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Abstract

In this study, we present novel cosine similarity measures designed for q-rung orthopair fuzzy sets (q-ROFSs), offering

a comprehensive analysis of both direction and magnitude aspects in fuzzy set representations. Unlike traditional

cosine similarity measures, which primarily focus on the direction (cosine of the angle) between vectors, our proposed

measures address this limitation by incorporating a lengths difference control term. This enhancement becomes crucial,

especially when dealing with overlapping vector representations of q-ROFS components with a height difference, where

traditional measures yield a similarity measure of 1. We demonstrate the effectiveness of these improved cosine

similarity measures, showcasing their superiority not only over traditional counterparts for q-ROFSs but also in

enhancing existing measures for intuitionistic fuzzy sets and Pythagorean fuzzy sets. The proposed measures consist

of an average or Choquet integral of two components. The first component quantifies the cosine similarity between two 

q-ROFSs at each element, while the second component captures the difference in lengths between the vector

representations of these q-ROFSs at the same element. This innovative length-difference term ensures sensitivity to

variations in both direction and magnitude, making the measures well-suited for applications where both aspects are

crucial. The Choquet integral-based measure further considers interactions among elements, enhancing sensitivity in
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diverse applications. In addition to introducing these cosine similarity measures, we extend our contributions to the

realm of multi-criteria group decision making (MCGDM) through an extended The Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS) methodology. The proposed TOPSIS methodology is applied to a real-world

problem in green technology selection, providing a comprehensive evaluation framework. Our comparative analysis

with some other MCGDM methods further highlights the effectiveness of our proposed approach.
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1. Introduction

Fuzzy sets, as introduced by Zadeh [1], have proven to be highly effective in handling uncertainty and representing partial

membership within a set. These sets are characterized by their membership functions. Extending this concept,

Atanassov [2] introduced the theory of intuitionistic fuzzy set (IFS), which includes a membership function μA :X → [0, 1]

 and a non-membership function νA :X → [0, 1], subject to the constraint μA(x) + νA(x) ≤ 1 for all x ∈ X. Subsequently,

Yager [3] introduced Pythagorean fuzzy sets (PFS), where the membership and non-membership functions satisfy the

condition μ2
A(x) + ν2

A(x) ≤ 1. When an element exhibits a membership degree of 0.6 alongside a non-membership degree

of 0.5, this situation is valid within the context of PFSs, whereas it does not conform to the criteria for IFSs. However,

when the membership degree is 0.7 and the non-membership degree is 0.9, such a case is valid for neither IFSs nor

PFSs. This observation underscores the need for a further extension of the PFS concept. To address this need,

Yager [4] extended the concept of PFS to the concept of q-rung orthopair fuzzy set (value) (q-ROFS(V)), introducing the

condition μq
A(x) + νq

A(x) ≤ 1 for each x ∈ X, where q ≥ 1. When q takes the value of 3, this specific category of fuzzy sets

is referred to as Fermatean fuzzy sets (FFSs) [5]. The q-ROFSs have proven to be highly useful in multi-criteria (group)

decision making (MC(G)DM) due to their versatile structure, as evidenced by their frequent application in various contexts.

For instrance, Liu and Wang [6] contributed to the field with the introduction of various q-rung orthopair fuzzy aggregation

operators, providing valuable tools for MCDM processes. Similarly, Wang et al. [7] presented a set of q-rung orthopair

fuzzy Muirhead means and demonstrated their applicability in MCGDM situations. In a more recent work, Ünver and

Olgun [8] studied in the realm of continuous function-valued q-rung orthopair fuzzy sets (CFVq-ROFSs), extending the

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to accommodate this novel fuzzy set type. This

continuous function-valued approach enhances the versatility of TOPSIS in handling real-world decision-making
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problems.

TOPSIS is a widely employed method in solving MCDM and MCGDM problems, aiming to identify an alternative that

maximizes the distance from the ideal worst solution while minimizing the distance from the ideal best solution [9]. Various

extensions and adaptations of TOPSIS have been proposed to address MC(G)DM challenges in fuzzy environments. For

instance, Ashtiani et al. [10] introduced an interval-valued fuzzy TOPSIS for scenarios with unequal criterion weights.

Gündoğdu and Kahraman [11] presented an interval-valued spherical fuzzy TOPSIS to tackle specific MCDM problems.

Akram et al. [12] extended TOPSIS to handle complex spherical fuzzy information in decision-making contexts. Garg et

al. [13] proposed a novel TOPSIS method based on the complex interval-valued q-rung orthopair fuzzy sets. Wang et

al. [14] introduced a TOPSIS approach for interval-valued q-rung dual hesitant fuzzy sets. Additionally, Ünver and

Aydoğan[15] introduced information measures for CFVq-ROFSs and explored an extended version of the TOPSIS. In this

paper, our focus extends beyond the development of enhanced cosine similarity measures for q-ROFSs. We seamlessly

integrate our theoretical advancements into the realm of practical decision-making by introducing an extended TOPSIS

methodology. Our innovative approach incorporates the newly proposed cosine similarity measures, providing a robust

foundation for assessing similarity between alternatives in a more nuanced manner. By integrating these advanced

measures into the TOPSIS framework, we aim to enhance the precision and applicability of the decision-making process.

The extended TOPSIS methodology is then applied to a real-world problem in green technology selection, offering

practical insights into the effectiveness of our proposed approach. This integration of theoretical advancements with

practical applications underscores the holistic nature of our contributions in the field of fuzzy set theory and MCGDM.

A similarity measure serves as a valuable tool for assessing the resemblance between two mathematical objects. Among

these similarity measures, cosine similarity measures stand out as a specific variant. Cosine similarity measures are

employed to quantify the similarity between two fuzzy sets by considering the cosine of the angle between the vector

representations of their reciprocal components, and this concept has found successful applications in fuzzy set theory as

well. In a recent work, Kirişci [16] introduced novel cosine similarity and distance measures for FFSs. The study also

employed the TOPSIS approach to showcase the practical applicability of the proposed measures. Lahitani et

al. [17] explored the use of cosine similarity in online essay assessment, employing it as a key component in determining

the similarity measure. Gupta and Tiwari [18] contributed to the field by devising measures of cosine similarity specifically

designed for fuzzy sets, IFSs, and interval-valued IFSs. Ye [19] presented cosine similarity measures for IFSs and

explored their applications in various contexts. Ünver et al. [20] extended the concept of cosine and cotangent similarity

measures based on the Choquet integral to spherical fuzzy sets. Furthermore, Garg et al. [21] introduced a Choquet

integral-based cosine similarity measure specifically crafted for interval-valued IFSs.

Existing cosine similarity measures in the literature focus solely on the cosine value of the angle between vector

representations of fuzzy values. However, in numerous scenarios, the magnitude or length of a fuzzy set representation

can be equally essential to its orientation. For example, in the context of MCDM, the lengths of vector representations of

fuzzy set components can provide vital information about the intensity or strength of membership. The primary motivation

of this study is to address this issue by incorporating length considerations into the definition of the cosine similarity

measure. Our measures combine the traditional cosine similarity with a lengths difference control term to provide a more
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comprehensive assessment of similarity. The q-ROFSs under consideration here are a versatile and expressive extension

of classical fuzzy sets that can model complex and imprecise relationships more accurately. In addition to its applicability

to q-ROFSs, it is worth noting that our novel cosine similarity measures extend their benefits to IFSs and PFSs, which

share similarities with q-ROFSs in terms of the need to capture both direction and magnitude aspects. By introducing a

length control term these novel similarity measures enhance the assessment of similarity not only for q-ROFSs but also

for IFSs and PFSs, making them a versatile and robust measure for various fuzzy set representations. Furthermore, the

cosine similarity provided by the Choquet integral takes into account the interactions among elements, enhancing its

sensitivity to variations and nuances in the data.

The selection of green technologies is a critical decision-making process that plays a pivotal role in sustainable

development and environmental conservation. With the increasing awareness of climate change and environmental

concerns, organizations and decision-makers are faced with the challenge of identifying and adopting eco-friendly

technologies. This process involves evaluating various alternatives based on criteria such as energy efficiency,

environmental impact, cost-effectiveness, ease of integration, and sustainability. The complexity of these decisions

necessitates robust methodologies that can provide comprehensive assessments, making it an ideal domain for the

application of advanced decision-making techniques such as the extended TOPSIS method proposed in this paper. For

instance, Kumari and Mishra [22] proposed a MCDM for green supplier selection based on parametric measures for IFSs.

Onar et al. [23] explored the multi-expert wind energy technology selection using interval-valued IFSs. Rani et

al. [24] introduced a novel MCDM approach incorporating entropy and divergence measures of PFSs to evaluate

renewable energy technologies. Keshavarz-Ghorabaee et al. [25] presented a decision-making approach based on FFSs

for green construction supplier evaluation. Çalık [26] contributed a Pythagorean fuzzy analytic hierarchy process and fuzzy

TOPSIS methodology for green supplier selection in the Industry 4.0 era. Additionally, Bansal et al. [27], Bao [28], and

others have contributed the literature with various fuzzy decision approaches and algorithms aimed at enhancing the

evaluation and selection of green technologies. In this context, our paper introduces an extended TOPSIS method utilizing

advanced cosine similarity measures for q-ROFSs, offering a novel perspective to address the complexities associated

with green technology selection. Additional investigations on the application of fuzzy sets to environmental technology

issues are illustrated in Table 1 [Table Refs.:[29][30][31][32][33][34][35][36]].
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Table 1. Literature Review of Applications of Fuzzy Decision Making Methods on Environmental Technologies

Some main contributions of the paper are listed below:

The paper introduces some novel cosine similarity measures designed specifically for q-ROFSs. This measures

address the limitations of traditional cosine similarity by incorporating a length difference control term.

These measures offer a balanced assessment of similarity by simultaneously capturing both the direction and the

magnitude aspects of q-ROFSs. This enhancement is crucial in applications where both factors play a significant role.

The paper establishes that if the similarity measure between two q-ROFSs equals 1, then they are identical.

The paper emphasizes that these measures are not limited to q-ROFSs but also improve similarity assessment for

IFSs and PFSs. This broadens the scope of their utility across different fuzzy set representations.

The utilization of the Choquet integral is demonstrated in the introduction of a novel cosine similarity measure, allowing

for a more comprehensive assessment of similarity that accounts for element interactions, particularly in scenarios

where interdependence among elements is of paramount importance.

The paper introduces an extended TOPSIS method in the q-rung orthopair fuzzy environment, incorporating the newly

developed cosine similarity measure to address the limitations of traditional methods.

The novel TOPSIS methodology is employed to tackle a contemporary and widely recognized challenge – the green

technology selection problem. This application showcases the practical relevance and effectiveness of the proposed
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approach in addressing real-world decision-making scenarios.

2. Preliminaries

In this section, we revisit fundamental definitions employed within the scope of this paper. Following that, we proceed to

introduce the anticipated enhanced cosine similarity measures for q-ROFSs. Unless mentioned otherwise, throughout the

paper, we maintain the assumption that X = x1, . . . , xn  represents a finite set and w = (w1, . . . , wn) is a weight vector,

where wj ∈ [0, 1] for all j = 1, . . . , n and 

n
∑
j=1wj = 1.

Definition 1. [4] Let q ≥ 1. A q-ROFS A in X is given by

 

A = xj, μA xj , νA xj : j = 1, . . . , n

where μA, νA :X → [0, 1] are membership and non-membership functions, respectively, satisfying

μq
A xj + νq

A xj ≤ 1.

The pair ⟨μ, ν⟩ consisting of non-negative real numbers is termed a q-rung orthopair fuzzy value (q-ROFV) if μq + νq ≤ 1.

Observe that q-ROFS is conceptualized as a collection of q-ROFVs.

Remark 1. When q takes on the value of 1, the fuzzy set is referred to as a IFS [2], when q equals 2, it is denoted as an

PFS [3], and when q is equal to 3, it is called a FFS [5]. 

Gerstenkorn and Mańko [37] introduced a correlation coefficient for IFSs. This concept serves as a foundation and

motivation for Ye's cosine similarity measure [19].

Definition 2. [37] Let A and B be two IFSs. A correlation coefficient between A and B is defined by

k(A, B):=

n
∑
j=1 μA(xj)μB(xj) + νA(xj)νB(xj)

n
∑
j=1 μ2

A(xj) + ν2
A(xj)

n
∑
j=1 μ2

B(xj) + ν2
B(xj)

.

In the work by Ye [19], a cosine similarity measure and a weighted cosine similarity measure for IFSs were introduced as

follows.

Definition 3. [19] Let A and B be two IFSs. A cosine similarity measure between A and B is defined by 

{ }

{⟨ ( ) ( )⟩ }

( ) ( )

( )

√ ( ) ( )
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CIFS(A, B):=

1
n

n

∑
j=1

μA(xj)μB(xj) + νA(xj)νB(xj)

μ2
A(xj) + ν2

A(xj) μ2
B(xj) + ν2

B(xj)
.

For n = 1 the cosine similarity measure CIFS equivalent the correlation coefficient k.

Definition 4. [19] Let A and B be two IFSs. A weighted cosine similarity measure between A and B is defined by 

WIFS(A, B):=

n

∑
j=1 wj

μA(xj)μB(xj) + νA(xj)νB(xj)

μ2
A(xj) + ν2

A(xj) μ2
B(xj) + ν2

B(xj)
.

In particular, if w = (1/n, 1/n, . . . , 1/n), then WIFS is reduced to CIFS.

Liu et al. [38] extended the concepts of CIFS and WIFS to encompass q-ROFSs. We now revisit the weighted one.

Definition 5. [38] Let A and B be two q-ROFSs. A weighted cosine similarity measure between A and B is defined by

WCqROF(A, B):=

n

∑
j=1 wj

μq
A(xj)μ

q
B(xj) + νq

A(xj)ν
q
B(xj)

μ2q
A (xj) + ν2q

A (xj) μ2q
B (xj) + ν2q

B (xj)
.

3. Improved cosine similarity measures

While the existing cosine similarity measures have been valuable in the assessment of similarity among fuzzy sets, they

often fall short in capturing the complete picture. These traditional measures primarily focus on the cosine of the angle

between vector representations, overlooking the significance of vector magnitudes. This limitation can lead to inaccurate

similarity assessments, especially when the lengths of vector representations vary significantly. In light of these

shortcomings, we present our enhanced cosine similarity measures for q-ROFSs. These measures not only address the

deficiencies of traditional cosine similarity but also introduce a length difference control term to provide a more

comprehensive and accurate evaluation of similarity. Our approach aims to bridge the gap left by previous measures,

ensuring a robust and versatile tool for similarity assessment in various applications.

Definition 6. Let A and B be two q-ROFSs. An improved cosine similarity measure between A and B is defined by

ICSMq(A, B):=

1
2n

n

∑
j=1 CosA ,Bxj + LA ,Bxj

where

CosA ,Bxj:=

μq
A xj μq

B xj + νq
A xj νq

B xj

μ2q
A xj + ν2q

A xj μ2q
B xj + ν2q

B xj

√ √

√ √

√ √

( )

( ) ( ) ( ) ( )
√ ( ) ( )√ ( ) ( )
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and

LA ,Bxj:=1 − μ2q
A xj + ν2q

A xj − μ2q
B xj + ν2q

B xj .

We now introduce a weighted variant of ICSMq, denoted as IWCSMq.

Definition 7. Let A and B be two q-ROFSs. An improved weighted cosine similarity measure between A and B is defined

by

IWCSMq(A, B):=

1
2

n

∑
j=1 wj CosA ,Bxj + LA ,Bxj .

This newly introduced measure combines the benefits of ICSMq with weighted considerations, providing a more versatile

similarity assessment for q-ROFSs.

The subsequent theorem outlines the properties of the improved cosine similarity measure ICSMq. Of particular

significance within this theorem is the assertion that distinct q-ROFSs cannot exhibit similarity of 1, a departure from

conventional cosine similarity measures found in the literature.

Theorem 1. The similarity measure ICSMq satisfies the following properties:

i) 0 ≤ ICSMq(A, B) ≤ 1 for any q-ROFS A and

B.

ii) ICSMq(A, B) = ICSMq(B, A) for any q-ROFS A and B.

iii) ICSMq(A, B) = 1 if and only if A = B.

Proof. i) It is clear that 0 ≤ CosA ,Bxj ≤ 1 for any j = 1, . . . , n. On the other hand since the vectors μq
A xj , νq

A xj  and 

μq
B xj , νq

B xj  have length in [0, 1], we have 0 ≤ LA ,Bxj ≤ 1 for any j = 1, . . . , n. Hence we obtain

0 ≤

CosA ,Bxj + LA ,Bxj
2 ≤ 1

which yields that 0 ≤ ICSMq(A, B) ≤ 1.

ii) The proof is straightforward.

iii) It is clear that if A = B, then ICSMq(A, B) = 1. Conversely, assume that ICSMq(A, B) = 1. Then for any j = 1, . . . , n we

get

CosA ,Bxj + LA ,Bxj
2 = 1

which implies that CosA ,Bxj = 1 and LA ,Bxj = 1. Then the measure of the angle between μq
A xj , νq

A xj  and 

|√ ( ) ( ) √ ( ) ( ) |

( )

( ( ) ( ))
( ( ) ( ))

( ( ) ( ))
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μq
B xj , νq

B xj  is zero and and they have equal length. So

μq
A xj , νq

A xj = μq
A xj , νq

A xj

for any j = 1, . . . , n. Hence A = B. ◻

Remark 2. All the properties stated in Theorem 1 are applicable to IWCSMq as well.

In conventional cosine similarity measures, Property (iii) of Theorem 1 is met without a necessity; namely, the similarity

measure being equal to 1 does not necessarily imply that the sets are identical. In order to illustrate this deficiency and

effectiveness of our novel similarity measure, let us consider a practical example involving FFSs. We compare the

similarity results obtained using both the traditional cosine similarity measure WCqROF and our enhanced measure ICSMq

. It is important to note that, in the example, the FFSs considered are distinct but exhibit a similarity measure of one with

the existing cosine similarity measure recalled in Definition 5. This arises due to the overlapping vector representations of

the components of these q-ROFSs, characterized by a length difference.

Example 1. Let X = {x1, x2, x3}. Consider the FFSs A and B defined as follows:

A = x1, 0.3, 0.2 , x2, 0.9, 0.6 , x3, 0.6, 0.9

and

B = x1, 0.9, 0.6 , x2, 0.15, 0.1 , x3, 0.2, 0.3 .

Then we have:

WC3ROF(A, B) = w1

0.330.93 + 0.230.63

√0.36 + 0.26√0.96 + 0.66

+ w2

0.930.153 + 0.630.13

√0.96 + 0.66√0.156 + 0.16

+ w3

0.630.23 + 0.930.33

√0.66 + 0.96√0.26 + 0.36

= w1 + w2 + w3
= 1

for any weight vector w1, w2, w3  such that 

3
∑
j=1wj = 1. It is evident that the cosine similarity measure WC3ROF yields a

similarity of 1 for A and B despite their substantial differences. Now, let's calculate the similarity between A and B using 

ICSM3:

( ( ) ( ))
( ( ) ( )) ( ( ) ( ))

{⟨ ⟩ ⟨ ⟩ ⟨ ⟩}

{⟨ ⟩ ⟨ ⟩ ⟨ ⟩}

( )
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ICSM3(A, B) =

1
2 +

1
6

3 − √0.34 + 0.24 − √0.94 + 0.64 − √0.94 + 0.64 − √0.154 + 0.14

− √0.64 + 0.94 − √0.24 + 0.34

= 0.59373

Now, considering the result obtained using our novel similarity measure, ICSM3, we find that the similarity between A and 

B is approximately 0.59373. It's worth noting that the improved cosine similarity measure provides a more rational and

meaningful result.

Remark 3. In Example 1, the results of the similarity measures highlight an interesting observation. While WC3ROF

 assigns a perfect similarity score of 1 to A and B, indicating a high degree of similarity, ICSM3 yields a value of 0.59373,

suggesting a more nuanced assessment. This discrepancy arises from ICSM3's consideration of both direction and

magnitude aspects. In this case, the lengths of vector representations play a significant role in determining the similarity,

leading to a more comprehensive evaluation.

Next, we present an additional enhanced cosine similarity measure employing fuzzy measure theory. The classical

versions of cosine similarity measures within the framework of fuzzy measure theory and fuzzy integrals are elaborated

in [39]. Let us recall some basic definitions.

Definition 8. [40] Let P(X) be the power set of X. If 

i.) σ(∅) = 0,

ii.) σ(X) = 1,

iii.) σ(U) ≤ σ(V) for any U, V ⊂ X such that U ⊆ V,

then the set function σ :P(X) → [0, 1] is called a fuzzy measure on X.

Definition 9. [40] Let σ be a fuzzy measure on X. The Choquet integral of a function f:X → [0, 1] with respect to σ is

defined by

(C)
∫
Xfdσ :=

n

∑
k=1 f(x(k )) − f(x(k−1)) σ(Ek),

where the sequence x(k )
n
k=0

 is a permutation of the sequence xk
n
k=0

 such that 

0:= f(x(0)) ≤ f(x(1)) ≤ f(x(2)) ≤ . . . ≤ f(x(n)) and Ek := x(k ), x(k+1), . . . , x(n) .

Now, we are prepared to introduce the ultimate enhanced cosine similarity measure.

Definition 10. Let σ be a fuzzy measure on X and let A and B be two q-ROFSs. An improved Choquet cosine similarity

measure between A and B is defined by

CqtICSMq(A, B):=(C)∫XfA ,Bdσ

( | | | |
| | )

( )
{ } { }

{ }
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where fA ,B xj =

1
2 CosA ,Bxj + LA ,Bxj  for any j = 1, . . . , n.

The subsequent proposition presents an expected property of the Choquet integral.

Proposition 1. Consider a function f:X → [0, 1] and a fuzzy measure σ on X such that σ(U) < 1 whenever U ≠ X. Then, 

(C)
∫
Xfdσ = 1 if and only if f is identically equal to 1.

Proof. If f is identically equal to 1, then it is evident that its Choquet integral equals 1. Conversely, assume that (C)
∫
Xfdσ = 1

, and there exists some xkj
∈ X such that f xkj

< 1 for j = 1, …, m and m ≤ n. Without loss of generality, assume that 

f xkj
≤ f xkj+1

 for any j = 1, …, m. Then we have

0 = f x(0) ≤ f xk1
≤ . . . ≤ f xkm

≤ 1 = f x(m+1) = . . . = f x(n) .

Thus, we obtain

(C)
∫
Xfdσ = f xk1

σ(X) + f xk2
− f xk1

σ E2

+ . . . + 1 − f xkm
σ Em+1

< f xk1
+ f xk2

− f xk1
+ . . . + 1 − f xkm

= 1

which leads to a contradiction. ◻

Following theorem presents some properties of the cosine similarity measure CqtICSMq.

Theorem 2. The similarity measure CqtICSMq satisfies the following properties:

i) 0 ≤CqtICSMq(A, B) ≤ 1 for any q-ROFS A and B.

ii) CqtICSMq(A, B) = ICSMq(B, A) for any q-ROFS A and B.

iii) CqtICSMq(A, B) = 1 if and only if A = B.

Proof. The proof of (i) and (ii) are can be made similar to proof (i) and (ii) of Theorem 1. By considering Proposition 1 (iii)

can be proved as (iii) of Theorem 1. ◻

4. Extended TOPSIS via ICSMq

In this section, we introduce an extension to the TOPSIS by incorporating the ICSMq similarity measure. Subsequently,

we apply this extended methodology to a real-life scenario involving the selection of green technologies.

( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ( ) ( ) ) ( )

( ( ) ) ( )

( ) ( ) ( ) ( )
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4.1. TOPSIS Methodology. The proposed technique follows these steps:

Step 1: Establish a MCGDM problem comprising m alternatives A = A1, . . . , Am , n criteria C = C1, . . . , Cn , and

involvement of l decision makers.

Step 2: Develop a q-rung orthopair fuzzy decision matrix D (i) for the ith decision maker, defined as

D (i) =

d(i)
11 ⋯ d(i)

1n

⋮ ⋱ ⋮
d(i)

m1 ⋯ d(i)
mn

for i = 1, . . . , l.

Step 3: Aggregate l decision matrices into a unified decision matrix AD:

AD =

ad11 ⋯ ad1n

⋮ ⋱ ⋮
adm1 ⋯ admn

where adkj = AGG d(1)
kj , . . . , d(l)

kj , and AGG denotes an aggregation operator for q-ROFVs.

Step 4: Employ a defuzzification process on the decision matrix AD using a score function to compute the criteria

weights. This involves solving the following optimization model:

max f =

n

∑
j=1

m

∑
k=1 wjadkj

such that wj ∈ W
n

∑
j=1 wj = 1.

Here, W denotes a set of partial information regarding the weights.

Step 5: Compute the weighted decision matrix WAD using a q-rung orthopair fuzzy multiplication formula. Each

element of this weighted matrix is a q-rung orthopair fuzzy value, denoted as μkj, νkj .

Step 6: Calculate the positive and negative ideal solutions as follows: Positive ideal solution

PIS = γ+
j : j = 1, . . . , n

and negative ideal solution

NIS = γ−
j : j = 1, . . . , n

{ } { }

[ ]

[ ]
{ }

⟨ ⟩

{ }

{ }
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where

γ+
j =

max
k=1, . . . ,mμkj,

min
k=1, . . . ,mνkj

and

γ−
j =

min
k=1, . . . ,mμkj,

max
k=1, . . . ,mνkj .

In the case of Cj being a benefit criterion, and for Cj being a cost criterion, we interchange the roles of γ+
j  and γ−

j .

Step 7: Compute the distances between each Ak and the positive ideal solution using

u+
k = 1 − ICMSq(Ak, PIS)

and the distances between Ak and the negative ideal solution using

u−
k = 1 − ICMSq(Ak, NIS).

Step 8: Determine the closeness coefficients

ck =

u−
k

u− + u+
k

and rank the alternatives based on these coefficients. A larger ck value indicates a superior alternative.

The steps of the extended TOPSIS are visualized in Figure 1.

⟨ ⟩

⟨ ⟩

Qeios, CC-BY 4.0   ·   Article, January 8, 2024

Qeios ID: EOGFR4.3   ·   https://doi.org/10.32388/EOGFR4.3 13/22



Figure 1. Illustrating Key Steps in The Extended TOPSIS Methodology

4.2. Green Technology Selection Problem

In this section, we apply the proposed extended TOPSIS methodology to address a green technology selection problem.

Step 1: In this scenario, we consider the selection of green technologies to address various environmental concerns

and promote sustainability. The available alternatives are Solar Power Generation System (A1), Wind Turbine Energy

System (A2), Green Building Technologies (A3), Smart Grid Technology (A4), and Hybrid Electric Vehicles (A5). The

decision criteria encompass Energy Efficiency (C1), Environmental Impact (C2), Cost-Effectiveness (C3), Ease of

Integration (C4), and Sustainability (C5). Multiple decision-makers contribute their perspectives on the alternatives and

criteria through 4-rung orthopair fuzzy decision matrices. The subsequent steps involve the application of the extended

TOPSIS methodology, incorporating the improved cosine similarity measure ICSMq, to rank the green technologies

based on their overall suitability.

Step 2: Employing the scale provided in Table 2, three decision makers offer their evaluations of the alternatives

across the criteria. Subsequently, these opinions are transformed into 4-ROFVs, also referring to Table 2.
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Table 2. Scaling Factors for q-ROFVs

Table 3. Decision Matrix of Decision Maker 1

Table 4. Decision Matrix of Decision Maker 2

Table 5. Decision Matrix of Decision Maker 3

Step 3: Utilizing the innovative exponential aggregation operator introduced by Peng et al. [41], we combine the

decision matrices from Step 3 into an aggregated fuzzy decision matrix, as illustrated in Table 6.
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Table 6. Aggregated Decision Matrix

Table 7. Defuzzified Decision Matrix

Step 4: We employ the defuzzification process via the exponential score function introduced by Peng et al. [41] to

obtain a crisp decision matrix, as depicted in Table 7.

To establish the weights, we solve the linear optimization problem presented in Table 8. The constraints reflect a relative

importance of criterion C1 over criterion C3. The ratio of their weights is suggested to be at least 0.5. Also we emphasize

the importance of criterion C2 compared to criterion C5. The weight of criterion C2 is suggested to be at least 80% of the

weight of criterion C5. Also the constraints control the relative importance of criterion C4 compared to criterion C3. The

ratio is suggested to be less than or equal to 0.8. Upon solving the linear optimization problem, the resulting weights are 

w1 = 0.141, w2 = 0.2819, w3 = 0.125, w4 = 0.1, and w5 = 0.3523.

Table 8. Linear Optimization Problem to Weight Criteria

Step 5: Using the multiplication method presented in [4], we obtain the weighted decision matrix WAD as shown in
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Table 9.

Table 9. Weighted Decision Matrix

Step 6: From the weighted decision matrix WAD, we determine the PIS and NIS as follows:

PIS = {⟨0.5343, 0.8844⟩, ⟨0.5717, 0.8054⟩, ⟨0.4289, 0.9167⟩, ⟨0.4452, 0.9261⟩, ⟨0.6614, 0.7356⟩}
NIS = {⟨0.3091, 0.9284⟩, ⟨0.3863, 0.8566⟩, ⟨0.2522, 0.9417⟩, ⟨0.2987, 0.9466⟩, ⟨0.3897, 0.8305⟩}.

Step 7: Utilizing the PIS and NIS, we compute the distances, as shown in Table 10.

Table 10. Distances

Step 8: The resulting closeness coefficients are as follows: c1 = 0.5352, c2 = 0.3279, c3 = 0.4838, c4 = 0.2202, and 

c5 = 0.2786. Consequently, the ranking is A1 ≻ A3 ≻ A2 ≻ A5 ≻ A4.

4.3. Discussion

Discussion on the methodology: The application of the proposed improved cosine similarity measure ICSMq in the

context of the green technology selection problem has provided insightful results. The decision matrices derived from

the opinions of three decision makers, scaled between 1 and 7, were aggregated using the exponential aggregation

operator [41]. This process facilitated the creation of an aggregated decision matrix, which was subsequently defuzzified

to obtain a crisp decision matrix (Table 7). To determine the weights for each criterion, a linear optimization problem

was solved, resulting in weights w1 = 141, w2 = 2819, w3 = 125, w4 = 0.1, and w5 = 0.3523. These weights were then

utilized in the multiplication process, following the methodology proposed by Yager [4], resulting in the weighted

decision matrix WAD (Table 9). Further analysis involved the calculation of PIS and NIS from WAD. Distances between

each alternative and both PIS and NIS were computed (Table 10). Subsequently, closeness coefficients were

determined, leading to the final ranking of alternatives: A1 ≻ A3 ≻ A2 ≻ A5 ≻ A4.
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The results indicate that Solar Power Generation System (A1) is the most favorable option, followed by Green Building

Technologies (A3), Wind Turbine Energy System (A2), Hybrid Electric Vehicles (A5), and Smart Grid Technology (A4).

This ranking aligns with the preferences inferred from the opinions of the decision makers.

The application of ICSMq within the MCGDM framework has demonstrated its effectiveness in handling real-life

problems. The proposed methodology enhances the decision-making process, providing a systematic and

comprehensive approach to evaluating and ranking alternatives based on multiple criteria. The results underscore the

potential of ICSMq in facilitating informed decision-making in diverse application domains, particularly in the selection of

green technologies.

Discussion on the MCGDM problem: The result of the Green Technology Selection Problem, obtained through the

extended TOPSIS methodology utilizing the improved cosine similarity measure ICSMq, reveals valuable insights. The

ranking of alternatives reflects the preferences and priorities inferred from the opinions of the decision makers and the

weighted criteria.

Solar Power Generation System (A1) emerged as the top-ranked alternative, indicating its high suitability and

desirability based on the specified criteria. This aligns with the growing emphasis on renewable energy sources,

highlighting solar power as a promising and efficient option.

Green Building Technologies (A3) secured the second position, emphasizing the significance of environmentally

friendly construction practices and technologies. The third position is occupied by Wind Turbine Energy System (A2

), highlighting the continued importance of wind energy in the renewable energy landscape.

Hybrid Electric Vehicles (A5) and Smart Grid Technology (A4) complete the ranking, showcasing their potential

contributions to sustainability but with comparatively lower preference in this specific context.

Overall, the result reflects a well-balanced consideration of criteria, providing a meaningful and contextually relevant

ranking of green technology alternatives. The application of ICSMq within the extended TOPSIS framework proves to

be effective in guiding decision-making processes in the selection of environmentally conscious technologies.

4.4. Comparative Analysis:

In this section, we solve the same MCGDM problem using alternative MCDM methods. To facilitate this comparison, we

begin by normalizing the decision matrix presented in Table 7. The resulting normalized decision matrix is provided in

Table 11.
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Table 11. Normalized Crisp Decision Matrix

Ordinary TOPSIS: In applying the ordinary TOPSIS [9], the obtained closeness coefficients are as follows: c1 = 0.61, 

c2 = 0.45, c3 = 0.34, c4 = 0.29, and c5 = 0.21. Consequently, the resulting ranking is A1 ≻ A3 ≻ A2 ≻ A5 ≻ A4. The

obtained ranking aligns precisely with the proposed method, suggesting that the complement of the introduced

similarity measure could potentially function as the Euclidean metric within the q-rung fuzzy environment.

ELECTRE: The Elimination and Choice Translating Reality (ELECTRE) method is a MCDM approach designed to

handle complex decision problems involving multiple conflicting criteria [42]. It operates by comparing alternatives in

terms of each criterion and determining outranking relationships. The method provides a systematic way to eliminate

less desirable alternatives, leading to a final ranking of the remaining options. ELECTRE considers both positive and

negative aspects, making it suitable for decision scenarios where trade-offs and compromises are essential. The

outcomes are valuable for decision-makers seeking a clear understanding of the relative strengths and weaknesses of

different alternatives in the context of specified criteria. Applying the ELECTRE method yields the following partial

results: A1 ≻ A3, A1 ≻ A4, A2 ≻ A4, A3 ≻ A2, A3 ≻ A4 and A5 ≻ A4. This partial order indicates that A4 is considered

the least favorable alternative, aligning with the findings of the extended TOPSIS method presented in this paper.

Importantly, none of these orderings contradicts the ranking produced by the proposed approach.

5. Conclusion

In this paper, we have introduced an array of enhanced cosine similarity measures for q-ROFSs. These novel measures

address the limitations of traditional cosine similarity measures by simultaneously considering both the direction and

magnitude aspects of q-ROFSs. Specifically; the arithmetic mean-based cosine similarity measure employs the traditional

cosine similarity formula enhanced with a length difference control term, offering a more comprehensive assessment of

similarity. The weighted arithmetic mean-based cosine similarity measure extends the concept further by introducing a

weight vector, allowing for customized emphasis on individual components, making it adaptable to diverse applications.

The Choquet integral-based cosine similarity measure uses the Choquet integral to consider element interactions,

improving sensitivity and applicability in scenarios where interdependence among elements is critical. Furthermore, our

contributions extend beyond the realm of cosine similarity measures. The introduction of an extended TOPSIS

methodology, incorporating the novel similarity measures, provides a powerful framework for MCGDM. We applied this

methodology to a real-world scenario, the Green Technology Selection Problem, involving alternatives such as Solar

Power Generation System, Wind Turbine Energy System, Green Building Technologies, Smart Grid Technology, and

Hybrid Electric Vehicles, evaluated against criteria like Energy Efficiency, Environmental Impact, Cost-Effectiveness, Ease

of Integration, and Sustainability. Through theoretical analyses, examples, and practical applications, we demonstrated the

effectiveness of our proposed measures and the extended TOPSIS method. The advantages include a comprehensive

assessment of similarity, adaptability to diverse applications through customizable weight vectors, and enhanced

sensitivity through the consideration of element interactions via the Choquet Integral. Our paper concludes with a
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comparative analysis, evaluating the proposed methodology against some other MCDM methods. The results underscore

the superiority of our approach in providing coherent and meaningful rankings.
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