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Abstract: Measurement Mechanics proposes a major modification to the current understanding 
of measurement. This modification adds a unit standard as axiomatic to measurement theory. 
Currently, measurement theory (representational) defines the result of a measurement 
comparison to be a ratio of quantities (numerical value and unit) where the unit terms are equal 
and cancel. When the units cancel such a ratio is local to one measurement system, i.e., 
probabilistic. Thus all QM measurement results, based upon current measurement theory are 
local, as J. S. Bell confirmed. However, the units of each metrology measurement result are 
correlated by calibration to an independent unit standard. Then measurement result 
comparisons are a ratio of quantities each correlated to a common unit standard, which allows 
independent measurement result comparisons that are non-local and deterministic. When unit 
standards are included in measurement theory all the apparent discrepancies between QM and 
classic measurements are resolved.   
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Measurement Mechanics 
resolves QM measurement discrepancies  

 
 
This paper develops and applies more rigorous definitions for existing measurement terms 

than The International Vocabulary of Metrology (VIM) [1]. To improve understanding, please 
read the definition in the Annex when a footnote and italics indicates the initial use of a 
redefined term.  
 
1. Introduction 

In current representational theory [2][3], the result of a measurement is a quantity1 
consisting of a numerical value and a unit2(u). A comparison of two measurement result 
quantities with the same u is a ratio where each u cancels. In quantum mechanics (QM) this ratio 
of numerical values is invariant to changes in u [4], i.e., u is arbitrary. This form of u does not 
address Heisenberg's uncertainty, where u has a precision3 equal to or greater than a Planck (h) 
and at larger scales does not address measurement precision. Given this uncertainty or precision, 
the measurement apparatus'4 intervals, representing units or a factor thereof, are not exactly 
equal and, in a ratio of measurement result quantities, the intervals do not cancel.  

The underlying assumption in representational theory and its application in QM is that the 
uncertainty or precision is small enough to be ignored in empirical measurements. Such an 
assumption is not appropriate in a rigorous theory. MM proposes that uncertainty and precision 
are different scales of the same effect. 

When the units cancel, they are without formal effect, and a ratio of quantities is reduced to 
a ratio of numerical values. Measurement mechanics (MM) proposes that such ratios are local5 
and appear as probability distributions. In physics probabilities are a means of comparing local 
numerical values that are not relative to an independently defined unit standard.6  

L. Euler (1765) also explained that measurement comparisons require quantities: “Now, we 
cannot measure or determine any quantity, except by considering some other quantity of the 
same kind as known and pointing out their mutual relation” [5].  

 
1 A2.12 
2 A1.1 
3 A2.10 
4 A2.7 
5 Local in MM identifies that the numerical value of a measurement result without 
independently defined units is relative to undefined (local) units. 
6 A2.15 



 

 3 of 20 

A unit standard is proposed as the 'known mutual relation' that supports independent 
measurement comparisons in physics. However, calibration7 to a unit standard, as defined in 
representational theory, understood in QM and practiced in metrology (see Figs. 1 & 2), is 
empirical. Then the requirement, explained above, for an independent unit standard to support 
independent comparisons is not recognized. MM proposes that calibration, as defined (see Fig. 3) 
is required for independent (non-local) measurement comparisons. 

Repeatable measurement experiments are applied in metrology to understand measurement 
result deviation [6]. Three such experiments (A., B., C. below), are proposed to analyze 
independently three variables: property8, accuracy9 and precision of a measurement result:  

A. The observables10 are changed and the measurement apparatus fixed. The deviation of a 
common property of a set of observables may be determined. The QM neutron (observable) spin 
(property) experiments [7] are an example of A.   

B. The observable and the measurement apparatus are both fixed. Then the accuracy of a 
distribution of the numerical values of the measurement result quantities may be determined. The 
effects of noise and distortion, which are not considered in this theoretical paper, dominate 
accuracy.  

C. The observable is fixed and the fixed measurement apparatus is recalibrated to a fixed 
unit standard each time. Then the precision of the measurement apparatus intervals relative to a 
unit standard may be determined. Calibration effects dominate precision and are the focus of this 
paper.  

  
MM implements Relative Measurement Theory (RMT) [8] to explain and verify that the 

QM measurement discrepancies [9] do not require different interpretations of QM theory as has 
been proposed [10], but rather require that measurements are calibrated to a unit standard. 
However, a unit standard is not treated in mathematics11 therefore QM does not distinguish 
between a local ratio, and an independently comparable measurement result quantity which is 
calibrated to a unit standard. MM proposes that the BIPM standards [11], as independent unit 
standards, are axiomatic in physics. 
  

 
7 A2.2 
8 A2.11 
9 A2.1 
10 A2.9 
11 The axiomatic nature of a standard suggests changes to various mathematical disciplines. 
These changes are not addressed in this paper. 
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2. Measurement theories 

 
Currently there are two measurement theories that appear consistent, but are not:  

• Representational theory - a measurement12 is a numerical value on a local scale. 
When the scale is normalized, the numerical value is a probability. How a physical 
measurement result occurs is empirical. 

• Metrology - an empirical measurement result is a quantity which consists of a 
numerical value and a unit which is correlated by calibration to a unit standard or 
factor thereof.  

MM, a new measurement theory, is shown to be consistent and to resolve the measurement 
discrepancies between QM and metrology. 

2.1. Representational theory 

The basic text on representational theory is Foundations of Measurement [12]. In this theory 
a measurement is a numerical value on one of three basic scales13 ordinal, counted/linear and 
ordered.  

 
Inconsistently, representational theory defines the measurement processes differently from 

the empirical measurement practice defined in metrology (VIM). Metrology requires the 
correlation and equalization of the measurement apparatus' scale of intervals14 to a unit standard 
(termed calibration), while representational theory assumes the measurement apparatus' scale of 
units has been equalized by the practice of calibration and therefore treats calibration as 
empirical. This difference is known [13] but not recognized as the beginning of the measurement 
discrepancies.    

Representational theory, in the most common form [14], determines the numerical value of 
the observable (x) assuming a scale of equal units. When equal units are assumed a quantity is 
the product of a numerical value (x) times a unit (u), which is xu. In Fig. 1, representational 
theory recognizes that equal unit ratios cancel, thus a comparison of two quantities is a ratio of 
numerical values. Since the units cancel, the standard which defines the units is arbitrary and the 
calibration of the intervals of a measurement apparatus to a standard is only empirical [15], 
therefore not shown in Fig. 1. This is not consistant as interval equality cannot be assumed 
because of Heisenberg's uncertainty at small scales and ± interval precision at larger scales. 
Metrology applies calibration to a unit standard to achieve measurement apparatus interval 
equality. 
 

 

 
12 A2.6 
13 A2.14 
14 A2.5 
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Figure 1. Representational theory  

 
In representational theory, metrology practice converts the representational result, 4u into 

4U a measurement result. This is inconsistent, as metrology calibration generally corrects to 
U, not u to U (see Fig. 2). 

 
2.2. Metrology 
 

In current theory and practice [16], measurements that apply a scale of n intervals assume 
that any small non-linearity of the ui will likely cancel in a summation (1) producing one true 
value measurement result15, the quantity xu. (1) is shown to be incorrect at small scales. 

  where i = 1 - n (1) 

In Fig. 2 (without noise or distortion), an observable with a property, shown as a set of u, is 
termed a measurand in VIM. Then the ratio of this preexisting property [17] of the measurand to 
the scale is the numerical value of that property of the observable. 

 

 

 

Figure 2. Representational theory and metrology practice.  

 

 
15 A2.8 

ui

q = ui
i=1

i=x

∑ = xu

measurement results = 4U ± deviation 
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In Fig. 2, the calibration process is: The numerical value of the mean interval  is 
calculated (not equalized to a standard) using (1).  is divided into 1/m calibration states and 
compared to U establishing the numerical value of  relative to U in calibration states which 
generates an arbitrary corrected mean scale.16  

 
Inconsistencies: Calibration to the mean is likely to be valid when x >> 1/m (e.g., classic 

measurements), but may not be when the x ~ 1/m (e.g., quantum scale measurements). 
Correcting , which is calculated to have equal intervals, means that U is arbitrary, even 
though it is required in metrology. 

 
Exploring the inconsistences in Figs. 1 & 2. All empirical measurements in physics are 

based upon BIPM standards. Consider, a physical measurement of mass: a measurement 
apparatus' scale, to support the measurement of mass, is calibrated to a kilogram standard, U. 
The scale is then is brought to a brick (observable). First the scale's zero point17 and the brick's 
zero mass are aligned, then the brick's mass property is measured. When the same measurement 
apparatus is defined by calibration to a pound standard it determines the same brick's weight 
property. 

  
Here U, the kilogram standard via a measurement apparatus with a scale, determines one 

property to be measured of a brick's many properties (e.g., mass, weight, American spatial 
dimension, metric spatial dimension, number of molecules, color, etc.). A standard defines an 
observable's property via a local scale (see Fig. 3). The local scale establishes the numerical 
value of that property of the observable.  

 
When the equality of is given, calibration to a unit standard is solely empirical. Then 

precision is perfect in repeated measurement experiments A. and B described in Section 1. 
Perfect precision results in the possibility of a true value measurement result. Heisenberg's 
uncertainty theory [18] as well as ± interval precision18 makes a true value measurement result 
not only unattainable, but nonexistent. Not treating calibration in theory also ignores ± interval 
precision as one cause of the Gaussian distributions19 of measurement results and ignores the 
definitional and equalizing functions of an independent unit standard. Thus, not treating 
calibration to a unit standard in representational theory is not valid.  

2.3. Measurement mechanics  

RMT identified that one cause of Gaussian measurement result distributions is the 
calibration effects on the intervals of a scale [19]. These effects, currently assumed to cancel, can 
sum into significant deviations. These unexplored interval deviations have been masked by the 
inconsistent usage of the term unit between different disciplines (see A1.2), as well as the lack of 
a formal measurement function (4) which statistically sums (see Section 3) the random 
calibration effects.  

 
16 A2.14.2 
17 A2.16 
18 Classic ± interval precision is explained in Section 3. 
19 A2.4 

ui
ui
ui

ui

ui
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A quantity (product) is expedient for many experimental measurement results. A quantity 

(capital Q when summed), see (2), is a proper superset of a quantity, . Eq. (1) is proposed 
as the first step towards a formal measurement function based upon Fig. 3.  

 

                         quantity distribution  (2) 

In (2), ui represents each of the intervals of the relative scale in Fig. 3. However, each ui is 
not treated as equal, whereas all the u on the local scale are assumed to be equal. RMT identified 
and verified that the ui are not theoretically or empirically equal, especially at quantum scales 
[20]. The notation applied in RMT for the random deviation of ui is △. In MM this notation is 
changed to ± precision.  

 
                Figure 3. Measurement mechanics  

In Fig. 3, the calibration scale generates a relative scale by determining the numerical 
values in 1/m calibration states of each u on the local scale relative to U determining ui. Then 
the numerical values of each ui ± precision are statistically summed (explained in Section 3) 
establishing a distribution of measurement results, the same as appear in repeated experimental 
measurements. 

 
U defines an observable's property and determines the precision of that property. The ui of 

the relative scale have a random component (± a calibration state) relative to U, even in theory, 
and at the minimum limit each interval will deviate ± a Planck. When each ui has this random 
component, a measurement function in theory must be a sum over each ui, not nu or nU. This 
summation is required even when the random result component is very small, because 
statistical summing produces a distribution (examples in Sections 4.1 and 4.2 below).  

 
A physical measurement apparatus may include transducers (not shown in Fig. 3) which 

convert a quantity on a local scale to a quantity on a relative scale. Additionally calibration 
stages which include intermediate standards often occur in practice, and are also not shown. With 
these provisos, MM proposes that Fig. 3 diagrams the theory of a physical measurement to a 
standard without noise or distortion.  

 

Q ⊇ q

Q = ui
i=1

i=x

∑
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In Fig. 3, there is no arbitrary boundary between theory and practice. When the observable's 
variation is not considered, any deviation of a repeated measurement result as evaluated in B. or 
C. (Section 1.) has three possible causes: noise (external to a measurement system), distortion 
(internal to a measurement system) and the precision of the calibration states20 of a calibration 
scale21(±1/m). 

 
Each interval of the relative scale in Fig. 3 may be calibrated (more rigorous and less 

practical) to a standard, or (most common practice) the mean interval of the scale is determined 
by calibration to a standard. MM, as a theory, treats the more rigorous calibration of each ui.  

 
1/m is the smallest identifiable change of U in a measurement system. The assumption here 

is that U is quantified into even smaller states independent of this measurement system. Integers 
n and m represent counts when 1/n and 1/m represent the smallest interval/state of their 
respective scales. 

 
3. The measurement processes   

 
In Fig. 3, there are four measurement processes. The first process correlates an observable 

to a local scale.22 The second process determines a numerical value (i.e., count) of local states 
with an accuracy, but without precision. To implement these two process:  

 
1. Align the observable's beginning to the local scale's zero point.  
2.  Count x of the observable's u on the local scale. 

 
Process 2 identifies that the observable is ordered and additive (countable) therefore it has 

a property with a numerical value, but not an independently defined property. 
 
As example, a wooden stick (observable) is determined to have a length property by 

counting regular notches (a local scale) on the wooden stick. Comparisons only occur by 
moving this wooden stick to other observables that appear to have the same length property. 
That is, this wooden stick verifies that other observables have its length property, but the 
wooden stick's counts of other observables do not have precision. 

 
The third and fourth processes (calibration to U) transform the local scale into a relative 

scale23 and establishes a measurement result. These processes define both the property being 
measured and equalize each ui to U which determines the numerical value of each ui with a 
precision. To implement these processes:  

 
3. Determine the precision of each u relative to U establishing the numerical value of 
each ui. 

 
20 A2.3 
21 A2.14.4 
22 A2.14.1 
23 A2.14.3 
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4. Statistically sum (see below) all x of the ui = (u ± 1/m)i which includes their 
precision, calculating a distribution of measurement results.  

 
The above four processes are combined into eq. (3), measurement results with precision 

distribution:  

  which converges to a Gaussian distribution as    (3) 

Eq. (3) is a statistical sum measurement version of the central limit theorem [21].  
 
Statistical summing example (without noise or distortion) of repeated measurement results 

C. (Section 1): The numerical value of a measurement result (e.g., 4) is the sum of four 
contiguous intervals (i = 1 - 4) on the relative scale of Fig. 3: u1+u2+u3+u4. Each ui has a 
precision, which is one of 2 random ±(1/m) calibration states, relative to the U standard or factor 
thereof. The two random states of each of the four ui are statistically summed, producing 24 = 16 
measurement result quantities that approximate a Gaussian distribution of ui.  

 
This deviation of an observable relative to U is termed precision ±(1/m) in metrology and is 

termed uncertainty (at the limit ±Planck) in QM. This precision/uncertainty measurement 
deviation is fundamental in any calibrated or QM state space [22]. 

 
Whenever a scale is applied to an observable, alignment is an issue. In the worst case it 

cannot be determined which interval an end of an observable is closest to, of a contiguous pair of 
intervals on the scale. This is ± interval precision which also appears in accuracy. This requires 
that the worst case accuracy is also ± an interval (1/n). Including this accuracy produces the final 
measurement results distribution equation: 

                    (4) 

Eq. (4), based upon Fig. 3, applies to all formal and empirical measurement systems without 
noise or distortion and with defined-equal calibration states. The accuracy term (±1/n) means that 
(4) is a near Gaussian distribution.  

4. Empirical measurement examples 

Eq. (4) is a paradigm shift from the inconsistenties in theory and practice upon which 
measurement results are based today. The following examples of repeated measurement result 
experiments C. (Section 1) are offered in support of this paradigm shift. 
  

Q = u ±1/ m( )
i=1

i=x

∑ i m→∞

Q = u ± (1/ m)( )
i=1

i=x±(1/n)

∑ i
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4.1 Additive relative scale 
 
An example of an additive relative scale is a thermometer which measures a quantity of the 

property temperature. This example demonstrates how additive imperfect intervals statistically 
increase the distribution of measurement results, producing a Gaussian measurement result 
distribution.  

 
The measurement apparatus consists of a hollow glass tube with a reservoir filled with 

mercury at one end, which fits inside another hollow glass tube that slides over the first. The two 
glass tubes are held together and placed in an adjustable temperature oven which is calibrated to 
a temperature standard within a deviation of 0.10 (degree). Then the outside glass tube is 
marked at the level of mercury which appears and marked again with each 1.00 (ui) increase in 
temperature of the oven. n + 1 marks or 101 marks are made on the outside glass tube. Each of 
the 100 ui is correlated by the oven to 1/0.1 =10 = ui  0.10 precision. 

 
After 101 marks are made, the apparatus is removed from the oven and an ice water bath is 

applied to the tube with the mercury reservoir. The outside glass tube is now slid over the inside 
glass tube until the top of the inside mercury column lines up with the first mark on the outside 
glass tube. Now this mark on the outside glass tube is the zero point for ice water (00C) and the 
zero point of the thermometer has been calibrated to a reference24 (i.e., ice water). 

 
Consider the water in a glass (observable) to be in contact with the reservoir of the 

thermometer calibrated as described above. If the numerical value of the temperature (a property) 
of the water is x = 80, the 81st mark on the outside glass tube represents 80 numerical value in 
units of degrees 0. Each degree is  0.10 nominal precision or 80 which is the worst case 
implementation of this thermometer (very very rarely possible). The 0.10 nominal precision 
occurs when the  0.10 precision of each 80 ui is uniformly distributed and cancels. The 80 
precision occurs when each ui of two different thermometers has the same +0.10 and -0.10 
precision, which sums.  

 
In the design of experimental measurement apparatus, the ± interval precision of each ui is 

expected to cancel and is ignored. But in MM, without noise or distortion, when each mark's 
precision is defined to be 0.10, a deviation of 80 for the measurement results from two 
thermometer implementations is very, very rare, but not impossible. The statistical sums of the 
precision from 0.10 to 80 establish a Gaussian distribution of measurement results (see Fig. 
4)  

 
4.2 Length measurement apparatus 
 
A physical metre stick (i.e., a scale calibrated to the standard metre U) is divided into 100 

intervals (ui). Consider an observable whose spatial dimension property has the numerical value 

 
24 A2.13  

±

±

± ±
±

± ±

± ±

± ±
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x= 70. In the relative measurement theory proposed, the precision of each ui is treated 
individually and then added to the next ui (70 times).  

 
 When first calibrated to U (e.g., the standard metre), each ui = (U/100) ± (1/m) precision 

where, as example, m = 106. The accuracy of x is ignored in this example. In MM, the quantity 
deviation of each metre stick is caused by the random application of ± (1/m) to each ui causing a 
Gaussian distribution of metre sticks which produce a Gaussian distribution of measurement 
results. In the statistically rarest two cases, when x number of ui, each with a precision of +(1/m), 
are summed and with a different metre stick a measurement of x number of ui, each with a 
precision of -(1/m), are summed, the maximum measurement result quantity deviation (across all 
possible metre sticks and their measurement results) appears as 2(70)10-6 =1.4x10-4 metres, 
which is sufficient precision (± 0.7x10-4) for a metre stick. When m>>n, the effect of calibration 
is usually and realistically ignored. However, when n and m are both small, e.g., quantum scale 
measurements, the statistical summing of each ± (1/m) cause significant measurement result 
discrepancies (see Section 5 below). 

 
4.3 Measurement results distribution 
 
Statistical summing produces a Gaussian distribution [23]. Fig. 4 represents a combined near 

Gaussian distribution of both accuracy (B. Section 1) and precision (C. Section 1) which are 
often Gaussian distributions. Actual experiments following B. and C. may be practical which 
measure the effects of both ± 1/n (accuracy, including experimental noise which may be 
Gaussian) and ± 1/m (precision, which is usually Gaussian) and identify the deviation changes 
closely enough to verify (4).  
 
 
 
 
 
 
 

 

Figure 4. Measurement results with accuracy and precision distribution. 
 

5. Understanding measurement discrepancies 
 
Examining the distribution of (4), precision, ± (1/m) in each of the x ui in (4), varies 

randomly (in theory) and with ± 1/n accuracy produces:  
   
 the worst case deviation of (4)  (5) 

 
Where 2/n represents worst case accuracy and 2x/m represents worst case precision. In 

distributions where m>>n, the accuracy distribution will dominate the precision distribution, but 

= (2 / n)+ (2x / m)

0 
pr

ob
ab

ili
ty

 +
 

- deviation + 
 Eq. (5) 
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precision begins to dominate when n ~ m and has the most significant effect when n and m are 
small.  

                 (6) 

Eq. (6) compares measurement mechanics (4) with current metrology. Without treating the 
accuracy of x, noise, or distortion, the left side of (6) is the MM measurement function and the 
right side of (6) is a common metrology measurement function. Statistically, (6) may be seen as a 
comparison of the standard deviation (left side of ) to the mean deviation (right side). It is 
known that when x is small the standard deviation diverges from the mean deviation [24].     

 
The two sides of (6) produce equal measurement results with high probability when x and m 

have large numerical values (e.g. classic measurements). In (6) when x or m is large (a common 
experimental measurement, see Section 4.2), the many statistical sums of the two random 
calibration states (1/m) of each ui likely cancel, producing only very small effects on the 
distribution of measurement results.  

 
Conversely, when x and m both have small numerical values (e.g., in quantum spin 

experiments, x = m = 2) [25], two repeated measurement result Quantities of the same 
observable will be different in 50% of the repeated measurement results on an unchanged 
observable because the precision of each ui (± (1/m)) will likely be different. This measurement 
result difference appears in QM as uncertainty or non-commuting Fourier pairs (see Section 6.3). 

6. Explaining the discrepancies in quantum scale measurements  

Measurement discrepancies appear, not only because of the deviation caused by the 
statistical summing of ui but because the four different measurement processes (Section 3) are 
not recognized.  
 

6.1 Remote entanglement 
 
Remote entanglement is used here to describe the numerical value entanglement evidenced 

between two separated measurements in the Stern-Gerlach experiments [26]. There have been 
many attempts to understand remote entanglement. J.S. Bell's local formalization (since verified 
experimentally [27]), which is also quite clear, is addressed. J. S. Bell stated [28]: "...there must 
be a mechanism whereby the setting of one measurement device can influence the reading of 
another instrument, however remote." In the Stern-Gerlach experiments Bell discusses, that 
mechanism (measurement process 1, Section 3) is explained below. 

 
 N. D. Mermin in 1981 statistically analyzed the results of Stern-Gerlach experiments that 

identify remote entanglement. [29] Remote entanglement is described by Mermin without QM 
notation, which indicates it will occur in all measurement results. Mermin identifies that the 
measurement results of the two remote entangled particles are relative. But he does not recognize 
that relative requires the two apparatus are calibrated to each other.  

 
In Mermin's model of the experiments, the two apparatus each have a three position selector 

(a scale) on which one of three 1200 intervals appear, which represents the measurement of the 

u ± (1/ m)( ) i
i=1

i=x

∑ ⊇ xui

⊇

±
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spin direction's numerical value. The common property (spin) and common scale of spin 
direction (three 1200 u intervals) are defined in the experimental set-up and not recognized as 
measurement process 2. Mermin's two measurement apparatus then require a common zero point 
(process 1) between the three 1200 units to make comparisons.  

 
There are nine possible combinations of the two three-position selectors: three (Mermin's 

case a) when each selector is in the same position and six (Mermin's case (b)) when the positions 
of the two selectors are different. When the two remote selectors are in different positions (the 
two measurement apparatus' zero points are uncorrelated), each numerical value (00 or 1800) of 
the two particles' spin unit appears randomly over a large number of runs. Only in Mermin's case 
(a) is each numerical value of the two particles correlated, because there is a common zero point 
(process 1) between the two measurement apparatus' selectors (scales). When these necessary 
zero points are required in experiments, but are not recognized, discrepancies occur.  

 
6.2 Compton-Simon experiments  
  
In the Compton-Simon cloud chamber experiment [30], the energy and momentum after 

collisions between a light photon and electrons are measured by the positions or by the central 
line of the collision (two independent ways) and at different times in the same experiment. 
However, both measurements always confirm equal results unlike repeated measurements which 
always have a distribution of measurement results.  

 
It appears that the energy of processes 1 & 2 foretells the momentum of processes 1 & 2 (or 

the reverse), before they are known. In actuality, in the one experiment, which describes two 
different repeated incomplete measurements, processes 3 & 4 (which cause a Gaussian 
distribution and complete a measurement) do not occur after the measurement of energy or the 
measurement of momentum, therefore both energy measures or the momentum measures are 
equal, i.e., they do not have a distribution. 

 
These experiments also identify that light (an observable) has two distinct energy properties 

- wave and particle. These two energy properties are not contradictory. Observables present 
many properties, each of which is defined by a standard and selected via a scale. This is 
discussed further in Section 6.4. 

 
6.3 Heisenberg’s uncertainty  
 
In Heisenberg's 1927 analysis [31], when a single particle's two Fourier dual properties are 

measured at different times they have a fundamental uncertainty and seem to vary inversely. 
From his discussion: p (momentum) = mv, where m is mass and v velocity. Then q (position) = vt 
where t is the time interval of the wavelength of the light used for the observation.  

 
In quantity calculus notation [32], curly brackets indicate the numerical value and square 

brackets indicate the unit(s). Then p = {xp}[mv] and q = {xq}[vt]. And the product of the 
quantities of pq={xpxq}[mv2t], which is the energy [mv2] during the [t] time interval.  

Heisenberg identifies the uncertainty of pq as p1q1 ~ h, and that p1 and q1 change inversely 
as the observer's wavelength changes. This inverse change occurs because as [t] changes, [v] in 
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the p quantity [v = q/t] changes inversely to [t] in the q quantity which appears as [vt]. The 
numerical values {xpxq} which are usually the dominant term, do not change inversely with [t]. 

Since QM does not apply quantity calculus, this is unclear in QM. Applying MM, the 
minimum numerical value of Heisenberg's uncertainty is the precision deviation of p1 and of q1 
which is ± h for each and is statistically summed (see Section 3). The precision (but not the 
numerical value) of two Fourier dual quantities will always vary inversely and is not unique to 
QM.  

 
Uncertainty, also ± precision, occurs in every ui. Then each ui varies randomly ± h at a 

minimum and statistically sums. Thus a comparison of repeated measurements of unchanged  pq 
quantities (4 units each with 2 states), will be different, in 12 of 16 comparisons on average and p 
and q appear not to commute. The RMT paper includes further analysis of the correlation 
between the different forms of uncertainty and precision.   

 
6.4 Double slit experiments  
 
Feynman's explanation of the double slit experiments offers a good example of how a 

standard via a measurement apparatus determines which property of an observable is measured. 
[33] Feynman concludes, "...when we look at the electrons the distribution of them on the screen 
is different than when we do not look." What he meant is ,"when we look" identifies a property 
of an observable. 

 
In these experiments the plate with slits is a transducer and the sensing screen (measurement 

apparatus) presents patterns which the operator interprets as different energy properties. The slits 
pass two properties of energy (based upon defined standards for frequency and mass), and the 
sensing screen displays a different pattern for each property. When the slits in the plate are 
replaced with small holes only the mass property appears on the sensing screen.  

 
Physical observables have many properties. The operator, by looking for one pattern on the 

sensing screen (a property), identifies the wavelength of a particle's frequency property or 
identifies the point of impact of a particle's mass property.  

 
Properties are defined by a standard in physics and then established by the measurement 

apparatus. An observable has many properties, but they are defined independently in the relative 
universe, otherwise the properties could not be compared independently.  

7. Relating measurement mechanics to other theories  

7.1 History of a quantity 
 
In 1891, J. C. Maxwell [34], proposed that a measurement result quantity is q = xu. 

 
Maxwell proposed that the u of this quantity is "taken as a standard of reference" [35]. This 

wording suggests that u is equal to the standard and implies representational theory. However, in 
1927 Heisenberg proved that perfect precision is not possible in QM.  
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Perhaps Maxwell assumed that a theoretical measurement result could be exact. In any 
event, Maxwell's usage appears to have instigated what is now representational theory. Reference 
[5] describes this history.  

 
7.2 The Einstein, Podolsky, Rosen (EPR) paper 
 
Defining measurements relative to a standard, as MM proposes, identifies a standard as a 

what the EPR paper [36] suggested is missing and was assumed to be a hidden by Bohm [37]. 
The EPR paper, which considers numerical values not quantities, does not recognize that all 
independent measurement results are relative to a standard. Einstein identified (similar to Euler) 
that everything physical is relative, but did not recognize that measuring-rods must be calibrated 
to standards to make independent measurement comparisons [38].    

 
Measurement mechanics is based upon understanding the necessity for standards. Isology 

(Iso = same, logy = science of) is the name given to the very broad scientific discipline that 
studies references, standards and standardization. When all else is relative, standards are 
invaluable. 

 
7.3 Other measurement discrepancies 
 
The inconsistencies in representational theory and metrology also cause other measurement 

discrepancies. The RMT paper described the entropy change (log m) caused by calibration in a 
measurement process which is sometimes termed collapse or decoherence in different 
interpretations of QM measurements [39]. In Measurement Unification, 2021 [40], explanations 
based upon RMT are given of quantum teleportation experiments and Mach-Zehnder 
interferometer experiments. The Schrödinger's Cat thought experiment is explained in a short 
preprint [41]. These papers, together with the examples in this paper, strongly support applying 
standards to all physical measurements in theory as well as in practice.  

8. Conclusion  

As the EPR paper in 1935 formally identified, but did not recognize and Bell in 1989, 
refined, but did not recognize, representational theory, the basis of QM measurements is 
inherently local. Classic measurements as practiced in metrology are inherently independent. The 
difference is independent standards. The discrepancies that appear by not recognizing standards 
in mathematics and physics beg to be resolved. 

 
In QM, all u are defined equal and the ratio of two quantities is relative to each other, rather 

than each quantity relative to an independent standard. Without including a standard, quantum 
uncertainty appears as relations between Fourier duals, rather than the precision of any 
measurement result quantity relative to a standard.  

 
In physics, all measurement results, theory or experimental practice, must be quantities, 

defined and equalized relative to BIPM standards. By recognizing that unit standards are Euler's 
'known mutual relation', MM establishes one formal measurement equation consistent across the 
physical sciences. When this equation is applied, the discrepancies between measurement 
theories and experimental measurement results are resolved. 
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Annex Theoretical definitions 

These definitions have significant differences from the definitions in VIM [1]. This is caused by 
the change from the empirical (i.e., VIM) to the theoretical and empirical MM proposed.  

1.0 Unit (general term)  

1.1 In measurement mechanics:  
• u is local (not relative to U) and identifies the assumed equal intervals of a local 

scale. u has a local numerical value which is 1/n.  
• ui are one or more contiguous intervals which are calibrated to U. is the mean ui. 

After calibration each ui has a numerical value and a precision relative to U or a 
factor thereof.  

• U unit standard (capitalized) is one or a combination of defined properties of an 
axiomatic observable with a numerical value. U may be defined in theory as an exact 
numerical value, even though all empirical applications of U will have a ± precision.  

1.2 Unit inconsistencies across disciplines:  
• In common metrology practice, each interval (ui) is empirically which equals U 

after an empirical correction. This is not valid at very small scales. 
• In statistics, a numerical value (not a quantity) may be relative to  or to U which 

may not be equal. 
• In statistical mechanics, measurement results are a distribution of numerical values 

(not quantities) around an equilibrium [42], which may not be correlated to or U.  
• In QM (representational) bra-ket notation, a ket vector is a vector sum of unit vectors 

(u) [43] not correlated to or U.  
• In relativity (following representational theory), the requirement to calibrate 

measuring-rods (i.e., ui intervals) relative to a standard to establish defined near 
equal measuring-rods, is not recognized [44]. 

• In representational theory calibration and standards are not included in the theory and 
u are assumed equal.  

 

2.0 Other definitions applied in this paper 

2.1 Accuracy is the change of the numerical value (x) of a measurement result relative to its 
mean over repeated measurement results B. (Section 1).  

 
2.2 Calibration increases the precision of measurement result quantities by equalizing the ui 

to a reference or standard or factor thereof. The common metrology and MM calibration 
processes (which are different) are described below Figs. 2 & 3 respectively.  

 
2.3 Calibration state, 1/m, is the smallest state of a calibration scale which is defined as 

equal to the other calibration states. The smallest possible size of a calibration state is a Planck.  
 
2.4 Gaussian distributions are created by statistical summing (Section 3). In this paper 

Gaussian distributions may include combinations of Gaussian distributions (see Section 4.3).  

ui

ui

ui

ui

ui
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2.5 Interval (ui) is the space between contiguous indications on a scale. Intervals may be 

calibrated to a standard to represent, but not be equal to U.  
 
2.6 A measurement consists of the processes required to compare the properties of two 

observables, one of which may be a reference or standard.  
 
2.7 A measurement apparatus measures an observable both in theory and practice. 
 
2.8 Measurement result is a quantity determined by a measurement. 
 
2.9 An observable in physics has one or more properties.  
 
2.10 Precision is the statistical sum (Section 3) of the change of each ui of a quantity relative 

to a U standard or factor thereof, as determined by calibration.  
 
2.11, A property of an observable in physics is ordered and additive. An observable's 

property is only local before a BIPM standard defining the seven base properties, or some 
combination, is applied.  

 
2.12 A quantity is a measured property consisting of a numerical value and a unit.  
 
2.13 A reference is generally accepted, e.g., a mean. A standard is independently defined. 
 
2.14 Scale is a set of contiguous intervals or states which quantify a property [45]. Four 

versions are presented: 
• 2.14.1 Local scale has assumed equal states establishing an observable's zero point, 

order and additivity.  
• 2.14.2 Mean scale. All intervals are .  
• 2.14.3 Relative scale each interval is calibrated to U.  
• 2.14.4 Calibration scale has defined-equal calibration states used to calibrate one or 

more intervals of a scale to U.  
 
2.15 A standard (an axiomatic observable) is one or more sets of local scales (defined by 

processes independent of an observable and measurement apparatus) that support independent 
(non-local) repeatable comparisons.  

 
2.16 Zero point is the beginning of an observable or an infinitesimal between two 

contiguous intervals on a scale, which supports measurement process 2 (Section 3). 
  

ui
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