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Our study shows that an evanescent electron wave exists outside both finite and infinite quantum
wells, by solving exact solutions of the Dirac equation in a cylindrical quantum well and maintaining
wavefunction continuity at the boundary. Furthermore, we have derived analytical expressions of
the current density to demonstrate that the evanescent wave spins concurrently with the wave inside
the quantum well. Our findings suggest that it is possible to probe or eavesdrop on quantum spin
information through the evanescent wave spin without destroying the entire spin state. The wave
spin picture interprets spin as a global and deterministic property of the electron wave that includes
both the evanescent and confined wavefunctions. This suggests that a quantum process or device
based on the manipulation and probing of the electron wave spin is deterministic in nature rather
than probabilistic.

I. ELECTRON WAVE SPIN

The electron spin has attracted significant attention,
especially in recent years, due to its potential applica-
tions in information sciences and technologies, such as
quantum computing [1],[2] and spintronics [3]. If future
computers rely on the precise manipulation of the elec-
tron spin, it is crucial to develop a deeper understanding
of this property beyond a simplistic interpretation as a
superluminal spinning particle.

In recent works [4],[5], it has been argued that the elec-
tron spin is a wave property that can be fully described
by current densities calculated using the Dirac theorem.
The authors demonstrate the existence of a stable circu-
lating current density for an electron confined in an infi-
nite quantum well, which exhibits a multi-vortex topol-
ogy at excited states. The electron wave spin exhibits ge-
ometric and topological characteristics when it interacts
with an electromagnetic field, leading to various effects,
including fractional spin and modified Zeeman splitting.

It is noted that the electron wave spin was investi-
gated previously in the infinite quantum well, where the
wave function outside the well is typically assumed to
be zero [6]. Although this model is widely used and has
helped gain much insight into many quantum effects in-
side the quantum well, it assumes the wavefunction out-
side the well to be exactly zero, which causes a problem
in maintaining continuity for both the wavefunction and
its derivative at the boundary in both the Schrödinger
and Dirac theorems [7]. In reality, all potentials are fi-
nite, and therefore, there exists a non-negligible wave-
function outside the well, even when the eigenenergy of
the electron is below a finite or an infinite quantum well
potential. The wavefunction outside the well shall decay
rapidly and thus is evanescent in analogy to the evanes-
cent waves observed in optics.

An intriguing question arises as to whether the evanes-
cent electron wave also spins. An intuitive answer to this
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question suggests that an evanescent wave shall also spin
due to the continuation of wavefunctions and the pre-
vailing algebraic structure of the Dirac equation. The
existence of an evanescent wave spin shall raise intrigu-
ing possibilities for probing the spin from outside the
well without collapsing the spin inside, analogous to the
evanescent optical wave sensing [8], [9], [10].

In this paper, we plan to demonstrate the evanescent
wave spin by solving the Dirac equation in a quantum
well rigorously and obtaining analytical expressions for
the wavefunctions and current densities both inside and
outside the quantum well. We will demonstrate that
the evanescent wave diminishes at high potentials but
remains within the skin depth region even for the infinite
quantum well due to the wavefunction continuity at the
boundary. Finally, we intend to discuss the implications
of these findings on quantum detection and quantum in-
formation technologies.

II. DIRAC ELECTRON IN A FINITE
CYLINDRICAL QUANTUM WELL

We will derive exact solutions of the Dirac equation
in a finite cylindrical quantum well and obtain analyti-
cal expressions for the current density. The eigenenergy
values will be solved numerically through the boundary
condition equations.

The Dirac equation in the cylindrical coordinate is
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where (ρ, ϕ, z) represent polar, azimuthal angle and z co-
ordinate, respectively. The operator
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contains α−matrix in cylindrical coordinate

αρ =


0 0 0 e−iϕ

0 0 eiϕ 0
0 e−iϕ 0 0
eiϕ 0 0 0

 ;

αϕ =


0 0 0 −ie−iϕ

0 0 ieiϕ 0
0 −ie−iϕ 0 0
ieiϕ 0 0 0

 ;

αz =

 0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , (3)

with the following properties

σ2
ρ = σ2

ϕ = σ2
z = 1,

σρσϕ = iαz,

σρσϕ + σϕσρ = 0.

(4)

We now let the potential

U(rrr) = U(ρ) =
{

0, ρ < R
U, ρ > R

(5)

represent a finite cylindrical quantum well of potential U
and radius R. The wavefunction in the quantum well can
be expressed by the separation of variables

ψ(rrr, t) = e−iEt/ℏeiPzz/ℏψ̃(ϕ, ρ), (6)

where the momentum along the z-direction is set Pz = 0
for our discussion and E is the eigenenergy to be deter-
mined by the boundary conditions.

Plugging Eq. 6 into Eq. 1 to obtain the equation
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U(ρ)}ψ̃(ϕ, ρ) = 0.

(7)

ψ̃(ϕ, ρ) is a four-spinor that can be written as

ψ̃(ϕ, ρ) =

(
µA(ϕ, ρ)
µB(ϕ, ρ)

)
, (8)

where µA(ϕ, ρ) and µB(ϕ, ρ) are two component spinor
wavefunctions known as the large and small components

of the Dirac wavefunctions that follow the equations
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The above equations are combined to give the equation

for µA(ϕ, ρ),(
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)
µA(ϕ, ρ) =

{ −ζ2µA(ρ), ρ < R;

ξ2µA(ρ), ρ > R,
(10)

where ζ and ξ are wave numbers inside and outside the
quantum well, respectively,

ζ =

√
E2 −m2c4

ℏ2c2
,

ξ =

√
m2c4 − (E − U)2

ℏ2c2
, (11)

and are both real numbers, since the quantum well po-
tential falls in the range of

E −mc2 < U < mc2. (12)

We now separate the variables of µA(ϕ, ρ) for the spin-
up electron,

µA(ϕ, ρ) = eilϕµA(ρ)

(
1
0

)
, (13)

where l is the azimuthal quantum number for the angular
wavefunction eilϕ.
The radial wavefunction µA(ρ) follows the equation by

plugging Eq. 13 into Eq. 10,

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− l2

ρ2

)
µA(ρ) =

{ −ζ2µA(ρ), ρ < R;

ξ2µA(ρ), ρ > R.
(14)

µA(ρ) can be readily solved from Eq. 14 and µB(ϕ, ρ)
can be subsequently obtained from Eqs. 9. Finally, the
four component spinor wavefunction ψ̃(ϕ, ρ) in Eq. 8 for
the spin up electron is obtained



3

ψ̃(ϕ, ρ) =



eilϕ


Jl(ζρ)

0
0

ieiϕ ℏc
E+mc2 {

1
2ζ [Jl−1(ζρ)− Jl+1(ζρ)]− l

ρJl(ζρ)}

 , ρ ≤ R;

eilϕ


κKl(ξρ)
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ieiϕκ ℏc
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ρKl(ξρ)}

 , ρ > R,

(15)

where Jl and Kl are the Bessel function and modified
Bessel functions of order l, respectively. The constant κ
measures the relative magnitude between the wavefunc-
tions inside and outside the quantum well.

We now apply the boundary condition of wavefunction
continuation at ρ = R to obtain

κKl(ξR) = Jl(ζR)

κ{1
2
ξ [−Kl−1(ξR)−Kl+1(ξR)]−

l

R
Kl(ξR)} =

E − U +mc2

E +mc2
{1
2
ζ [Jl−1(ζR)− Jl+1(ζR)]−

l

R
Jl(ζR)},

(16)

from which the eigenenergies Eln and constant κ can be
solved numerically. Here, l and n denote the azimuthal
and radial quantum numbers, respectively. Numerical
calculations can then be carried out to study the wave
properties in all regions.

III. EVANESCENT ELECTRON WAVE

To simplify the discussion on the evanescent electron
wave, we choose the lowest azimuthal quantum number
l = 0 for the wavefunction

ψ̃(ϕ, ρ) =




J0(ζρ)

0
0

−ieiϕ ℏc
E+mc2

1
2ζJ1(ζρ)

 , ρ ≤ R;


κK0(ξρ)

0
0

−iκeiϕ ℏc
E−U+mc2

1
2ξK1(ξρ)

 , ρ > R.

(17)
The boundary conditions become

κK0(ξR) = J0(ζR)

κξK1(ξR) =
E − U +mc2

E +mc2
ζJ1(ζR),

(18)

which can be combined to give the equation

ξJ0(ζR)K1(ξR) =
E − U +mc2

E +mc2
ζK0(ξR)J1(ζR), (19)

0. 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
-3

-2

-1

0

1

�-me2c4 (eV)
R
e
la
ti
v
e
v
a
lu
e
s

FIG. 1. Numerical solution of the eigenenergies for the elec-
tron in a quantum well of U = 0.01 eV and R = 10 nm.
The blue and orange curves representing ξJ0(ζR)K1(ξR) and
E−U+mc2

E+mc2
ζK0(ξR)J1(ζR) from Eq. 19 respectively intercept

at eigenenergies E01 −mc2 = 1.53(meV ) and 7.63(meV ) for
the ground and excited state respectively.

from which the eigenenergies E and constant κ can be
solved numerically.

We now conduct the numerical study by choosing a
quantum well of radius R = 10 nm and a series of po-
tentials U = 0.01, 0.1, 1, 10 eV . For each potential, mul-
tiple eigenenergies can be found by solving the Eq. 19
numerically. As an example, for U = 0.01 eV , only
two eigenenergies are found within the quantum well,
E01−mc2 = 1.53(meV ) and E02−mc2 = 7.63(meV ) that
correspond to the ground state and first excited state,
respectively. Fig. 1 shows the two eigenenergy solutions
as the inception points of functions ξJ0(ζR)K1(ξR) and
E−U+mc2

E+mc2 ζK0(ξR)J1(ζR) from Eq. 19.

We now calculate the ground state eigenenergies E01−
mc2 and κ01 for all potentials, followed by the calculation
of wave numbers ζ01 and ξ01 with the help of Eqs. 11. The
results are listed in Table I.

The numerical calculation shows that the electron wave
tunnels out of the quantum well and behaves evanescent
due to the characteristics of the modified Bessel func-
tions. Fig. 2 plots the wavefunctions inside and outside
the well for the ground state of U = 0.01 eV . It is shown
that a substantial evanescent wave tunnels out of the
quantum well, but satisfies wavefunction continuity at
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FIG. 2. Wavefunction plot for the Dirac electron in a quan-
tum well of U = 0.01 eV and R = 10 nm.
The large component µA(ϕ, ρ) (left) and small component
µB(ϕ, ρ) (right) wavefunctions demonstrate that a substan-
tial evanescent wave tunnels out of the quantum well, but
satisfies wavefunction continuity at the boundary.

the boundary.
Table I shows that at higher potential, for example

U = 10 eV , the wave number ζ01 = 2.39 × 108 already
approaches the wave number for the infinite quantum
well ζ inf01 = 2.40×108, where zero wavefunction is assumed
outside the well

J0(ζ
inf
01 R) = 0. (20)

Therefore, the wavefunctions µA(ϕ, ρ) and µB(ϕ, ρ) in-
side the quantum well are nearly the same as the wave-
functions in the infinite quantum well, as illustrated by
Fig. 3. However, contrary to the conventional assump-
tion, the wavefunctions outside the quantum well are di-
minished but not exactly zero, especially at the bound-
ary for µB(ϕ, ρ), so that the wavefunction continuity is
always satisfied. The wavefunctions remain significant
within a narrow region near the boundary known as the
skin depth, but decay rapidly. The skin depth becomes
narrower as the potential becomes higher, as is the case
for an optical field confined in a waveguide [9].

The above analysis validates the infinite quantum well
model to account for the quantum behavior of the elec-
tron inside the well. However, it also reveals that the
evanescent wave diminishes but never vanishes to math-
ematical zero, circumventing the discontinuity problem
at the boundary of the commonly-used infinite quantum
well model.

IV. EVANESCENT ELECTRON WAVE SPIN

We now investigate the spin nature of the evanescent
electron wave that resides within the skin depth region

TABLE I. Eigenenergy E01 and relative constant κ01

U (eV) E01 −mc2(meV ) κ01 ζ01(m
−1) ξ01(m

−1)
0.01 1.53 44.1 2.00× 108 4.71× 108

0.10 1.95 2.23× 106 2.26× 108 1.60× 109

1.00 2.12 2.32× 1021 2.36× 108 5.12× 109

10.0 2.18 1.75× 1069 2.39× 108 1.62× 1010
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FIG. 3. Wavefunction plot for the Dirac electron in a quan-
tum well of U = 10 eV and R = 10 nm.
The large component µA(ϕ, ρ) (left) and small component
µB(ϕ, ρ) (right) wavefunctions (blue) inside the quantum well
are nearly identical to the wavefunctions (orange) inside an
infinite quantum well. The wavefunctions outside the quan-
tum well are diminished but not exactly zero, especially at the
boundary for µB(ϕ, ρ), so that the wavefunction continuity is
always satisfied.

outside the quantum well. Analytical expression of the
current density is obtained by using the wavefunctions in
Eq. 17,

jρ = −ecψ†αρψ = 0, everywhere;

jϕ = −ecψ†αϕψ =

{ − eℏc2
E+mc2 ζJ0(ζρ)J1(ζρ), ρ ≤ R

−κ2 eℏc2
E−U+mc2 ξK0(ξρ)K1(ξρ), ρ > R,

(21)

where −e = −1.602 × 10−19C to represent the electron
charge.
Eq. 21 demonstrates that stable circulating current

density exists both inside and outside the quantum well,
as evidenced by the non-zero component jϕ in all regions
and zero component jρ everywhere. The evanescent elec-
tron wave is shown to spin concurrently with the electron
wave inside the quantum well, as illustrated by the vector
plot of Fig. 4. The current density continuity is observed
at the boundary as a result of the wavefunction continu-
ity at the boundary in Eqs. 15 and 17, which also ensures
the charge density continuity.
The above analysis highlights the wave spin picture, in

which the spin is a wave property encoded in the entire
Dirac field. In other words, the evanescent wave is an
integral part of the entire electron wave that possesses
the wave spin property.

V. EVANESCENT ELECTRON WAVE SPIN
SENSING

The discussion above raises questions about the se-
curity of spin quantum information and the possibility
of novel evanescent electron wave spin sensing, which is
analogous to evanescent optical wave sensing [8], [9], [10]
that has already been employed in real applications. The
evanescent optical wave is part of an eigen electromag-
netic wave outside an optic waveguide or fiber that can
interact with matters around the waveguide. The main
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FIG. 4. Vector plot of the current density for a spin-up ground
state electron in a quantum well of U = 0.01 eV and R =
10 nm. The evanescent wave spins concurrently with the wave
inside the quantum well.

optic wave confined inside the waveguide is perturbed but
largely maintained. Similarly, the evanescent electron
wave is a part of an eigenelectron wave outside a quan-
tum well that can interact with an electromagnetic wave
around the quantum well. The two schemes share the
same fundamental matter-field interaction: jjj(r) · AAA(r),
where jjj(r) and AAA(r) represent the electron wave and
the electromagnetic wave, respectively. The interaction
is usually small due to the nature of evanescent waves;
therefore, the main wave inside the confinement is only
perturbed but not destroyed. Thus, evanescent wave
sensing offers a unique detection scheme as a partial wave
interaction without destroying the main wave inside the
confinement.

However, the evanescent electron wave contains the
spin property as described by the current density jjj(r) in
Eq. 21. When it interacts with the electromagnetic field
AAA(r), only partial spin participates in the process that
could result in the fractional spin effects as discussed in
the previous study [5]. Such a partial spin concept con-
flicts with the particle spin picture, where a single parti-
cle electron possesses a unit spin and can only manifest
the full spin effect during interaction. In the particle
electron spin picture, the electron carrying the full spin
tunnels out of the quantum well with a probability den-
sity given by the square of the wavefunction ψ†ψ. If the
spin is detected outside the quantum well, the spin infor-
mation inside is destroyed since the electron that carries
the full spin no longer exists within the quantum well.

The conflicting pictures are illustrated in Fig. 5, which
comprises two figures for the electron in the same quan-
tum well of R = 10 nm and U = 0.01 eV .
The upper figure illustrates the wave spin picture by

showing the spinning current density in all regions. The
current density resembles the current density inside an
infinite square well-discussed previously [4]. Here, partial

FIG. 5. Conflicting views on the electron spin and tunnelling.
The upper figure illustrates the wave spin view that partial
wave spin tunnels out of the quantum well with full certainty.
The figure shows the three-dimensional distribution of the
current density that spins as a whole in all regions for the
spin-up electron in a finite quantum well of R = 10 nm and
U = 0.01 eV .
The lower figure illustrates the particle spin view that full
particle spin tunnels out of the quantum well with partial
certainty. The figure shows the probability density ψ†ψ of
the particle electron of spin-up (represented by the ball and
arrow) in the same quantum well.

wave spin exists outside the quantum well but with full
certainty.

The lower figure depicts the particle spin picture by
showing the probability density and particle electron
spin. Here, full particle spin tunnels out of the quan-
tum well but with partial certainty.

The conflicting views reflect different interpretations of
quantum mechanics, but resolving them has significant
implications for emerging technology development, such
as quantum computing. Quantum computing is generally
regarded as a probabilistic process at the fundamental
level due to the probabilistic interpretation of the wave-
function that describes the behavior of subatomic parti-
cles. By adopting the particle spin picture, which inter-
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prets spin as a local property pertaining to the particle
electron, a spin-based quantum computer should also be
considered as a probabilistic machine.

However, the wavefunction that is supposed to provide
the probability density ψ†ψ is deterministic itself since it
is a vector in the Hilbert space. Consequently, the charge
density eψ†ψ and current density ecψ†αψ are determin-
istic observables. We have shown that the electron spin
is the wave property that can be fully described by the
current density. Therefore, the electron wave spin is also
a deterministic property. It is our view that a quantum
process or device based on the manipulation and probing
of the electron wave spin is deterministic in nature rather
than probabilistic.

VI. CONCLUSIONS

1. Our study shows that an evanescent electron wave
exists outside both finite and infinite quantum
wells, by solving exact solutions of the Dirac equa-
tion in a cylindrical quantum well and maintaining

wavefunction continuity at the boundary.

2. Furthermore, we have derived analytical expres-
sions of the current density to demonstrate that the
evanescent wave spins concurrently with the wave
inside the quantum well. Our findings suggest that
it is possible to probe or eavesdrop on quantum
spin information through the evanescent wave spin
without destroying the entire spin state.

3. The wave spin picture interprets spin as a global
and deterministic property of the electron wave
that includes both the evanescent and confined
wavefunctions. This suggests that a quantum pro-
cess or device based on the manipulation and prob-
ing of the electron wave spin is deterministic in na-
ture rather than probabilistic.
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