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Abstract

In a booming global economy, through the use of a fair share of conventional energy sources, converting the current

economy into a low-carbon hydrogen economy is an exigent problem. Several policies and economies have failed to

implement a fully circulating hydrogen economy. This paper provides a novel policy framework from the grassroots to

the global level to achieve free-flowing hydrogen production, storage, and transport. Such a policy framework is

thoroughly proposed through a cost‒benefit analysis of a plant producing 1 tonne of low-carbon hydrogen per day

using several mathematical and computational models. This paper showcases the operations, development and

tangible and intangible benefits of the hydrogen economy through which a final cost‒benefit mechanism and a global

policy framework are formulated. Along with such formulations, a varied industrial scalability is also portrayed, which

significantly portrays the industrial requirements from 0.5 to 10 TPD through cost‒benefit analysis parameters.
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1. Introduction

With its current global energy transition role, hydrogen energy is one of the most crucial future potentials for sustaining a

net-neutral future. Hydrogen energy can be used as a commercial and industrial scaled-up renewable energy source

because of its high energy density, versatility, storability, transportability, decarbonization and energy security. For a

significant decrease in the cost of hydrogen production, several economic assessments are vital along with the

sustainable modern computational characterization of hydrogen, which involves life cycle assessment, environmental

impact assessment, health cycle assessment, SWOT analysis, environmental risk assessment and health impact analysis

(W. Liu et al. 2022; Duan et al. 2023; Maestre, Ortiz, and Ortiz 2021; Yanxing et al. 2019; Chew et al. 2023; Mittal and

Kushwaha 2024b).

The assessment of cost specifically for hydrogen energy globalization policy involves the analysis of various methods of

hydrogen production, which require steam reforming, partial oxidation, autothermal reforming, biophotolysis, dark

fermentation, photo fermentation, gasification, pyrolysis, thermolysis, photolysis, and electrolysis (Mittal et al. 2024; Amin

et al. 2022; Minja et al. 2024; J. Zhang et al. 2022; Ji and Wang 2021; Dincer and Acar 2015). The main goal of such

economic analysis is to determine the cost-to-efficiency info graphical representation. To evaluate such representations,

deciding on the capital investment, environmental potential parameters, impact categories, and operational expenses is

highly essential. The viability of such hydrogen production is mainly calculated through advancements, technological

factors, industrial readiness scales, regional factors involving carbon emissions costs, and energy prices (Veras et al.

2017; Singh et al. 2022; Parkinson et al. 2019).

Qeios, CC-BY 4.0   ·   Article, August 7, 2024

Qeios ID: F0P3VJ   ·   https://doi.org/10.32388/F0P3VJ 2/15



Figure 1. Industrial scale-up analysis of hydrogen production via cost analysis (Griffiths et al. 2021; Atilhan et al. 2021; Manna et al. 2021; Beasy,

Lodewyckx, and Mattila 2023; Sadeghi, Ghandehariun, and Rosen 2020; Yang et al. 2023; Wenderich et al. 2020).

It is easier to determine the industrial scale-up of potential hydrogen production methods through such cost analysis.

Figure 1 (Griffiths et al. 2021; Atilhan et al. 2021; Manna et al. 2021; Beasy, Lodewyckx, and Mattila 2023; Sadeghi,

Ghandehariun, and Rosen 2020; Yang et al. 2023; Wenderich et al. 2020) demonstrates the connection between different

hydrogen production models for carbon emissions and impact categories for the cost analysis of hydrogen production to

calculate the industrial technical readiness level. Considering the importance of cost analysis, there has not been

significant research on the economic analysis of hydrogen compared to the overall laboratory-scale hydrogen production

system setups. Figure 2 shows the number of publications annually for hydrogen production systems (at the laboratory

scale) and an economic analysis of hydrogen energy for the global circulation of hydrogen energy. From the infographics,

we can observe that there is a wide gap in research on the monetary aspect of hydrogen, which needs to be given at most

observations for a free-flowing green hydrogen economic framework (Mittal and Kushwaha 2024a; Sharma et al. 2023;

Zhuang et al. 2023; Braga et al. 2013; Tarun et al. 2007). Through such infographics, we can discover the need for our

study toward cost‒benefit analysis for a low hydrogen production framework. This paper, hence, provides an overall cost‒
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benefit analysis of the low-carbon hydrogen production framework (Kim, Lee, and Lim 2022; Ajanovic, Sayer, and Haas

2022b; 2022a).

Figure 2: Number of Publications in Hydrogen Production and Economic Analysis for Hydrogen Production. [Source:

PubMed through 5 August 2024]

2. Methods to Assess Cost‒Benefit Analysis

To analyse the methods for cost‒benefit analysis of hydrogen production, there is a specific pathway for performing the

calculations. The significant steps through which analysis takes place involve the life cycle cost procedure, data

collection, major calculation procedures and assumptions of hydrogen production, and operational and maintenance
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costs. The equations for capital costs, capital recovery factors, life cycle costs, operational costs, maintenance costs, and

future life cycle costs are shown in Equations 1-8 (Shih and Tseng 2014; Snyder and Kaiser 2009; Xiang et al. 2020; J.

Liu et al. 2020; Barghash et al. 2022). The major significance of these equations is the fundamentals through which

industrialists can calculate the major parameters that are required for cost‒benefit analysis. The major parameters that

are determined from the equations are the current values of benefits and the current values of costs.

2.1. Life Cycle Costs

Life Cycle Costs can be expanded into well-to-tank, tank-to-wheel, and Social Costs. These Costs can be further

expanded into capital, operational, vehicle purchasing, taxes, and insurance costs. The relation between these variables is

mentioned in Equation 1,2,3.

Life cycle costs (LCCs) (US $/functional unit) = well to tank costs + tank to wheel + social costs (1)

Well-to-tank Costs = Capital Costs + Operation and Maintenance Costs + Other Costs. (2)

Tank-to-wheel Costs = Vehicle Purchasing Costs + Operation and Maintenance Costs + Taxes + Insurance (3)

2.2. Capital Costs

To calculate the overall capital costs for the analysis of life cycle costs, capital recovery factor is one of the important

factors, the correlations between capital costs, life cycle costs and capital recovery costs are mentioned in Equation 4

and 5.

Capital Costs = crf(I-R) + iR (4)

Capital recovery factor (CRF) = [i(1 + i)n]/[(1 + i)n − 1] (5)

2.3. Operational and Maintenance Costs

Similar to capital costs, to analyse the operational and maintenance costs for evaluating life cycle and future life cycle

costs, which are important parameters in cost-benefit analysis, it is highly exigent to determine the relation between

operational and maintenance costs. These relations are thoroughly examined in Equations 6, 7 and 8.

Operational Costs = ∑IMi x PMi + IEj x ECj + AWk x TCWk - ACPl x RCPl (6)

Maintenance Costs ($/kg H2) = [Replacement Costs + Regular Repair Costs]/[Hydrogen Production Amounts] (7)

Future Life Cycle Costs=∑(C x AR) (8)

2.4. Cost Benefit Analysis Ratio

Once these calculations are made, the main cost‒benefit analysis is calculated for the cost‒benefit analysis ratio, which is

the ratio of the present value of the benefit to the present cost value, as shown in Equation 9 (J. Liu et al. 2020; Xiang et

al. 2020).

Cost‒Benefit Analysis Ratio = [Current Value of Benefit]/[Current Value of Cost] (9)
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A cost‒benefit analysis systematically evaluates a specific plant or project's economic, technological and social

performance. For cost‒benefit analysis in LCH, it is necessary to complete the analysis process, as shown in Figure 3.

The process includes different steps to thoroughly analyse the cost‒benefit analysis of low-carbon hydrogen, which

provides for the following:

1. Identification of the scope of low-carbon hydrogen production

2. Cost determination of production

3. Determination of low-carbon hydrogen benefits

4. Computational analysis of calculations for cost-benefit analysis of low-carbon Hydrogen,

5. Making recommendations and implementing the analysis in LCH projects or industrial plants.

Figure 3. Systematic process of low-carbon hydrogen cost‒benefit analysis (Mittal and Kushwaha 2024a).

Specific tools and models are developed specifically for this kind of analysis; one such tool is the H2 analysis (H2A)

discounted cash flow model 1, which can be used to assess how much it will cost to create hydrogen using different

technological routes. The dependability of the data and analysis's underlying assumptions determine a CBA's correctness.

To guarantee a thorough assessment, conferring with specialists or using proven models is frequently advantageous

(Gerloff 2021; Palmer et al. 2021; X. Zhang et al. 2023; Zhuang et al. 2023; Grimm, de Jong, and Kramer 2020; Terlouw et

al. 2022; Shih and Tseng 2014). Generally, cost‒benefit analysis could be integrated with hydrogen production systems

by identifying the costs, quantifying the benefits, calculating the net present value, and performing sensitivity analysis.

Once the following steps are taken, the overall performance sensitivity analysis is positive, and the overall hydrogen

production system becomes economically viable (Thakur et al. 2020; Osman et al. 2022; Razi and Dincer 2020).
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3. Outcomes of the Cost‒Benefit Analysis for Low-Carbon Hydrogen Production (1 TPD

Plant)

According to the above equations (Equations 1-9), a thorough cost‒benefit analysis for 1 TPD (tonnes per day) low-

carbon hydrogen plants was performed. For such analysis, the operational and development cost analysis of low-carbon

hydrogen is performed, which includes various parameters through which the cost analysis takes place. Once the

operations and development analysis occurs, the benefit analysis of the 1 TPD plant is performed. After the computational

results of the data were thoroughly examined, the overall cost‒benefit analysis was assessed following various variations

in national government subsidies ranging from 25% to 75%. These subsidies are significant for the smooth, free flow of

the hydrogen economy because they accelerate the rapid production of low-carbon hydrogen.

3.1. Development and Operational Cost Analysis of Low-Carbon Hydrogen Production

The cost‒benefit analysis of low-carbon hydrogen production first requires operational and development cost analysis,

including hardware, services, software, labour, system requirements, infrastructure, and management costs. The industrial

plant for low carbon hydrogen production is assumed to be a 1 tonne per day (1TPD) plant, which is used for the analysis.

The operational and development costs of the 1 TPD are shown in Figure 4.

Figure 4. Operational and Development Cost Analysis of LCH Production (1 TPD Plant).
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3.2. Benefits Analysis of Low-Carbon Hydrogen

The benefit analysis usually consists of tangible and intangible benefits, which help in the performance and effectiveness

of a plant. Benefit analysis comprises more effective promotion campaigns, better industry-to-industry or industry-to-

consumer retention, enhanced productivity, workflow efficiency, and high-quality and effective equipment. An

approximation and estimation analysis of the benefit analysis for industrial low-carbon hydrogen plants is shown in Figure

5.

Figure 5. Benefit Analysis of LCH Production (1 TPD Plant) in USD/ Year. (i.e. it has been estimated that high-quality and effective equipment costs

approximately 1 million USD per year)

3.3. Overall Cost‒Benefit Analysis of Low-Carbon Hydrogen

Once the operational, development, and benefit‒cost analyses are performed based on the approximation and estimation

of the low-carbon hydrogen production plant, it is essential to compare the analyses to obtain the benefit‒cost ratio for the

final cost‒benefit analysis. Table 1 shows the cost‒benefit analysis of low-carbon hydrogen and national government

subsidies.

Table 1. Step-by-Step Overall Cost‒Benefit Analysis of Low-Carbon Hydrogen for 1

TPD Production for 30 years.
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National Government Subsidies 25% 50% 75%

Total Low Carbon Hydrogen Industrial Plant-
Revenue

10.224

(in million $)

6.81625

(in million $)

3.408

(in million $)

LCH Benefit
1.0575

(in million $)

0.705

(in million $)

.3525

(in million $)

Increased Productivity Addition
9.1665

(in million $)

6.11125

(in million $)

3.05

(in million $)

Net-Cost Benefit 8.72 8.66 8.65

Based on the overall cost‒benefit analysis, the final net cost‒benefit ratios for 25%, 50% and 75% were 8.72, 8.66 and

8.65, respectively. The primary significance of the net cost‒benefit analysis ratio is the determination of quantitative

measures such as the incorporation of intangibles, net present values, and benefit‒cost analysis. A positive net cost‒

benefit ratio signifies that the industrial production plant showcased here has the potential to be economically beneficial

and should be considered for implementation. Similarly, a negative net cost‒benefit ratio signifies that the industrial

production plant could not be financially viable. Hence, the results above show that a 1 tonne per day low-carbon

hydrogen production plant would be economically feasible and could be implemented for profitable, sustainable,

affordable low-carbon hydrogen production.

4. Variability in Industrial Scale Ups through Cost‒Benefit Analysis

The calculations described above were explicitly performed for 1 tonne per day. In contrast, for industrialists who target

different technical readiness levels (TRLs), consumer readiness levels (CRLs), social readiness levels (SRLs) and tonne-

per-day technological setups, it becomes challenging to calculate the economic aspects of the production plant. This

situation could be determined as the “Industrial Scale Variability”. The significant research gap in the current financial

analysis of hydrogen production is the apathy of the different combinations and variations that industries demand. Figure

6 critically examines the overall cost‒benefit analysis for various tonne-per-day setups, precisely following the maximum

TRL, SRL and CRL values.

For the industrial variability, the main parameters used to calculate the overall cost‒benefit analysis, including the total

low carbon hydrogen industrial plant revenue, low carbon hydrogen benefit and increased productivity addition, were

segregated into 0.5 TPD, 2 TPD, 5 TPD and 10 TPD plant setups. With the help of this segregation, the values were

calculated. The industrial demand ranging from 0.5 TPD to 10 TPD specifically for hydrogen production scale-up industrial

plants could be examined, and the CBA was calculated by the infographics mentioned in Figure 6. Through such

economic analysis, a thorough industrial plant can also be demonstrated, which could be used for upscaling of the current

Qeios, CC-BY 4.0   ·   Article, August 7, 2024

Qeios ID: F0P3VJ   ·   https://doi.org/10.32388/F0P3VJ 9/15



research. The proposed industrial hydrogen production plant is shown in Figure 7.
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Figure 6. Industrial Variability of Hydrogen Scale-Up Production Plants.

Hydrogen generation, hydrogen storage, and appropriate hydrogen fuel require a combined integrated system. Many

integrated systems have been proposed in recent years, but they need to consider sustainability or be more affordable

and efficient. The integrated system presented in Figure 7 is entirely novel and, in theoretical calculations, has proven to

be sustainable, affordable and efficient. For hydrogen storage, catalytic dehydrogenation of LiAlH4 is used for hydrogen

storage, which has been proposed to involve three different processes: i) balloon primary storage (BPS), ii) fixed storage

(FS) (5-25 bar) and iii) main hydrogen storage (MHS) (detachable). Disachable hydrogen storage and direct hydrogen

generation work together with the help of artificial intelligence (AI) and Internet of Things (IoT) tools. They are then

connected to several devices, such as vehicles, electricity, and purification tools, for adequate hydrogen fuel. Such a

method is still theoretical and would require thorough practical experimentation. This model is explicitly constructed in

accordance with CBA, which is described above, and a process diagrammatic overview of the hydrogen production plant

is provided.

Figure 7. Industrial scale-up hydrogen production plant from 0.5 TPD to 10 TPD.
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5. Conclusions

A thorough cost‒benefit analysis was conducted through operational and development costs, benefit costs and overall

CBA analysis for a 1 TPD hydrogen production plant. Several conclusions were drawn from our hypothesis. A thorough

economic analysis of the current renewable energy sources is essential for commercializing modern renewables for

industrial scaled-up production plants. A positive net cost‒benefit analysis ratio was portrayed during the analysis (+8.72,

+8.66 and +8.65 for 25%, 50% and 75% of the national government subsidies, respectively), which showed that the

economy of the 1 TPD hydrogen production plant is not only economically viable but also sustainable and affordable for

both industries and consumers. From the future perspectives of modern renewables, the use of hydrogen energy is

booming. It should rapidly become commercially viable in the coming years, for which industries should conduct thorough

sustainable and economic analyses for industrial plants to reach a free-flow globalized low-carbon hydrogen economy.

The industrial scale variability for industrial plants ranging from 0.5 TPD to 10 TPD was also examined by calculating

various parameters necessary for CBA, and a proposed scaled-up hydrogen plant was also determined. Such analysis is

extremely important for industrialists currently producing hydrogen, and with the help of various national government

subsidies, they can produce affordable, efficient and sustainable low-carbon hydrogen.
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