

Review of: "Evaluating Reliability and Economics of EV Charging Configurations and Deep Reinforcement Learning in Robotics and Autonomy"

Minh Quan Duong

Potential competing interests: No potential competing interests to declare.

- 1. How are the reliability metrics defined and measured for different EV charging configurations?
- 2. What are the main economic factors considered in evaluating EV charging configurations?
- 3. What are the potential challenges and costs associated with upgrading grid infrastructure to support widespread EV adoption?
- 4. What criteria are used to evaluate the performance of deep reinforcement learning algorithms in robotics and autonomy?
- 5. What are the computational costs associated with training deep reinforcement learning models, and how do they impact the overall feasibility of the approach?
- 6. What are the main challenges faced during the transition from simulation to real-world applications?
- 7. What ethical considerations are taken into account when deploying deep reinforcement learning in autonomous robots?
- 8. What are the potential reliability and economic benefits or drawbacks of integrating renewable energy sources with EV charging infrastructure?
- 9. What are the primary bottlenecks in scaling up EV charging infrastructure, and how can they be addressed?
- 10. The authors should consider reference 'Optimal design and operation of battery energy storage systems in renewable power plants to reach maximum total electric sale revenues- Neural Computing and Applications, 2024"

Qeios ID: FERPZI · https://doi.org/10.32388/FERPZI