLOv9, YOLOv10, and YOLO11 were further validated to assess their

detection capabilities in a real commercial orchard setting across four distinct apple varieties in Washington State. This

validation process utilized images collected both by smartphone and machine vision sensor. Initially, images of Scifresh,

Scilate, Cosmic Crisp, and Honeycrisp apples were captured using the smartphone. A total of 128 images, 32 per variety,

were analyzed to evaluate the models' counting accuracy before the thinning process.

Subsequently, an additional set of images was used for further validation. This included 32 images of Scifresh apples

taken with an IntelRealsense machine vision camera. Notably, while the IntelRealsense camera images of Scifresh and

Scilate apples served as the training dataset, validation was performed on varieties: Cosmic Crisp and Honeycrisp, which

were not included in the training phase. For each image, a count of all visible and occluded apples fruitlets were manually

performed directly in the field. This comprehensive manual counting provided a precise ground truth for each image

sample across the different apple varieties, ensuring robust validation of the models' performance.

In our study assessing the performance of YOLO models for detecting fruitlets in commercial orchards, Root Mean Square

Error (RMSE) and Mean Absolute Error (MAE) were employed as crucial metrics to quantify the accuracy of fruit counts

predicted by the models compared to manually counted ground truths. RMSE was calculated using the equation 3:

RMSE =

1
n

n

∑
i=1 predictedi − actuali

2 (Equation 3)

Here, predictedi denotes the number of fruits counted by the model, actuali represents the manually counted fruits for each

image, and n is the total number of images. This measure calculated the square root of the average of the squared

differences between predicted and actual counts, emphasizing larger errors by squaring the discrepancies, which made it

particularly relevant for highlighting significant deviations in model performance.

Likewise, MAE was determined using equation 4:

√( ( ) )
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MAE =

1
n ∗

n

∑
i=1 ∣ predictedi − actuali ∣ (Equation 4)

Where, predictedi and actuali denotes the retain their definitions, with MAE calculating the average of the absolute

differences between the predicted and actual counts. This metric, being less sensitive to large errors compared to RMSE,

provided a straightforward indication of the average error magnitude per image, offering an intuitive measure of prediction

accuracy across the dataset.

4. Results and Discussion

The evaluation of performance across different YOLO model configurations: YOLOv8, YOLOv9, YOLOv10, and YOLO11

is comprehensively illustrated in Figures 5, 6, 7, and 8 respectively. Figure 5(a) presents an original image showcasing

green apples in a complex orchard environment characterized by shadow and partial sunlight, set against an all-green

background. This setting represents a challenging scenario for object detection due to the camouflaging color palette and

varying light conditions. Figure 5(b) details the performance of the YOLOv8l model configuration, where a false detection

has occurred. Notably, a double bounding box is erroneously placed over a region obscured by trellis wire and leaves,

mistakenly identified as fruitlets. This misidentification is highlighted by a yellow circle, indicating the area of false positive

detection. Figure 5(c) illustrates the results from the YOLOv8m configuration, which also resulted in a double detection

over a single green apple. This overprediction is marked by a yellow dotted circle, showcasing the model's sensitivity to

overlapping features within the detection area. Figure 5(d) captures the detection outcomes from the YOLOv8x model,

which successfully identified five apples accurately in the described complex conditions. This model's effectiveness in

handling the intricacies of the environment underscores its robustness. Figures 5(e) and 5(f) depict the performances of

the YOLOv8n and YOLOv8s configurations, respectively. Both configurations have correctly identified the green apples,

demonstrating their capability to accurately detect objects without the interference observed in other configurations.

( )
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Figure 5. Illustration of comparative performance of YOLOv8 object detection algorithm for fruitlet detection in a complex orchard environment: a)

Original Image; b) YOLOv8l detection results; c) YOLOv8m detection results; d) YOLOv8n detection results ; e) YOLOv8s detection results;  and e)

YOLOv8x  detection results 

Figure 6. Illustration of comparative Performance of YOLOv9 object detection algorithm for fruitlet detection in a complex orchard environment: a)

YOLOv9 gelan-c detection results; b) YOLOv9 gelan-e detection results; c) YOLOv9 gelan-s detection results; d) YOLOv9 gelan-t detection results;

e) YOLOv9 gelan-m detection results; and f) YOLOv9 gelan base detection results.
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Likewise, Figure 6 illustrates the detection performance of various YOLOv9 configurations across a challenging orchard

environment, comparing them against earlier YOLOv8 results. The configurations YOLOv9 Gelan-c (subfigure a),

YOLOv9 Gelan-e (subfigure b), YOLOv9 Gelan-s (subfigure c), YOLOv9 Gelan-t (subfigure d), and YOLOv9 Gelan base

(subfigure f) all demonstrated excellent accuracy in identifying fruitlets, with no false detections noted. However, an

exception was observed in YOLOv9 Gelan-m (subfigure e), which uniquely recorded a false positive.

Figure 7 showcases the detection capabilities of the YOLOv10 object detection algorithm on the same original image

previously analyzed in Figures 5 and 6. Subfigure 7(a) highlights a scenario where YOLOv10b mirrors the false detection

previously observed with YOLOv8l (Figure 5b), incorrectly identifying a non-fruit area as containing fruitlet with a single

bounding box. This misidentification underscores potential challenges in distinguishing complex background elements

from target objects under certain conditions.

Figure 7. Examples of YOLOv10 object detection algorithm’s all configurations for fruitlet detection in a complex orchard environment: (a)

YOLOv10b incorrectly detects a non-fruit area as containing fruitlet; (b) YOLOv10l accurately identifies fruitlets within the orchard. (c) YOLOv10m

falsely detects non-existent green apples. (d) YOLOv10-N demonstrates precise fruitlet detection. (e) YOLOv10s successfully identifies fruitlets with

high accuracy. (f) YOLOv10x also incorrectly identifies non-existent fruitlets, mirroring the error of YOLOv10b

Figure 8 presents examples of YOLO11 detection outcomes, demonstrating the model's exceptional performance in

identifying nearly all green apple fruitlets. Notably, these results are attributed to the YOLO11n configuration, which

recorded the fastest inference speed of 2.4 ms among the 22 configurations examined in this study, spanning variants

from YOLOv8 to YOLO11. Despite the challenges posed by densely clustered environments, as depicted in Figure 8a, the

YOLO11 object detection algorithm achieved near-perfect detection rates for all visibly observable apple fruitlets.

Furthermore, Figure 8b illustrates the model’s capability to detect partially visible, occluded fruitlets located at the edges of

Qeios, CC-BY 4.0   ·   Article, October 18, 2024

Qeios ID: E9Y7XI   ·   https://doi.org/10.32388/E9Y7XI 16/32



the camera frame, underscoring YOLO11's effectiveness in complex commercial orchard scenarios. However, Figure 8b

also highlights a limitation in the yellow marked area where the model failed to detect an apple fruitlet, likely due to

shadowing from dark lighting conditions. This issue suggests that enhancements could be made by expanding the training

dataset. Given that this study was conducted using a research-level dataset comprising approximately a thousand images,

scaling up the dataset is anticipated to address these detection challenges in broader industrial and robotic applications.

Figure 8. Examples of YOLO11-based fruitlet detection in complex orchard environments: (a) YOLO11n model successfully identifies nearly all

visible green apple fruitlets in densely clustered settings. (b) YOLO11n detects partially occluded fruitlets at the frame's edge, with some missed due

to shadowing.

4.1. Assessment of Detection Accuracy: Precision and Recall Metrics

The comparative analysis of detection accuracy across different YOLO configurations, as illustrated in Figure 9.

Specifically, in terms of precision, YOLOv10x emerged as the top performer among all the model configurations, achieving

the highest precision score of 0.891. This indicates its superior capability to accurately identify targets with minimal false

positives, thereby excelling in precise object detection scenarios. Conversely, when considering recall, YOLOv9 Gelan-m

distinguished itself by achieving the highest recall value of 0.899. This model excels in capturing the highest proportion of

true positives, demonstrating its effectiveness in comprehensive detection tasks, even at the risk of slightly increasing

false positives.
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Figure 9. Scatter plot illustrating precision and recall for all configurations of YOLOv8, YOLOv9, YOLOv10, and YOLO11 object

detection algorithms for fruitlet detection in complex and commercial apple orchards.

The analysis also highlighted the performances of other models in each series. For instance, YOLOv9 Gelan-c was

notable for its impressive precision of 0.903, underscoring its accuracy in fruitlet detection while minimizing the

misidentification of unrelated objects. Within the YOLOv8 series, YOLOv8m stood out with a precision of 0.897, indicating

effective and accurate target identification. Further examination revealed that YOLO11 models, such as YOLO11l, also

demonstrated robust performance with a blend of high precision and recall, recording scores of 0.899 and 0.883

respectively. These models enhance the detection accuracy in complex environments, affirming the advancements in

YOLO technology. Overall, the comparative analysis from Figure 9 clearly illustrates that YOLOv10x and YOLOv9 Gelan-

m lead in precision and recall respectively, reflecting ongoing enhancements in the YOLO series that cater to diverse and

challenging detection environments.

Figure 10 showcases the performance metrics of the best-performing YOLO configurations for detecting fruitlets,

segmented into subfigures for clarity. Subfigures 10(a), 10(b), and 10(c) illustrate the precision, recall, and F1-score,

respectively, for YOLOv8n, which outperformed all other YOLOv8 configurations. Subfigures 10(d), 10(e), and 10(f) detail

the superior performance of YOLOv9 Gelan-e, the best among the six configurations of YOLOv9 tested. Furthermore,

Subfigures 10(g), 10(h), and 10(i) present the performance metrics for YOLOv10n, which emerged as the leading

configuration in the YOLOv10 series. Finally, subfigures 10(j), 10(k), and (l) present the performance metrics for YOL11n

as a demonstration of best configurations out of each model from YOLO11 family.
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Figure 10. Performance Metrics for the best YOLO Models out of each configuration across YOLOv8, YOLOv9, and YOLOv10 on Fruitlet Detection

in complex orchard environments a) YOLOv8n precision confidence curve; b) YOLOv8n recall confidence curve; c) YOLOv8n F1-score curve; d)

YOLOv9 gelan-e precision confidence curve; e) YOLOv9 gelan-e recall confidence curve; f) YOLOv9 gelan-e F1-score curve; g) YOLOv10n

precision confidence curve; h) YOLOv10n recall confidence curve; i) YOLOv10n F1-score curve; j) YOLO1n precision confidence curve; k)

YOLO11n recall confidence curve; l) YOLO11 F1-score curve

4.2. Evaluation of Detection Consistency: Mean Average Precision at IoU=0.50

The assessment of mean Average Precision at an Intersection over Union (IoU) threshold of 0.50 (mAP@0.50) across

various YOLO model configurations in Figure 11 provides profound insights into their efficacy in detecting fruitlets within

agricultural settings. Among all evaluated configurations, YOLOv9 models, particularly YOLOv9 Gelan-e and YOLOv9

Gelan-base, stand out with the highest mAP@0.50 scores of 0.935 both, respectively. However, all configurations of
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YOLOv9 achieved higher mAP@50 as depicted in Figure 10. These scores not only exceed those achieved by all

configurations of YOLOv8 and YOLOv10 but also underscore YOLOv9's superior precision in object detection tasks.

The newly included YOLO11 series introduces impressive scores as well: YOLO11n records an mAP@0.50 of 0.926,

YOLO11s at 0.933, YOLO11m at 0.924, YOLO11l at 0.932, and YOLO11x at 0.922, indicating enhanced detection

capabilities across these newer configurations. Within the YOLOv10 series, YOLOv10n leads with an mAP@0.50 of

0.921, closely followed by YOLOv10b and YOLOv10-M, which record scores of 0.919 and 0.917 respectively. Despite

their strong performance, these figures remain slightly below the peak values presented by YOLOv9, indicating that

specific enhancements in YOLOv9 have likely boosted its accuracy capabilities. In contrast, the YOLOv8 configurations

show a wider spectrum of performance, with YOLOv8s achieving the highest mAP@0.50 within its group at 0.924, nearly

matching the top-performing configurations of YOLOv10. Nonetheless, configurations such as YOLOv8l and YOLOv8x,

with lower scores of 0.912 and 0.914 respectively. This variation may be attributed to an over-parameterization of the

models for the given task. Considering the dataset's simplicity and fewer categories relative to the more complex COCO

dataset, the extensive parameters in these models might be excessive and potentially obstruct optimal performance.

Figure 11. Bar diagram showing mAP@50 scores for all 17 Configurations of YOLOv8, YOLOv9, YOLOv10, and YOLO11 for fruitlet detection in

commercial orchards.

4.3. Analysis of Computational Efficiency: Image Processing Speed

In assessing computational efficiency, particularly image processing speeds, YOLO11 emerged as the top performer,

achieving remarkably low inference speeds across its variants, with an exceptional rate of just 2.4 ms. Moreover, the

preprocessing speeds for YOLO11 were notably quick, registering at 0.1 ms for all variants, except for YOLO11l, which

still performed impressively at 0.2 ms. This rapid preprocessing facilitates faster readiness of images for subsequent

detection phases. Despite YOLO11's superior performance, YOLOv8x was also notable within its series for achieving the
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fastest preprocessing speed at merely 0.9 ms. While preprocessing speeds are expected to be consistent across models,

the discrepancies observed, particularly in YOLOv8x's speed, are likely due to random variations rather than fundamental

differences in model architecture.

Expanding on the theme of processing efficiency, YOLOv8 configurations demonstrated excellence in inference speed.

YOLOv8n, in particular, recorded a speed of 4.1 ms, significantly outpacing the fastest models from the YOLOv9 and

YOLOv10 series. In comparison, the quickest YOLOv9 model, YOLOv9 Gelan-s, logged an inference time of 11.5 ms, and

the leading YOLOv10 model, YOLOv10-s, achieved 5.5 ms. These results underscore YOLOv8n’s superior capability in

rapid image processing, highlighting its robustness and suitability for scenarios that demand high-speed, accurate object

detection. This analysis reveals that while the YOLO11 series leads in low-latency performance, previous iterations like

YOLOv8 still maintain competitive advantages, particularly in environments where quick decision-making is crucial. The

detailed performance metrics for each model configuration across the YOLOv8, YOLOv9, YOLOv10, and YOLOv11 series

are systematically presented in Table 2.

YOLO models YOLO Configuration
Preprocessing Speed
(ms)

Inference Speed
(ms)

Postprocessing Speed
(ms)

YOLOv8

YOLOv8n 1.3 4.1 2.3

YOLOv8s 1.3 6.4 2.3

YOLOv8m 1.3 11.2 2.1

YOLOv8l 1.2 18.7 2.2

YOLOv8x 0.9 24.8 2.3

YOLOv9

YOLOv9 Gelan-t 1.3 14.1 2.2

YOLOv9 Gelan-s 1.3 11.5 2.2

YOLOv9 Gelan-m 1.3 14 2.1

YOLOv9 Gelan-c 1.3 17 2

YOLOv9 Gelan-base 1.2 17.2 2

YOLOv9 Gelan-e 1.1 33.5 1.9

YOLOv10

YOLOv10n 1.4 5.5 1.6

YOLOv10s 1.3 7.7 1.6

YOLOv10m 1.3 13 1.6

YOLOv10b 1.3 16.7 1.5

YOLOv10l 1.4 19.6 1.5

YOLOv10x 1.2 26.5 1.5

YOLO11

YOLO11n 0.1 2.4 2.2

YOLO11s 0.1 5.0 2.5

YOLO11m 0.1 11.9 0.6

YOLO11l 0.2 14.6 1.2

YOLO11x 0.1 26.3 0.6

Table 2. Computational Speeds of YOLOv8, YOLOv9, YOLOv10, and YOLO11 Configurations for fruitlet detection

in complex orchard environments.
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Note: Preprocessing refers to the initial stage where images are prepared for analysis, involving adjustments such as

scaling, normalization, and augmentation to optimize them for detection. Inference refers to the core phase of the process

where the model analyzes the preprocessed images to detect and identify objects based on the learned features and

patterns. Postprocessing refers to the final stage that refines the outputs from the inference, applying techniques like Non-

Maximum Suppression (NMS) to eliminate redundant detections and finalize the list of detected objects.

4.4. Field Validation of Counting Accuracy: RMSE and MAE Metrics

For the counting validation performed on four apple varieties images collected using Apple Iphone 14 smartphone, the

top-performing configurations from each YOLO version: YOLOv8n, YOLOv9 Gelan-e, YOLOv10n and YOLO11n were

rigorously assessed for accuracy in fruit counting. YOLO11n demonstrated exceptional precision, outperforming prior

configurations in RMSE and MAE metrics across various apple varieties. Notably, for Honeycrisp apples, YOLO11n

recorded an RMSE of 4.51 and an MAE of 4.07, marking a significant improvement in detection precision. Similarly, for

the Cosmic Crisp variety, it achieved an RMSE of 4.59 and an MAE of 3.98. The Scilate variety showed an RMSE of 4.83

and a notably higher MAE of 7.73, while Scifresh apples had an RMSE of 4.96 and an MAE of 3.85. These results

indicate YOLO11n's advanced capability in accurately counting and detecting fruitlets under complex orchard conditions.

Despite the strong performance of YOLO11n, the YOLOv9 Gelan-e configuration also showed robust results in previous

assessments, particularly excelling with Honeycrisp apples by achieving an RMSE of 4.89 and an MAE of 4.14. For

Cosmic Crisp, it registered the lowest RMSE at 4.77 and an MAE of 4.04, followed by RMSEs of 5.54 for Scilate and 5.37

for Scifresh, with corresponding MAEs of 4.16 and 4.23, respectively. These metrics affirm YOLOv9 Gelan-e’s

effectiveness in precision fruit counting across multiple apple varieties, consistently outperforming YOLOv8 and YOLOv10

configurations. Figure 12 depicts a detailed visual distribution of RMSE and MAE values, capturing in-field counting

validation results for the four apple varieties, collected using an Apple iPhone 14 camera during the fruitlet season.

Figure 12. RMSE and MAE for in-field counting validation for Green Apple Detection Using iPhone 14 pro Images: Comparison of RMSE (left) and
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Figure 12. RMSE and MAE for in-field counting validation for Green Apple Detection Using iPhone 14 pro Images: Comparison of RMSE (left) and

MAE (right) for green apple detection across YOLOv8s, YOLOv9 gelan-e, YOLOv10n , YOLO11n configurations, highlighting model accuracy and

precision.

In the evaluation of images captured by consumer-scale machine vision cameras for apple counting, the updated results

highlight the exceptional accuracy of the YOLO11n configuration. Specifically, YOLO11n demonstrated remarkable

performance in counting Scifresh apples, achieving an RMSE of 3.06 and an MAE of 2.33. This outperforms the

previously noted accuracy of the YOLOv9 Gelan-e configuration, which led earlier assessments with an RMSE of 3.11

and an MAE of 2.46 for the same variety using Intel Realsense cameras. Figures 12 and 13 illustrate the distribution of

RMSE and MAE across multiple configurations and apple varieties; Scilate, Scifresh, Honeycrisp, Cosmic Crisp captured

with an Apple iPhone 14, with special attention to the performance on Scifresh apples captured using Intel Realsense

cameras.

Figure 13. RMSE and MAE for Green Apple Detection Using a consumer grade Machine Vision Sensor Displays RMSE (left) and MAE (right) for

green apple detection across YOLOv8s, YOLOv9 gelan-e, YOLOv10n and YOLO11n assessed with Intel Realsense camera
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Figure 14 (a-h) demonstrates the proficiency of various YOLO configurations in detecting green apples within different

orchard settings, as captured by an Apple iPhone. The sequence of subfigures from 14(a) to 14(d) examines the

performance on Scilate apples for YOLOv8s, YOLOv9 Gelan-e, YOLOv10n, and the newly added YOLO11n, respectively.

Similarly, subfigures from 14(e) to 14(h) extend this analysis to Scifresh apples. These illustrations affirm the adaptability

of each model to distinct orchard architectures and environmental conditions, showcasing their utility in practical

agricultural applications. The addition of YOLO11n especially highlights a refined detection capability, evident in its

consistent performance across varying scenarios. Figure 15 (a-h) details the detection and counting performance for

Honeycrisp and Cosmic Crisp apple varieties.

Figure 14. Performance of best YOLO configuration across YOLOv8, YOLOv9 and YOLOv10 Models in fruitlet detection on images collected by

Apple Iphone on: 14 a) YOLOv8s on Scilate; b) YOLOv9 Gelan-e on Scilate; c) YOLOv10n on Scilate; d) YOLO11n on Scilate; e) YOLOv8s on

Scifresh; f) YOLOv9 gelan-e on Scifresh; g) YOLOv10n on Scifresh; and h) YOLO11n on Scifresh

In the Honeycrisp evaluations, YOLOv8n and YOLOv9 Gelan-c (subfigures 15(a) and 15(b)) demonstrate effective fruit

recognition, accurately detecting the majority of apples within a cluster. Subfigure 15(c) reveals a slight misstep by

YOLOv10n, where it misidentifies a background element as a fruitlet, pinpointing an area for model improvement.

Conversely, the introduction of YOLO11n in subfigure 15(d) showcases superior accuracy with no such errors. For

Cosmic Crisp apples, subfigures 15(e) and 15(f) show successful peripheral apple detection by YOLOv8s and YOLOv9

Gelan-e, reflecting robust edge detection capabilities. Subfigure 15(g) highlights a limitation in YOLOv10's ability to

recognize an apple in the annotated area. However, YOLO11 (subfigure 15(h)) corrects this oversight by effectively

identifying all designated apples, including those in challenging peripheral or obscured positions. Overall, the inclusion of

YOLO11 results enriches the comparative study by not only bridging the performance gaps identified in earlier

configurations but also by establishing a new benchmark for accuracy in fruitlet detection tasks.

Although the YOLO models demonstrated strong performance in detecting green apples from clusters in commercial
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orchards across four varieties, as shown in Figures 14 and 15, it is important to note the imaging context. The images

were captured using an Apple iPhone 14, which offers high-contrast imaging with enhanced focus and resolution. In

contrast, the deep learning models for YOLOv8, YOLOv9, YOLOv10, and YOLO11 were trained on RGB images acquired

by IntelRealsense cameras, which differ in resolution, saturation, and overall image quality. This discrepancy highlights

the robustness of the models, as they were never trained on the specific varieties shown or on images from the iPhone

camera. Despite these differences, the exemplary performance of configurations like YOLOv9 Gelan-e, YOLOv8s, and

YOLOv10n showcases their potential for fruitlet detection. This study, involving 1,149 images, suggests that expanding

the training datasets and employing more computationally intense environments could further enhance model accuracy

and generalizability.

5. Conclusion and Future Suggestions

In this study, we conducted a comprehensive evaluation of various configurations of three state-of-the-art YOLO object

detection models (YOLOv8, YOLOv9, YOLOv10, and YOLO11) to assess their effectiveness in detecting green apples

before thinning in complex orchard environments using different sensors and conditions. The specific conclusions and

future suggestions of this study are specifically summarized in following five points:

Model-Specific Performance: YOLOv9 configurations, particularly YOLOv9 gelan-c and YOLOv9 gelan-m,

demonstrated remarkable performance in precision and recall metrics, respectively. YOLOv9 gelan-c achieved the

highest precision score of 0.903, showcasing superior accuracy in correctly identifying fruitlets without false positives.

Meanwhile, YOLOv9 gelan-m recorded the highest recall rate of 0.899, slightly higher than YOLO11m's 0.897,

indicating its efficacy in capturing almost all fruitlets in the images.

Figure 15. Performance of best YOLO configuration across YOLOv8, YOLOv9 and YOLOv10 Models in fruitlet detection on images collected by

Apple Iphone on: a) YOLOv8n on Honeycrisp; b) YOLOv9 gelan-c on Honeycrisp; c) YOLOv10n misidentifies background on Honeycrisp; d)

YOLO11n on Honeycrisp ; e)YOLOv8s detects edge apples on Cosmic Crisp; f) YOLOv9 gelan-e on Cosmic Crisp; g) YOLOv10 misses apple on
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Cosmic Crisp; and h) YOLO11n on cosmic crisp

Accuracy Across Configurations: In the analysis of mean Average Precision at a 50% Intersection over Union

(mAP@0.50), YOLOv9 configurations emerged as leaders, with YOLOv9 Gelan-base and YOLOv9 Gelan-e each

securing the highest scores of 0.935. This outstanding performance underscores their robustness in precise object

detection within agricultural settings. Notably, the YOLO11a model closely approached these top scores with an

mAP@0.50 of 0.933, demonstrating that it is nearly on par with the best-performing models across the YOLOv8,

YOLOv9, and YOLOv10 series.

Counting Validation: YOLO11n model demonstrated outstanding precision, achieving the lowest RMSE and MAE

across all tested varieties, underscoring its robustness in fruit detection applications.

Specifically, in iphone 14 pro captured images, for YOLO11n recorded the best RMSE scores for each variety: 4.51 for

Honeycrisp, 4.59 for Cosmic Crisp, 4.83 for Scilate, and 4.96 for Scifresh. These figures represent the model's consistent

ability to accurately estimate fruit counts with minimal error, reflecting its sophisticated detection capabilities. Moreover,

the MAE scores further illustrate YOLO11n's precision, with the lowest values recorded at 4.07 for Honeycrisp, 3.98 for

Cosmic Crisp, and 3.85 for Scifresh. The exception was Scilate, where YOLO11n recorded a higher MAE of 7.73,

suggesting an area for potential.

Likewise for a consumer grade RGB-D camera counting validation, YOLO11n consistently demonstrated the most

accurate performance. For Scilate, YOLO11n achieved the lowest RMSE of 4.83 and a significantly higher MAE of 7.73,

indicating its precise but inconsistent counting ability under certain conditions. Conversely, for the Scifresh variety,

YOLO11n again led with the lowest RMSE of 4.96 and an MAE of 3.85, showcasing its robustness in accurately detecting

and counting fruitlets.

Sensor-Specific Training Impact: The study demonstrated that training models on data collected from a specific type

of sensor, such as Intel Realsense, significantly enhances model performance when tested with data from the same

sensor. This indicates the importance of including diverse sensor data in training phases to ensure robust model

performance across various deployment scenarios.

Recommendations for Model Deployment: When deploying YOLO models in automation and robotics, particularly

for real-time agricultural tasks such as early-stage crop load management in apple orchards, the choice of model

configuration becomes crucial. Each YOLO family has standout configurations optimized for speed and accuracy:

YOLOv8n leads its family with an impressive inference speed of 4.1 ms, making it highly suitable for rapid processing

needs. In the YOLOv9 series, YOLOv9 Gelan-s excels with a best inference speed of 11.5 ms. For the YOLOv10

configurations, YOLOv10n tops with a speed of 5.5 ms. However, surpassing these, YOLO11n from the YOLO11

series achieves an extraordinary low inference speed of only 2.4 ms, making it the optimal choice for environments

where both high speed and precision are critical for efficient automation and real-time decision-making.
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