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We pretrain METAGENE-1, a 7-billion-parameter autoregressive transformer model, which we refer

to as a metagenomic foundation model, on a novel corpus of diverse metagenomic DNA and RNA

sequences comprising over 1.5 trillion base pairs. This dataset is sourced from a large collection of

human wastewater samples, processed and sequenced using deep metagenomic (next-generation)

sequencing methods. Unlike genomic models that focus on individual genomes or curated sets of

specific species, the aim of METAGENE-1 is to capture the full distribution of genomic information

present within this wastewater, to aid in tasks relevant to pandemic monitoring and pathogen

detection. We carry out byte-pair encoding (BPE) tokenization on our dataset, tailored for

metagenomic sequences, and then pretrain our model. In this paper, we first detail the pretraining

dataset, tokenization strategy, and model architecture, highlighting the considerations and design

choices that enable the effective modeling of metagenomic data. We then show results of pretraining

this model on our metagenomic dataset, providing details about our losses, system metrics, and

training stability over the course of pretraining. Finally, we demonstrate the performance of

METAGENE-1, which achieves state-of-the-art results on a set of genomic benchmarks and new

evaluations focused on human-pathogen detection and genomic sequence embedding, showcasing

its potential for public health applications in pandemic monitoring, biosurveillance, and early

detection of emerging health threats.
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1. Introduction

The development of large language models trained on internet-scale text datasets has revolutionized

natural language processing, finding increasingly broad applications across numerous domains. In

recent years, this modeling technology has been adapted to genomic sequences—e.g., DNA or RNA

strands that carry genetic information—leveraging the wealth of data generated by advances in

genome sequencing over the past few decades[1][2][3][4][5]. These large genomic models aim to

harness modeling power for tasks such as genome classification, phenotype prediction, gene network

inference, human genome analysis, and biological design for medical and therapeutic applications. To

date, most of these models have been trained on human genomes or on curated collections of genomes

from selected species[6][7].

Parallel to these developments, there has been significant work on large-scale health monitoring

driven largely by widespread public health crises, such as the COVID-19 pandemic[8][9]. One notable

example of this is the genomic monitoring of wastewater, which involves sequencing material from

samples of municipal sewage[10][11]. Wastewater contains a complex mix of organic materials

generated from human activities and, when collected across multiple time points and locations, can

reveal valuable information about the microbiome at a societal scale[12][13]. Consequently, there have

been various efforts to collect wastewater and sequence metagenomic information, i.e., information

about the diverse collections of organisms and organic material present in these samples[14][15][16]. A

key motivation for much of this work is the potential to track the prevalence of human pathogens,

effectively creating an early warning system for pandemics. Multiple ongoing initiatives are collecting

vast amounts of metagenomic information to monitor genomic trends, estimate the prevalence of

sequences of interest, and detect new or emerging potential pathogens[11][17][13].

These wastewater metagenomic sequencing efforts present two significant opportunities. First, they

provide a novel and rich source of metagenomic data, rivaling the scale of datasets used to pretrain

large language models (i.e., trillions of nucleic acid base pairs), encompassing highly diverse genomic

information across the broad human-adjacent microbiome[18][19]. This metagenomic data often

exhibits unique distributional characteristics in terms of genomic sequence length, heterogeneity, and

composition/type of organisms, distinguishing it from previous genome modeling datasets. Second,

this data opens up a new domain area for downstream applications of foundation models trained on

this information. Such models could be fine-tuned for various tasks crucial to pathogen monitoring,
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including tracking frequencies, trends, and growth of different sequence types; representation

learning and embedding for sequenced metagenomic reads; sequence alignment, error-correction,

and infilling; and human pathogen detection and taxonomic classification[11].

In this paper, we take an initial step toward developing a metagenomic foundation model by

pretraining a model on a large, new dataset sequenced from wastewater. This metagenomic dataset,

which has never before been used for model training, provides a unique resource for modeling the

broad distribution of sequences present in the human microbiome. Specifically, we pretrain a 7-

billion-parameter autoregressive transformer model, which we refer to as METAGENE-1, on a diverse

corpus of DNA and RNA sequences comprising over 1.5 trillion base pairs sourced from wastewater

samples, which were processed and sequenced using deep metagenomic (next-generation)

sequencing[20][11]. This dataset, comprising short uncurated sequences from tens of thousands of

species, allows METAGENE-1 to excel at representing the complexities of microbial and viral diversity,

providing unique advantages in biosurveillance applications. METAGENE-1 adopts a decoder-style

language model architecture, similar to those found in the GPT and Llama families of models[21][22],

which we describe and motivate in more detail in Sec. 3.3. This choice allows us to take advantage of

the broad (and rapidly growing) ecosystem of techniques and infrastructure focused on this class of

models. An overview of METAGENE-1 data, model architecture, and applications is shown in Figure 1.

Figure 1. Overview of METAGENE-1 and applications. Wastewater samples are collected and undergo deep

metagenomic sequencing to generate DNA and RNA sequences totaling over 1.5 trillion base pairs. These

sequences are tokenized using byte-pair encoding (BPE) to create the pretraining dataset. The data is used

to train METAGENE-1, a 7B-parameter transformer model that enables a wide range of metagenomic

analysis and monitoring applications.

In the following sections, we first describe our metagenomic dataset and detail the tokenization

strategy used to process the sequence data. We then provide comprehensive details of the
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METAGENE-1 model architecture and of the pretraining process on our dataset. Subsequently, we

develop, and demonstrate our model’s performance, on pathogen detection and metagenomic

embedding benchmarks. METAGENE-1 achieves state-of-the-art performance on these and other

standard genomic evaluation tasks—designed to evaluate models trained on human and animal

genomes—highlighting its generalization capabilities. As an initial demonstration of the downstream

application potential, we construct an anomaly detection scenario, and show that METAGENE-1

performs well on this out-of-distribution detection task. We hope our paper serves as an initial step

toward a foundation model for metagenomic data, which in the future can be fine-tuned to aid in

public health applications such as pathogen monitoring and early detection of emerging health

threats.

2. Related Work

Language models trained on genomic sequences have been an area of active research, with many

aiming to train on long DNA sequences from specific species, gained from publicly available sources.

For instance, models such as DNABERT[1], HyenaDNA[2], GROVER[23], and Caduceus[24] are examples

primarily trained on long sequences of human DNA. These models typically use encoder-based

architectures or decoder-only non-transformer architectures, aiming to handle long sequence

lengths. For tokenization, these initial human-focused genome models have commonly employed

either  -mer tokenization (with fixed values like  =3) or single-nucleobase tokenization.

Recently, the scope of genomic models has expanded to include multi-species datasets, with models

like DNABERT-2[4], NucleotideTransformer[3], GENA-LM[5], SpliceBERT[25], and DNAGPT[26]  being

trained on a mix of human genome data and manually curated sets from other species (for example,

mixes of species from a taxonomic class, such as collections of mammals). Some of these models have

also explored alternative tokenization strategies, such as byte-pair encoding, learned for their

particular genomic distributions[4][5][23][27].

Our metagenomic foundation model differs from these prior works in a few important ways. First, our

pretraining dataset comprises shorter metagenomic sequences (arising from metagenomic next-

generation/massively-parallel sequencing methods) performed on samples of human wastewater

collected across many locations; these samples contain potentially tens-of-thousands of species

across a wide range of taxonomic ranks, and capture a representative distribution of the full human-

adjacent microbiome. This includes both recognized species and many unknown or unclassified

k k
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sequences (see Sec.  3.1). Another distinction is the model architecture: we use a decoder-only

transformer model, akin to the Llama and GPT model families, which we further motivate in Sec. 3.3.

3. METAGENE-1: Metagenomic Foundation Model

We pretrain a 7-billion-parameter autoregressive transformer language model, referred to as

METAGENE-1, on a novel corpus of diverse metagenomic DNA and RNA sequences comprising over 1.5

trillion base pairs. This dataset is sourced from a diverse set of human wastewater samples, which

were processed and sequenced using deep metagenomic (next-generation) sequencing methods.

Before training, we carry out byte-pair encoding (BPE) tokenization on our dataset, tailored for these

nucleic acid sequences. The following sections provide detailed descriptions of the pretraining dataset,

tokenization strategy, and model architecture, highlighting the considerations and design choices

that enable the effective modeling of metagenomic data.

Figure 2. Overview of the metagenomic data collection and sequencing pipeline for model pretraining. The

process begins with the collection of wastewater (left), which contains genomic fragments from a diverse

collection (e.g., tens of thousands) of constituent organisms (center). These samples are processed via

high-throughput metagenomic sequencing to produce millions of paired-end reads (right), each

consisting of hundreds of base pairs. The complete dataset comprises over 1.5 trillion base pairs of

metagenomic sequences used for model pretraining.

3.1. Metagenomic Dataset

One of the goals of our metagenomic foundation model is to train on a genomic dataset that captures

the immense diversity of the microbiome surrounding humans. To achieve this, we leverage a newly

collected metagenomic dataset—never before used in model training—comprising material from a

broad range of organisms, including bacteria, viruses, cells from human and other eukaryotes, and a

diverse array of other species, which was collected via metagenomic sequencing of human wastewater
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(i.e., municipal influent). This approach contrasts with prior genomic sequence models, which often

focus on curated collections of specific (known) species or genomic types. By incorporating DNA and

RNA sequences collected from wastewater, we aim to model the complexity of microbial and viral

interactions in human-associated environments.

The dataset was generated using deep metagenomic sequencing, specifically leveraging Illumina

sequencing technology, commonly referred to as next-generation sequencing (NGS) or high-

throughput sequencing, in which billions of nucleic acid fragments are simultaneously sequenced in a

massively parallel manner. This method produces paired-end reads, where each read consists of two

contiguous sequences of base pairs from opposite ends of a DNA or RNA fragment1. Paired-end reads

can offer advantages in accuracy and alignment over single-end reads, particularly for complex

metagenomic samples. Notably, the nature of metagenomic NGS results in much shorter reads

compared to datasets used in many previous large genomic models. In our dataset, most reads range

from 100 to 300 base pairs in length (after adapter removal and quality trimming), which introduces

unique challenges for modeling, but also provides a rich diversity and large set of biological

information. We illustrate this metagenomic data collection and sequencing pipeline in Figure 2.

This metagenomic sequence corpus was collected over a six-month period by the Nucleic Acid

Observatory (NAO)  [11]  in collaboration with partners (Marc Johnson and Clayton Rushford at the

University of Missouri2 and Jason Rothman in Katrine Whiteson’s lab3 at the University of California,

Irvine). Samples of wastewater were sourced from multiple locations across the United States, in

particular from cities in California and Missouri. After wastewater samples were collected, the

material was filtered and nucleic acids extracted[28][29] before undergoing metagenomic sequencing.

In full, the metagenomic dataset for pretraining comprises over 1.5 trillion base pairs. Our hope is that

this careful sampling and processing approach yields a clean dataset for sequence modeling, which

captures a wide array of genomic content, offering a strong foundation for the training of

METAGENE-1.

We show an estimate of the metagenomic composition of this pretraining dataset in Figure 3, using

the Kraken  2[30]  sequence classification software (see Figure  7 for a more-detailed view). At the

highest level, this visualization shows that 55% of reads are hits for bacteria, 2% of reads are

eukaryotes (predominantly Homo sapiens), 2% of reads are viruses, and 41% of reads have no hits and

are unclassified or of unknown origin.
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Figure 3. Metagenomic composition of the METAGENE-1 pretraining dataset, estimated via

Kraken 2[30] sequence classification, and visualized via Krona[31]. See Figure 7 for a more-detailed view.

3.2. Tokenization

In developing our metagenomic foundation model, we sought a tokenization strategy that would

enable high-accuracy sequence modeling, accommodate novel nucleic acid sequences, and align with

best practices in modern large language models. We opted for byte-pair encoding (BPE) as our
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tokenization method, as it satisfies these criteria, and drawing inspiration from its successful

application in recent genomic models.

BPE offers several advantages for our model. Unlike fixed-length  -mer tokenization, it allows for

flexible token sizes, which is beneficial for capturing varying levels of genomic information, and can

allow the model to adapt to different sequence patterns and structures. Moreover, BPE’s ability to

tokenize novel sequences is particularly valuable for modeling diverse metagenomic sequences

containing unknown, varied, and possibly novel organisms. The method also has the potential to

capture semantic information within a vocabulary of tokens, which can lead to more nuanced

representations of genomic data.

To implement this strategy, we first trained a BPE tokenizer on a uniformly-at-random sampled

subset of our pretraining dataset, comprising 2 billion base pairs. After analyzing the distribution of

token sizes and considering training efficiency, we settled on a vocabulary size of 1,024 unique tokens.

This vocabulary size strikes a balance between capturing sufficient genomic complexity, maintaining

sufficiently long sequence lengths (based on the distribution of token sizes), and allowing for

computational efficiency. Following this tokenizer training, we applied this BPE tokenizer to our

entire pretraining dataset, effectively preparing it for model ingestion and training, yielding a set of 

370 billion tokens ( 1.69 trillion base pairs) for pretraining. We give a table showing full tokenizer

details, including a list of all special tokens, in Appendix B.

3.3. METAGENE-1 Architecture

For our metagenomic foundation model, we pretrain a 7-billion-parameter autoregressive language

model, using a standard dense transformer architecture, similar to the architecture used in popular

language models such as the GPT and Llama model families[21][22]. Specifically, we implement a

decoder-only style transformer with a causal language modeling objective, where the model aims to

predict the next token in a sequence based on the previous tokens.

This architecture choice for METAGENE-1 stands in contrast to some of the alternative approaches

explored in recent genomic models, which include BERT-style bidirectional encoders[1][4][27] or non-

attention based architectures[2][32]. Our decision to use this particular model architecture was driven

by the following motivations:

k
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1. Ecosystem: By aligning with this widely-adopted architecture, we can take advantage of the

growing ecosystem of techniques and associated implementations developed for autoregressive

decoder-only transformer models. This extends to both pretraining optimizations and

downstream applications in fine-tuning and inference.

2. Infrastructure: Given our large dataset size, this architecture allows us to leverage scalable

pretraining infrastructure specifically designed for distributed training of this model type. This

infrastructure has demonstrated success in recent language models, enabling efficient training

on massive datasets.

3. Data characteristics: The nature of our metagenomic sequence data, which primarily consists of

short sequences, does not necessitate architectures designed for extremely long context lengths.

This makes the transformer a suitable and efficient choice for our use case.

We next describe some of the specific configuration details of METAGENE-1. First, the model operates

with a context length of 512 tokens, which is sufficient for all of the metagenomic sequences in our

pretraining dataset. For efficiency, we pack shorter sequences within this context window, a process

detailed in Section 4.3 below. We use an attention mask which prevents attention between the distinct

packed sequence reads. METAGENE-1 consists of 32 layers and 32 attention heads, with an embedding

size of 4096 and a hidden layer size of 11008. We employ root mean square layer normalization

throughout the model, with a normalization epsilon of 1e-5. These configurations result in a model

with approximately 7 billion parameters in total. All architecture details are summarized in Table 1.
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Model Details METAGENE-1

Architecture Llama-2-7B

Embedding Size 4096

Intermediate Size 11008

Number of Attention Heads 32

Number of Hidden Layers 32

Vocabulary Size 1024

Sequence Length 512

Normalization RMSNorm

Regularization -loss

Position Embedding Rotary

Bias None

Warmup Steps 2000

Batch Size 30720

Weight Decay 0.1

Learning Rate Schedule Cosine Decay

Initial Learning Rate

,  , 

Table 1. METAGENE-1 architecture details.

4. Pretraining METAGENE-1

4.1. Training Infrastructure

Our model is trained on four nodes, each equipped with 8 H100 SXM5 GPUs interconnected via

Ethernet with 40 GB/s bandwidth. This interconnect bandwidth poses a significant performance

z

6 × 10
−4

β1 β2 0.9 0.95
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bottleneck, as it is an order of magnitude slower than NVIDIA’s InfiniBand and faster Ethernet

interconnects. Despite this limitation, we were able to achieve 40% model FLOPS utilization

(MFU)  [33]  by employing a hybrid sharding strategy. Specifically, we use PyTorch’s

HYBRID_SHARD_ZERO2 strategy implemented in its Fully Sharded Data Parallel (FSDP) utilities. This

design choice provides the benefit of model and optimizer state sharding within each node, while

practicing standard data parallelism across nodes to reduce the inter-node communication overhead.

In practice, it only requires an all-reduce operation on the gradient buckets during the optimizer step.

For training, we use a global batch size of 30,720, a sequence length of 512, and a micro-batch size of

48. We observe this combination to offer the best trade-off between high MFU and reduced memory

usage; it also allows us to shard the optimizer state and gradients within a single node. Further tests

on fewer nodes yield MFU values of   and   for 1-node and 2-node setups, respectively. These

results suggest that interconnect bandwidth was the main bottleneck in our training environment.

Node failure. During training, we experienced three node failures, one GPU failure, one network

failure, and one disk failure. All failures required us to restart the training from the latest checkpoint.

4.2. Stability

Figure 4. We show  -loss during pretraining, which aids and gives an indicator of

stability.

0.51 0.47

z
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Foundation model pretraining is prone to suffer from training instability, which can be more

pronounced when scaling models to billions of parameters  [34]. Such instabilities often arise during

the middle or late stages of training, and are often characterized by a sudden spike in loss and/or other

divergent behaviors. Failure to identify these problems can result in considerable wasted compute

resources. Additionally, the characteristics of the input data have been shown to influence training

stability, as highlighted by recent work in large multimodal language models [35].

Given that we scaled directly from sub-billion parameters to a 7 billion parameter model, and that

training on metagenomic sequences is less studied compared to natural language, we anticipated a

relatively high risk of encountering stability issues. To mitigate such risks, we followed best practices

from [34] and implemented a variant of the z-loss, referred to as max-z-loss, introduced by [36] with a

coefficient of 2e-4. We opted against the recommendation of QK-layer normalization [35] to preserve

the Llama architecture and leverage optimized inference pipelines.

During training, we monitored the norms of the language model head, the query, key, and value

outputs, as well as the gradient norms.  [34]  empirically shows that a significant increase in any of

these metrics may signify potential instability, allowing us to intervene early by restarting the

training. Fortunately, no stability issues were observed, and these metrics remained consistent

throughout the training process.

4.3. Context Stuffing

A significant portion of our dataset contains sequences with fewer tokens than our model’s context

length. To optimize compute efficiency and avoid wasting resources on padding tokens, we pack the

sequence dimension with multiple samples, where applicable. We modify the attention mask to ensure

that tokens from different samples cannot attend to one another. This is implemented using the

variable length function in FlashAttention-24[37]  which avoids materializing the full mask, which

would have been inefficient.

4.4. Continual Pretraining

After the initial stage of pretraining is complete, we carry out a second stage of pretraining which

constitutes about 9% of our total number of pretraining tokens. In this second stage of training, we

extend our dataset to a broader distribution of genomic sequences relative to our original

metagenomic distribution, and we follow practices for continual learning, such as annealing the
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learning rate both to enact a warmup period (i.e., a linear ramp up to account for the shifted data

distribution), and a cooldown period (i.e., a ramp down of the learning rate at the end of training for

improved performance[38]).

The modified training distribution aims to allow for us to maintain performance on metagenomic

tasks, such as metagenomic embedding and classification, while also achieving improved

performance on a broader set of genomic tasks (i.e., tasks involving non-metagenomic data). For this,

we sample sequences from the dataset provided by[4], which includes genomic sequences from known

organisms—both from human genomes and a curated selection of genomes from multiple species

(e.g., fungi, mammalian, invertebrate, bacteria)—and shuffle it into our metagenomic reads at a 1:8

ratio.

5. Empirical Results

5.1. Pretraining Performance

As an initial analysis of METAGENE-1, in Figure 5, we show two loss curves generated over the course

of pretraining. On the left, we show the training loss over one epoch of our 1.5-trillion-base-pair

pretraining dataset. On the right, we show the validation loss, computed on a held-out portion of our

metagenomic dataset. In the training curve we note that there are slight systematic oscillations over

the course of training, which occur due to pseudo-random data shuffling (implemented for efficiency

reasons); however, these do not appear in our validation loss curve.

Figure 5. METAGENE-1 loss curves during pretraining. We show training loss (left), and validation loss on

a held out metagenomic sample (right).
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5.2. Pathogen Detection Benchmark

Our initial experiments evaluate METAGENE-1’s reliability in detecting human pathogens. To this

end, we construct four datasets with binary labels, aiming to classify human pathogens versus non-

pathogens. These datasets are constructed from four distinct sequencing deliveries, which are

excluded from our pretraining data. For each delivery, we extract two sets of sequencing reads:

pathogen and non-pathogen. Pathogen reads are defined as a subset of sequencing reads meeting two

criteria: (1) Kraken 2[30]5 identifies at least one hit on a  -mer associated with a human-infecting

virus, and (2) the read aligns with a human-infecting virus genome in GenBank6. The sub-tasks in

this pathogen detection benchmark represent different deliveries, which vary by collection location,

sequencing pipeline, date, or a combination of these factors. Each dataset contains 1,600 training

samples and 2,000 test samples. We intentionally use a small training set to mimic real-world

scenarios where rare human pathogens are expensive to identify.

We evaluate the performance of METAGENE-1 and other genomic foundation models on the pathogen

detection datasets, measured using the Matthews correlation coefficient (MCC). All models were

trained with a consistent set of hyperparameters: DNABERT[27]  variants undergo full-model fine-

tuning, while Nucleotide Transformer (NT)[3]  variants and METAGENE-1 are fine-tuned using low-

rank adapters (LoRA)[39]. For sequence-level classification, we use the built-in pooler for DNABERT

and NT models provided in HuggingFace Transformers[40], and use mean-pooled representations for

METAGENE-1. Additional experimental details can be found in Appendix C.1.

As shown in Table 2, METAGENE-1 consistently outperforms all other models across the Pathogen

Detection benchmark, with gains ranging from approximately 3 to 17 MCC points over the strongest

competing models. These results highlight METAGENE-1’s strong performance in pathogen detection

tasks, particularly in scenarios with diverse sequencing conditions or delivery pipelines.

k
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  DNABERT-2 DNABERT-S NT-2.5b-Multi NT-2.5b-1000g METAGENE-1

PATHOGEN-DETECT (avg.) 87.92 87.02 82.43 79.02 92.96

PATHOGEN-DETECT-1 86.73 85.43 83.80 77.52 92.14

PATHOGEN-DETECT-2 86.90 85.23 83.53 80.38 90.91

PATHOGEN-DETECT-3 88.30 89.01 82.48 79.83 93.70

PATHOGEN-DETECT-4 89.77 88.41 79.91 78.37 95.10

Table 2. Results on the Pathogen Detection benchmark. The metric used for all evaluations is MCC. The

header row reports macro-averaged performance metrics. See Section 5.2 for details.

5.3. Genomic Embedding Benchmark

Next, we assess METAGENE-1’s ability to generate high-quality representations in a zero-shot

manner. These representations are crucial for lightweight development of predictive models using a

frozen foundation model  inter alia[41][42]. They enhance interpretability by enabling sparse

autoencoders to produce semantically meaningful encodings[43][44]. Additionally, they are vital for

anomaly detection methods that rely on them for effective modeling[45]. Drawing inspiration from

MTEB[46], we introduce a large-scale genomics embedding benchmark, termed Gene-MTEB, to

advance the development of robust genomics representations.

For this benchmark, we curate eight classification tasks (HUMAN-VIRUS-1-4, MHPD-single, HMPD-

disease, HMPD-source, HMPD-sex), and eight clustering tasks (HVR-p2p, HVR-s2s-align, HVR-s2s-

small, HVR-s2s-tiny, HMPR-p2p,HMPR-s2s-align, HMPR-s2s-small, HMPR-s2s-tiny). Datasets for

these tasks are sourced from the Human Microbiome Project[47], and held-out portions of our

metagenomic dataset. Details and access to all benchmark datasets are provided on the project

HuggingFace page. All classification tasks carry out logistic regression on top of embeddings and all

clustering tasks carry out mini-batch  -means. Embeddings for all models are accessed via mean

pooling on the last hidden state.

Results on Gene-MTEB are shown in Table 3. Here, accuracy is shown for classification and V-measure

for clustering tasks. We find that METAGENE-1 shows strong embedding performance across the

k
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board, and in particular for HUMAN-VIRUS datasets, scoring over 6 points above all other models.

Continual training with representation learning objectives, such as contrastive losses, could further

enhance its embedding quality beyond its current LM-based pretraining.
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  DNABERT-2 DNABERT-S NT-2.5b-Multi NT-2.5b-1000g METAGENE-1

HUMAN-VIRUS (AVG.) 0.564 0.570 0.675 0.710 0.775

HUMAN-VIRUS-1 0.594 0.605 0.671 0.721 0.828

HUMAN-VIRUS-2 0.507 0.510 0.652 0.624 0.742

HUMAN-VIRUS-3 0.606 0.612 0.758 0.740 0.835

HUMAN-VIRUS-4 0.550 0.551 0.620 0.755 0.697

HMPD (avg.) 0.397 0.403 0.449 0.451 0.465

HMPD-SINGLE 0.292 0.293 0.285 0.292 0.297

HMPD-DISEASE 0.480 0.486 0.498 0.489 0.542

HMPD-SEX 0.366 0.367 0.487 0.476 0.495

HMPD-SOURCE 0.451 0.465 0.523 0.545 0.526

HVR (AVG.) 0.479 0.479 0.546 0.524 0.550

HVR-P2P 0.548 0.550 0.559 0.650 0.466

HVR-s2S-ALIGN 0.243 0.241 0.266 0.293 0.267

HVR-S2S-SMALL 0.373 0.372 0.357 0.371 0.467

HVR-S2S-TINY 0.753 0.753 1.000 0.782 1.000

HMPR (AVG.) 0.347 0.351 0.348 0.403 0.476

HMPR-P2P 0.566 0.580 0.471 0.543 0.479

HMPR-S2S-ALIGN 0.127 0.129 0.144 0.219 0.140

HMPR-S2S-SMALL 0.419 0.421 0.443 0.459 0.432

HMPR-S2S-TINY 0.274 0.274 0.332 0.391 0.855

GLOBAL AVERAGE 0.475 0.479 0.525 0.545 0.590

Table 3. Results on the Genomic Embedding (Gene-MTEB) benchmark. See Section 5.3 for details.
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5.4. Genome Understanding Evaluation Benchmark

We now investigate the viability of METAGENE-1 as a general-purpose foundation model.

Importantly, we aim to assess its performance on nucleotide sequences sampled from a diverse array

of species. One such example is long-sequence full-animal-genome datasets. In many prior genomic

sequence models’ pretraining datasets, this type of genomic data is found in abundance[3][1][2][4]. As a

pilot study, we perform fine-tuning experiments on the Genome Understanding Evaluation (GUE)

benchmark[4], which comprises 28 sequence-level classification tasks curated from this type of

genomics data.

Following 5.2, we fine-tune low-rank adapters (LoRA)[39] and a linear classification head that projects

average-pooled representations from the last hidden layer to the class logits. This setup is aimed to

emulate downstream users with a limited compute budget. For each experiment, we perform a grid

search over linearly spaced learning rates from 1e-4 to 1e-3 and select LoRA modules from query-

value and query-key-value-dense combinations. We fix all other hyperparameters and select the best

configuration based on validation performances. Additional details on training hyperparameters can

be found in Appendix C.2. Following the metrics selected in[4], we report Matthews correlation

coefficient (MCC) on all but the COVID task, which instead uses the F1 score.

In Table 4, we present METAGENE-1’s performance on the GUE benchmark. Our findings show that

METAGENE-1 outperforms or remains competitive with state-of-the-art foundation models

specializing in multi-species genomics prediction, achieving a top score on 13 out of 28 GUE subtasks

(compared with DNABERT-2, the second highest scoring model, that achieves a top score on 7 out of

28 subtasks). Notably, METAGENE-1 excels in Epigenetic Marks Prediction (EMP) tasks but shows

room for improvement in (Core) Promoter Detection (PD/CPD). We attribute this to limitations in the

pre-training data mixture, and believe that a more tailored pre-training dataset could potentially

enhance METAGENE-1’s performance in this area.
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  CNN HyenaDNA DNABERT NT-2.5B-Multi DNABERT-2 METAGENE-1

TF-MOUSE (AVG.) 45.3 51.0 57.7 67.0 68.0 71.4

0 31.1 35.6 42.3 63.3 56.8 61.5

1 59.7 80.5 79.1 83.8 84.8 83.7

2 63.2 65.3 69.9 71.5 79.3 83.0

3 45.5 54.2 55.4 69.4 66.5 82.2

4 27.2 19.2 42.0 47.1 52.7 46.6

TF-HUMAN (AVG.) 50.7 56.0 64.4 62.6 70.1 68.3

0 54.0 62.3 68.0 66.6 72.0 68.9

1 63.2 67.9 70.9 66.6 76.1 70.8

2 45.2 46.9 60.5 58.7 66.5 65.9

3 29.8 41.8 53.0 51.7 58.5 58.1

4 61.5 61.2 69.8 69.3 77.4 77.9

EMP (AVG.) 37.6 44.9 49.5 58.1 56.0 66.0

H3 61.5 67.2 74.2 78.8 78.3 80.2

H3K14ac 29.7 32.0 42.1 56.2 52.6 64.9

H3K36me3 38.6 48.3 48.5 62.0 56.9 66.7

H3K4me1 26.1 35.8 43.0 55.3 50.5 55.3

H3K4me2 25.8 25.8 31.3 36.5 31.1 51.2

H3K4me3 20.5 23.1 28.9 40.3 36.3 58.5

H3K79me3 46.3 54.1 60.1 64.7 67.4 73.0

H3K9ac 40.0 50.8 50.5 56.0 55.6 65.5

H4 62.3 73.7 78.3 81.7 80.7 82.7

H4ac 25.5 38.4 38.6 49.1 50.4 61.7

PD (AVG.) 77.1 35.0 84.6 88.1 84.2 82.3

All 75.8 47.4 90.4 91.0 86.8 86.0
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  CNN HyenaDNA DNABERT NT-2.5B-Multi DNABERT-2 METAGENE-1

No-TATA 85.1 52.2 93.6 94.0 94.3 93.7

TATA 70.3 5.3 69.8 79.4 71.6 67.4

CPD (AVG.) 62.5 48.4 73.0 71.6 70.5 69.9

All 58.1 37.0 70.9 70.3 69.4 66.4

No-TATA 60.1 35.4 69.8 71.6 68.0 68.3

TATA 69.3 72.9 78.2 73.0 74.2 75.1

SSD 76.8 72.7 84.1 89.3 85.0 87.8

COVID 22.2 23.3 62.2 73.0 71.9 72.5

GLOBAL WIN % 0.0 0.0 7.1 21.4 25.0 46.4

Table 4. Results on the Genome Understanding Evaluation (GUE) benchmark. Non-METAGENE-1 results

are adapted from[4]. The metric used for all evaluations is MCC, except for the COVID task, which uses F1

score. The header rows report macro-averaged performance metrics. The final row shows Global Win %,

i.e., the percentage of tasks in which a given method achieves top score under the associated metric.

5.5. Anomaly Detection from Wastewater

Our final experiment aims to show the feasibility of METAGENE-1 to detect out-of-distribution (OOD)

data at scale, as it serves as a primer for reliable anomaly detection from wastewater samples. In this

early study, we sample 5000 sequences from, respectively, our metagenomics pretraining data, the

mouse and human genomes from the GUE dataset, as well as uniform random sequences as a control

group. All sequences are truncated to 100 base pairs in accordance with the sequence lengths from the

GUE dataset. As a baseline, we implement a threshold-based anomaly detector, which classifies

samples with length-normalized cross entropy losses below a certain threshold as non-anomalies,

and vice versa. We select a threshold of 3 based on our observations from the validation curve in Figure

5. Note that this anomaly detection study is performed using a checkpoint of METAGENE-1 that has

only been pretrained on metagenomic data (i.e., without second-stage training).

Figure 6 indicates a clear separation between metagenomics sequences and other data sources. The

in-distribution data behaves within our expectation; the human and mouse genomic data both attain
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a similar mode and spread, and their loss distributions are more similar to that of random sequences,

compared to our in-distribution data. Table 5 reports numerical results of our OOD detection tests.

METAGENE-1 achieves strong performance for separating metagenomics sequences from other data

sources.

Figure 6. Distribution of the length-normalized cross entropy loss across all datasets, given by

METAGENE-1.

Group F1 Loss (Std. Err) Tokenized Seq Len (Std. Dev)

Metagenomics - 1.24 (1.31) 24.91 (3.35)

Random 0.91 5.83 (0.29) 27.16 (1.32)

Human 0.94 5.22 (0.22) 27.29 (1.33)

Mouse 0.91 5.38 (0.54) 27.2 (1.34)

Table 5. OOD detection performance between metagenomics sequences and other data sources.

6. Safety Considerations

Metagenomic foundation models like METAGENE-1 demonstrate improved capabilities on tasks that

can aid in biosurveillance, genomic anomaly detection, and pandemic monitoring. While still

relatively small in scale compared with many modern language models, METAGENE-1 shows state-

of-the-art results on benchmarks and enables potential downstream uses. However, these capabilities
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merit careful consideration of safety and must be balanced against potential risks. This category of

genomic model—and especially, future larger variants of it—could pose risks to human health and

safety by enabling harmful applications, such as the design of novel pathogenic DNA sequences or

synthetic genetic materials. These potential abuses were considered when deciding to open source

METAGENE-1. The final decision was based on weighing the beneficial applications, such as pandemic

preparedness, against the potential for misuse. Based on our safety considerations, which we outline

below, we believe that the current iteration of METAGENE-1 poses minimal risk, and its release is

justified by its significant positive potential. However, we also recognize and discuss the need for

careful safety considerations before open sourcing increasingly capable models of this type.

Relation to other open source genomic models. METAGENE-1 is a genomic foundation model that

builds upon a lineage of similar open-source efforts, such as NucleotideTransformer[3], DNABERT[1],

HyenaDNA[2], Evo[32], and more. At 7 billion parameters, METAGENE-1 matches the largest of these

existing models. The key distinction of METAGENE-1 lies in the model’s training data: a highly diverse

set of metagenomic sequences derived from wastewater, with a focus on the human microbiome. This

dataset, comprising short uncurated sequences from tens of thousands of species, allows METAGENE-

1 to excel at representing the complexities of microbial and viral diversity in metagenomic samples,

providing unique advantages in biosurveillance applications. Similar to other genomic foundation

models, and unlike large language models, these models alone do not possess significant reasoning or

control capabilities (given that complex control instructions cannot easily be provided via input

context, which is restricted to genomic sequences).

Tailored for detection, not design. METAGENE-1 was specifically designed for anomaly detection in

metagenomic data, not for complex genomic design tasks. The training data, model architecture, and

task design are geared toward detecting and classifying anomalies in short sequences of a few hundred

base pairs. Notably, all metagenomic data used in pretraining METAGENE-1 consist exclusively of

sequences ranging from 100 to 300 base pairs. Unlike large genomic models focused on longer

sequence generation, METAGENE-1’s capabilities are tailored to analyzing these short metagenomic

reads. Its architectural constraints, including a maximum context length of 512 tokens, further limit

its applicability to sequence design tasks. These design decisions ensure that the model’s primary

utility lies in detecting pathogens and monitoring biosurveillance trends, rather than enabling misuse

in synthetic biology.
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Pros and cons of open source. Open sourcing a model of this type is a balance between the potential

for help and harm. In the case of METAGENE-1, we believe that open source is net positive for research

in the area of anomaly detection for pathogen monitoring. We hope that the availability of this model

can have a positive impact on facilitating safety research, a prospect that we discuss in Section 7.

Nonetheless, we recognize the importance of caution when releasing models in this domain. For

future iterations of PATHOGEN-DETECTion models with improved capabilities, we believe strongly in

(and we ourselves are are committed to) thoroughly evaluating the safety and potential for misuse

before an open source release. Larger-scale models, in particular, present additional risks, and we

advocate for rigorous safety assessments in determining whether such models should be released

publicly. By prioritizing careful oversight and responsible scaling, we aim to mitigate risks while

maximizing the benefits of this technology for public health and biosurveillance.

7. Discussion, Limitations, Conclusion

We have reported our current progress on pretraining and evaluating METAGENE-1, the first large-

scale foundation model pretrained on metagenomic sequences. We detail our dataset construction,

model training, and fine-tuning procedure to facilitate open-science research. Additionally, we open-

source our training code and model checkpoints.

Our downstream performance on genomic benchmarks indicates the potential of METAGENE-1 as a

general-purpose foundation model. Our results also indicate that METAGENE-1 benefits from

continual pretraining on a diverse mixture of data sources in addition to metagenomic data (at least

for tasks similar to these genomic benchmarks). We are continuing to actively explore this direction,

through incorporating additional human reference genomes and multi-species genomic datasets in

our metagenomic pretraining data.

Limitations. METAGENE-1 is pretrained on a dataset consisting primarily of wastewater

metagenomics and multi-species genomic sequences, making it well-suited for downstream tasks

within this distribution. However, like many foundation models, it requires additional fine-tuning to

achieve optimal performance for specific applications. Additionally, the pretraining data

predominantly consist of short metagenomic sequencing reads, limiting the model’s performance to

contexts involving shorter metagenomics inputs. This may restrict its effectiveness for tasks involving

long-read or full-genome data, where long-sequence models may be necessary[32][2].
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Future directions. There are many potential avenues for future research. An area that we are

particularly excited about concerns the understanding of genomic foundation models. While a great

deal of prior work has studied the mechanistic interpretability of language models[48][49][50][51], their

extensions beyond language and vision have been limited. Future work could systematize approaches

to mechanistic interpretability in genomics by leveraging sparse autoencoders (SAEs)[43][44][52]  to

identify biologically meaningful features, employing attribution methods to trace model predictions

to genomic regions[53][54][55], and developing new tools for probing model representations using

task-specific datasets[56][57]. A better understanding of these models would not only advance their

reliability but also help mitigate risks, such as inadvertently generating or propagating harmful

genomic sequences.

Finally, we are actively developing a standardized evaluation suite consisting of classification,

embedding, out-of-distribution detection, and pandemic monitoring tasks for metagenomics

sequences. We hope our effort can facilitate objective evaluation of METAGENE-1 and future

metagenomic models, and we invite both domain experts and the machine learning community to

contribute to this research.

Appendix A. Additional Details on the Metagenomic Pretraining

Dataset

In Figure 7, we show a visualization of (a relatively small subset of) the composition of metagenomic

information contained in our pretraining dataset. This composition is estimated through the Kraken 2

metagenomic sequence classification software[30], which gives taxonomic hits for reads in our

pretraining set (where taxonomic classification is performed using exact  -mer matches). We show

three plots in Figure 7: first, the full pretraining dataset distribution (top); then, an example subset of

this showing the distribution of viruses (middle); and finally, an example subset of this showing the

distribution of the Steitzviridae family of viruses (bottom).

k
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Figure 7. A visualization of the composition of metagenomic information contained in our

pretraining dataset, based on Kraken 2 metagenomic sequence classification hits[30]. We

first show the full pretraining dataset distribution (top), and then as an example show the

distribution of viruses (middle), and finally the distribution of the Steitzviridae family of

viruses (bottom).
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Appendix B. Tokenizer Details

Our tokenizer implementation is adapted from minbpe7. It is trained on a subset of sequences

consisting of 2 billion base pairs. These sequences are uniformly sampled from all of the available

wastewater sequencing runs from our data sources. Similarly to BPE tokenizers trained on natural

language datasets, we treat the beginning of each sequence differently, in our case by prepending a ‘_’

character to the beginning of each read. During pretraining, we postpend a [BOS] token to separate

each sequence. Our tokenizer consists of the following special tokens: [PAD], [UNK], [SEP], [BOS],

[EOS], and [MASK] to allow for diverse applications during fine-tuning. In total, it has of a vocabulary

size of 1024.

In our preliminary experiments, we also experimented with a larger vocabulary size of 4096, but due

to length characteristics of our metagenomic data, this design choice results in many short tokenized

sequences that may not be able to provide meaningful learning signal. We thus decided to move

forward with a vocabulary size of 1024 to balance efficiency and downstream performance.

Appendix C. Additional Experimental Details

C.1. Additional Details for the Pathogen Detection Benchmark

In Table 6, we show our choices of hyperparameters for fine-tuning experiments.
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DNABERT- Full Model

NT- LoRA

METAGENE-1 LoRA

LoRA Modules query, key, value, dense

LoRA Rank 8

LoRA  16

LoRA Dropout 0.1

Optimizer AdamW

Optimizer Momentum ,   = 0.9, 0.999

Learning Rate 1e-4Λ

LR Scheduler Linear Warmup + Constant LR

Warmup Steps 50

Weight Decay 0.01

Denominator  1e-8

Precision BF16-mixed

Batch Size 32

Epochs 10

Hardware NVIDIA A100 80GB

Table 6. Hyperparameter settings for the Pathogen Detection fine-tuning experiments.  : for DNABERT-

S, we halve the learning to 5e-5 as we observe clear oscillation behavior in the training loss.

C.2. Additional Details for the GUE Benchmark

In Table 7, we show our choices of hyperparameters for fine-tuning experiments.

⋆

⋆

α

β1 β2

ϵ

Λ

qeios.com doi.org/10.32388/FMEPO7 27

https://www.qeios.com/
https://doi.org/10.32388/FMEPO7


LoRA Modules query, key, value, denseΛ

LoRA Rank 8

LoRA  16

LoRA Dropout 0.1

Optimizer AdamW

Optimizer Momentum ,   = 0.9, 0.999

Learning Rate {1e-4   1e-3}Ω

LR Scheduler Linear Warmup + Constant LR

Warmup Steps 50

Weight Decay 0.01

Denominator  1e-8

Precision BF16-mixed

Batch Size 32

Epochs 10

Hardware NVIDIA A100 80GB

Table 7. Hyperparameter settings for the GUE fine-tuning experiments.  : LoRA is applied to query-value

or query-key-value-dense modules.  : learning rates are tuned over a equally-spaced grid of 1e-4, 2e-4, 

, 1e-3. All hyperparameters are selected according to performances on validation sets.
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Footnotes

1 Where RNA sequences are first converted into DNA via reverse transcription.

2 https://bondlsc.missouri.edu/person/marc-johnson

3 https://jasonrothman.weebly.com/

4 Named function flash_attn_varlen_func in the FlashAttention-2 Python package.

5 We use the 2024-06 Standard Database for identification.

6 We use the 2024-06 GenBank release available at https://www.ncbi.nlm.nih.gov/genbank/.

7 https://github.com/karpathy/minbpe
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