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Abstract

This research was carried out within the Oluwa Forest Reserve to evaluate and forecast its capacity for aboveground

carbon sequestration using data from the Landsat Thematic Mapper. The Oluwa Forest Reserve, situated in Ondo

State, Nigeria, is renowned for its abundant biodiversity and vast expanse. Assessing the forest's aboveground

biomass and carbon traditionally involves intricate and expensive processes necessitating the expertise of diverse

professionals and specialized equipment. Hence, this study investigated the utilization of Geographic Information

System (GIS) and Remote Sensing (RS) technology, employing Landsat bands to calculate spectral indices and

construct linear models for predicting the aboveground carbon sequestration potential of the tropical rainforest

ecosystem within the Oluwa Forest Reserve. The measured aboveground carbon from sample plots, alongside the

estimated spectral indices, was utilized to simulate the distribution of aboveground carbon across the Oluwa Forest

Reserve. A positive linear correlation was identified between the observed data and the estimated spectral indices.

Consequently, linear models were developed, and the most suitable model was determined through statistical analysis.

The average aboveground carbon estimated from the sample plots was 150.70 tons per hectare (t/ha), closely aligning

with the predicted value of 149.80 t/ha. Statistical analysis yielded a coefficient of determination of 94% and a Root

Mean Square Error of 6.38E-16. These results indicate that the selected model accurately predicts the distribution of

aboveground carbon within the Oluwa Forest Reserve. This study underscores the importance of spectral data, GIS,

and RS in the efficient modelling and mapping of aboveground carbon in extensive forest ecosystems.
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Introduction

Tropical rainforest ecosystems harbour significant reserves of carbon, both above and below the ground (Yadav et al.,

2022). Typically, these carbon stores exist in various forms within different components such as tree trunks, roots, woody

vegetation, organic material in the soil, and litter on the forest floor. Among these components, the aboveground biomass

of living trees holds the largest carbon stock (Adeniyi and Ajayi, 2017), making it particularly susceptible to activities

associated with forest degradation and deforestation (Adewoye et al., 2015). This has prompted increased interest in

forest management strategies for global climate mitigation, with a focus on estimating carbon stocks within forests (Akhlaq

et al., 2015; Adeniyi and Ajayi, 2017).

Within tropical rainforest ecosystems, it is well established that approximately 50% of tree biomass consists of carbon, and

primarily stored within the aboveground biomass (Adewoye et al., 2015). Consequently, accurate measurement of

aboveground carbon stocks plays a crucial role in obtaining precise estimates of forest carbon stocks for initiatives such

as the United Nations' Reducing Emissions from Deforestation and Forest Degradation (UN-REDD) program, which

emphasizes the measurement, reporting, and verification of forest carbon.

Although, various approaches have been utilized to estimate the aboveground biomass of tropical rainforests, including

field-based inventory methods (both direct and indirect), remote sensing techniques, and the utilization of allometric

equations. Among these methodologies, direct field inventory is widely recognized as the most precise for estimating

aboveground biomass and carbon stock. However, it is important to acknowledge that this method is characterized by

being time-consuming, labour-intensive, and costly (Onyekwelu, 2004; Adewoye et al., 2015; Adeniyi and Ajayi, 2017).

Nevertheless, remote sensing, an indirect method, is commonly applied to vast land areas and offers the potential for

evaluating forest carbon stocks using satellite data, as demonstrated by Baccini et al., (2008). The accuracy and reliability

of these results are contingent upon the availability of ground-based inventory data (Adewoye et al., 2015).

The process of estimating and mapping aboveground carbon using remote sensing data often involves correlating

ground-based inventory information with spectral reflectance, which may include various vegetation indices such as the

Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index

(EVI), among others (Sarker and Nichol, 2011). However, challenges related to data saturation can emerge when

employing remote sensing imagery for aboveground carbon modelling in tropical rainforests, particularly in regions with

substantial biomass. Nevertheless, these challenges can be addressed (Foody et al., 2003; Adewoye et al., 2015; Adeniyi

and Ajayi, 2017).
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In recent years, there has been a significant global push to enhance the efficiency of optical data for precise estimation of

forest aboveground biomass and carbon, focusing on leveraging object features. Extensive literature reviews demonstrate

a consistent enhancement in aboveground biomass and carbon estimations with object features. Texture extracted from

moderate-resolution Landsat data has proven effective in modelling aboveground biomass and carbon across numerous

forests (Kelsey and Neff, 2014; Adeniyi and Ajayi, 2017). Likewise, textural features derived from high-resolution data

sources such as Worldview-2, IKONOS, and QuickBird have been successfully employed in modelling and estimating

forest aboveground biomass and carbon (Adewoye et al., 2015). The utilization of derived object features in biomass

modelling exhibits variability across geographical regions and the types of optical data employed. However, there is a

prevailing consensus that object features extracted from images may offer greater suitability for biomass and carbon

modelling, particularly in the diverse and complex landscapes of tropical rainforests.

The Oluwa Forest Reserve, is renowned for its abundant biodiversity and vast expanse of land with tree species with high

carbon stock values (Ige and Silas, 2023). The main aim of this study is to assess the carbon stocks within the Oluwa

Forest Reserve and utilize remote sensing data to construct a comprehensive map illustrating the reserve's potential for

carbon sequestration. Our objective is to accurately depict the distribution of carbon based on spectral index reflectance

values with the strongest correlation. By integrating precise field inventory data with remote sensing information, we have

developed a highly precise and reliable model for evaluating the carbon sequestration potential of the Oluwa Forest

Reserve. This methodology is essential for reporting forest carbon to the Clean Development Mechanism (CDM) under

the Kyoto Protocol of the United Nations Framework Convention on Climate Change, as it enhances our understanding of

the carbon balance within forest ecosystems (Akhlaq et al., 2015; Adeniyi and Ajayi, 2017).

Study Area

This research was conducted within the Oluwa Forest Reserve, located in Odigbo Local Government Area of Ondo State,

Nigeria. The reserve spans an area between Latitude 6° 38' 24'' - 6° 57' 36'' N and Longitude 4° 28' 48'' - 4° 52' 48'' E,

covering approximately 829 square kilometres. The annual rainfall in the reserve varies from 1700 to 2200 mm, with an

average annual temperature of 26°C (Ogunjemite and Olaniyi, 2012). The relative humidity remains consistently high,

ranging from 75% to 95%. The soils in Oluwa Forest Reserve are predominantly ferruginous tropical, typical of extensively

weathered regions within the rainforest ecosystem of South-western Nigeria. These soils are well-drained, mature, and

characterized by a reddish colour, stones, and gravel in their upper layers (Ogunjemite and Olaniyi, 2012). Additionally,

Onyekwelu et al., (2008) noted that the topsoil texture in the reserve is primarily sandy loam. The vegetation in the

reserve is classified as tropical rainforest and includes species such as Melicia excelsa, Terminalia superba, and

Triplochiton scleroxylon, among others.

Ground-based Biomass and Carbon Assessment

The equipment utilized in this study comprised girth tape, meter tape, compass, ranging poles, flagging tape, Global
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Positioning System (GPS), relaskop, and recording sheets. Girth tape facilitated the measurement of Diameter at Breast

Height (Dbh) and the diameter at the base of trees. Meter tape, compass, flagging tape, and ranging poles were employed

in setting up temporary plots. Relaskop was employed to measure upper diameters and tree height.

Plot layout and selection

Square grids of 30 m x 30 m were created in geographic information system software (ArcGIS) and overlaid on the

shapefile of study area. Grids that fell out from the boundary of the shapefile were removed and the remaining grids were

numbered. Twenty (20) grids were randomly selected from the forest reserve shapefile and laid as temporary sample plots

for data collection purpose using the southwest corner coordinates value as starting point.

Data Collection

All the tree species within the sample plot with Dbh ≥10 cm was measured. Stems with forked or branched at Dbh point or

below were considered as two individual trees as report by Ibrahim et al. (2018). In the plots, the trees were identified by

forest taxonomist and their scientific names recorded. Measurements was restricted to the following tree variables; Dbh,

Diameter at the base (Db), Diameter at the middle (Dm), Diameter at the top (Dt) and tree height.

Wood Density

Tree species densities were obtained from literatures (African wood density and International Council for Research in

Agroforestry databases). The forest reserve mean density was adopted for trees that the density was not found from the

density database.

Methods and Data Analysis

Volume Estimation

The Newton’s formula was used to estimate the tree species volumes for this study (Equation 1).

Volume =

πh
24 (D2

b + 4D2
m + D2

t ) (Equation 1)

Where:

Volume = Volume of tree (m3), π = 3.142, h = Tree height (m), Db = Diameter at the base (m), Dm = Diameter at the

middle (m), Dt = Diameter at the top (m).
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Estimation of biomass

Biomass of each tree was estimated using the volume and density as obtained for respective tree species and Equation 2

was employed.

Biomass = Density × Volume (Equation 2)

Estimation of Carbon

Tree biomass obtained in Equation 2 was used to estimate carbon stock for each tree. The standard multiple factors of

0.5 was used for conversion of biomass to carbon stock (Equation 3) as adopted by Losi et al., (2003).

Carbon = 0.5 × Biomas (Equation 3)

GIS and Remote Sensing Biomass/Carbon Mapping

The plot biomass/carbon values obtained from the ground-based assessment were correlated with the spectral indices’

values calculated from the respective points of the corresponding plots as used for this study.

Spectral indices Extractions

Four (4) spectral indices (Table 1) were selected for this study because they indicate one biophysical characteristic or the

other and conditions of vegetation as reflected as true nature depict. These four spectral indices are; Normalised

Difference Vegetation Index (NDVI), Greenness Normalised Difference Vegetation Index (GNDVI), Soil Adjusted

Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI). These spectral indices represent quantification of

vegetation as well as vegetation greenness (Adeniyi and Ajayi, 2017). In addition, these various spectral indices have

statistical correlation with biomass/carbon data (Deo, 2008).

Table 1. LandSat-derived spectral indices and their equations
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Regression and Evaluation

The models employed in this study were constructed in a linear fashion, and this formation depended on the data

distribution observed in the scatter plots. To assess the performance of the model(s), various statistical measures of

goodness of fit were utilized, including Root Mean Square Error (RMSE), coefficient of determination (R2), and residuals,

among others.

The most strongly correlated spectral indices were selected as independent variables to predict the aboveground carbon

content within the study area. Furthermore, the chosen model was validated with an independent data before applied to

create a spatial distribution of aboveground carbon of the study area.

Results

The values of aboveground biomass and carbon vary across the plots. The average aboveground carbon estimated from

the sample plots was 150.70 tons per hectare (t/ha), closely aligning with the predicted value of 149.80 t/ha (Table 2).

Variable Observed Carbon Predicted Carbon

Mean 150.70 149.80

Standard Error 7.32 3.66

Median 85.94 42.97

Mode 149.30 148.09

Standard Deviation 131.78 65.89

Sample Variance 17366.18 4341.54

Kurtosis 16.16 16.16

Skewness 3.28 3.28

Range 1044.46 522.23

Minimum 12.66 6.33

Maximum 1057.12 528.56

Sum 41349.54 20674.77

Count 324.00 324.00

Table 2. Aboveground carbon (AGC)

Modelling Using Geographic Information System and Remote Sensing

There were moderate correlations observed between the recorded aboveground carbon (AGC) data and some of the

spectral indices, ranging from 0.29 to 0.60 within the Oluwa Forest Reserve. However, a majority of the calculated

spectral indices exhibited strong correlations with the observed AGC, surpassing the 0.5 threshold, indicating robust linear

relationships among them. Worthy of note, the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index

(NDVI), and Green Normalized Difference Vegetation Index (GNDVI) showed the highest correlations with the observed
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AGC values for the Oluwa Forest Reserve. Consequently, these spectral indices were selected as candidates for

explanatory variables (as shown in Table 3).

However, only EVI exhibited a high level of significance in model construction, particularly when applied to transformed

AGC data. Among the various models developed, a logarithmically transformed model with a single explanatory variable

(EVI) was judged the most suitable for the study. This decision was based on the model's simplicity, significance, and its

alignment with other predefined criteria.

To verify the predictive capacity and accuracy of the chosen model, a comparison was made between the generated data

and the observed data, as well as an analysis of the residual plot distributions. Among the models evaluated, model

number 4, emerged as the best spectral model, achieving a coefficient of determination (R2) value of 0.94. This indicates

that the selected model can predict the aboveground carbon content of the Oluwa Forest Reserve with a high level of

accuracy, estimated at 94%.

No. MODEL R2 AdjR2 RMSE SIG.

1
AGC = 12.06 + 21.64 (EVI) - 102.94 (GNDVI) + 5.44
(NDWI)

0.93 0.92 1.25E-15 *

2 LnAGC = 2.98 + 5.46 (EVI) - 24.96 (GNDVI) + 2.29 (NDWI) 0.93 0.92 9.16E-16 *

3 AGC = 6.76 + 13.81 (EVI) 0.93 0.92 5.55E-16 ***

4 LnAGC = 2.24 + 4.38 (EVI) 0.94 0.94 6.38E-16 ***

Table 3. AGC Spectral Indices Models

Spatial Distribution of AGC

The aboveground carbon (AGC) values, derived from the spectral indices model within the study area, were utilized to

create a spatial distribution map of aboveground carbon in the study area. The chosen spectral indices model yielded

AGC estimates for the forest reserve that exhibited minor differences when compared to the observed values, and these

differences were not statistically significant (P < 0.05).

Specifically, the selected spectral indices model estimated the average aboveground carbon to be approximately 149.80

metric tons per hectare, while the observed AGC was 150.70 metric tons per hectare. Using these AGC values from the

model, an AGC map of the Oluwa Forest Reserve was generated. The colours on the map corresponded to the AGC

content as predicted by the model, with green indicating higher carbon content and decreases as carbon content

decreased (Fig. 1).

This study harnessed Landsat 8 Thematic Mapper data to develop a straightforward linear model, and employed to map

the spatial distribution of aboveground carbon within the forest reserve. The logarithmically transformed data with a single

explanatory variable (the spectral index) was identified as the most suitable for this study.

Additionally, an allometric equation, incorporated with spectral indices data as explanatory variables, was re-presented as
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Equation 4 for this study. Consequently, this allometric equation is recommended for accurately predicting aboveground

carbon in the Oluwa Forest Reserve and other forest reserves sharing similar characteristics.

LnAGC = 2.24 + 4.38(EVI) (Equation 4)

Figure 1. Spatial distribution of aboveground Carbon of Oluwa Forest Reserve

Discussions

The density of green leaves, which represents the carbon accumulation of trees in optical sensors, is determined by the

ratio and quantity of chlorophyll within the leaves, as well as the reflection of near-infrared (NIR) radiation and the

absorption of red radiation (Ji et al. 2009; Adeniyi and Ajayi, 2017). The spectral indices model with the highest coefficient

of determination (R2) value, measuring 0.94, was adjudged to be the most suitable for the study area. This finding aligns

with the results of Adewoye et al. (2015), who reported a coefficient of determination (R2) of 0.936 in their study titled

"Estimating Aboveground Biomass of the Afromontane Forests of Mambilla Plateau Using Quickbird and in Situ Forest

Inventory Data". The model featuring EVI as the explanatory variable demonstrated the most effective predictive capacity,
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producing results that closely aligned with the observed data, with no significant differences noted. This outcome is in line

with the conclusions drawn by Gizachew et al. (2016) in their paper titled "Mapping and Estimating the Total Living

Biomass and Carbon in Low-Biomass Woodlands using Landsat 8 CDR Data." In their study, they also found that spectral

indices models were proficient in predicting biomass and carbon. The correlation of EVI to aboveground carbon was 60%

for this study. The result of the study is higher than what was reported by Gizachew et al. (2016) who reported correlation

coefficient of 0.50. The observed variation could stem from variances in the tree species found within the forest estate, as

the level of reflectance is primarily influenced by leaf structure and the quantity of intercellular space within the leaves

(Itkonen, 2012; Gizachew et al. 2016; Dupiau et al. 2022). Logarithmic transformation was applied to models using EVI as

the independent variable to predict AGC and the outcome of this investigation align with the findings of certain authors

who identified logarithmic transformation as the optimal approach when constructing biomass and carbon models

(Onyekwelu, 2004; Adeniyi and Ajayi, 2017).

Spatial Distribution of Carbon with Spectral Indices Model

The aboveground carbon value obtained for this study is higher than the findings of Adeniyi and Ajayi, (2017) who

reported mean aboveground carbon of 81.20 t/ha in Omo Biosphere Reserve. In addition, the result of this study is higher

than the findings of authors (e.g. Baccini et al. 2008; Gizachew et al. 2016). This study reported 80±7 t/ha and 138 t/ha,

respectively. Furthermore, the result of this study is higher than what Vroh et al. (2015) who reported 173.59 ± 50.85 t/ha

for Yapo protected forest and 122.55 ± 15.84 t/ha as the above-ground biomass accumulation of Natural Voluntary

Reserve (NVR) forest. However, the carbon findings in this study exhibited a favourable comparison with the report of

Adewoye et al. (2015), who reported an aboveground biomass of 300.10 t/ha, considering that this study applied a 50%

conversion of biomass to carbon. The differences and similarities in the findings of these studies could be attributed to the

methodologies utilized as reported by Oke et al. (2020) and biophysical characteristics of the forest landscape

(Petrokofsky et al. 2012; Akhlaq et al. 2015). The aboveground carbon distribution within Oluwa Forest Reserve was

produced by employing AGC values derived from plot data and spectral indices modelling. The resulting map illustrates

the variance in carbon accumulation within the study area. Consequently, this research has showed areas with higher

carbon accumulation, providing valuable insights for forest managers regarding regions with greater carbon sequestration

potential within the forest reserve landscape.

Conclusions and Recommendations

This study was conducted to model and map the aboveground carbon content within Oluwa Forest Reserve, utilizing a

combination of forest inventory data and Landsat imagery data through remote sensing techniques. Within this research,

the application of Landsat 8 data was explored to establish a straightforward linear model, serving as the foundation for

estimating carbon stocks, and map the spatial distribution. This study revealed the potential capacity of the forest reserve

to sequestered carbon. It is therefore, imperative to manage this endowment properly to ensure continuous provision this

forest services.
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This study specifically used logarithmic model developed and adjudged the best to create distribution map of

aboveground carbon in the study area. Consequently, this study recommend that the allometric equation developed in

conjunction with the spectral index is used to estimate the aboveground carbon content of Oluwa Forest Reserve with a

satisfactory level of accuracy with 94% confidence level.
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