
How (not) to Compute the Halting Probability

Manizheh Jalilvand
Department of Computer and Data Sciences, Shahid Beheshti University,
P.O.Box 19839-69411, Tehran, IRAN. m.jalilvand.sarand@gmail.com

Behzad Nikzad
Research Center of Biosciences & Biotechnology (RCBB), University of Tabriz,
P.O.Box 51666-16471, Tabriz, IRAN. blsnikzad@yahoo.com

Saeed Salehi
Research Center of Biosciences & Biotechnology (RCBB), University of Tabriz,
P.O.Box 51666-16471, Tabriz, IRAN. root@SaeedSalehi.ir

Abstract
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“Mathematics is the science of learning how not to compute”.
—Heinrich Maschke (1853–1908); see [10, p. 667].

1 Introduction

There are very many papers and some books on the so-called Halting Probability Ω, also known
as Chaitin’s Constant or Chaitin’s Number. We aim to see if Ω defines a probability for the
halting problem. And if so, on what measure? What is the distribution of that probability?
What is the sample space? We will give a systematic understanding, with a very brief history,
of this number and will suggest some measures based on which a halting probability can be
defined, with all the glory of mathematical rigor. Let us observe right away that a real number
cannot be called a probability if it is just between 0 and 1; there should be a measure and a
space for a probability that satisfies Kolmogorov axioms (see, e.g., [12]): that µ(S)= 1 and
µ(

⋃
i Si)=∑i µ(Si), where S is the sample space, {Si} is an arbitrary indexed family of pairwise

disjoint subsets of S, and the partial function µ : P(S) → [0,1] is the probability measure
(defined on the so-called measurable subsets of S).

The number Ω was introduced by Chaitin [5, p. 337] in 1975, when it was denoted by ω .
The symbol Ω appears in Chaitin’s second Scientific American paper [6], where it was defined
as the probability that “a completely random program will halt” (p. 80). This is sometimes
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called “the secret number,” “the magic number,” “the number of wisdom,” etc. [14, p. 178]; it
is also claimed “to hold the mysteries of the universe” [9]. It was stated in [2] that “The first
example of a random real was Chaitin’s Ω” (p. 1411); but as Barmpalias put it in [1, p. 180,
fn. 9], “Before Chaitin’s discovery, the most concrete Martin-Löf random real known was a
2-quantifier definable number exhibited [by] Zvonkin and Levin” (in 1970).

Let us look at the formal definition of Ω rigorously.

Definition 1.1 (binary code, length, ASCII code):
Let ΣΣΣ = {0,1}+++ be the set of all the (nonempty) finite strings of the symbols (binary bits) 0

and 1. For a string σ ∈ ΣΣΣ, let |σ | denote its length. Every program has a unique ASCII code*

which is a binary string. This is called the binary code of the program. ✧

Example 1.2 (binary code, length, ASCII code):
The object 01001 is a binary string, and its length is |01001|=5. The ASCII code of the

symbol @ is 01000000, and 00100000 is the ASCII code of the blank space, produced by the
space bar on the keyboard. ✧

Remark 1.3 (the empty string):
We exclude the empty string with length 0, which is usually included in automata theory

and formal languages. So, our strings have all positive lengths. ✧

Example 1.4 (binary code of a program):
Let us consider the command

BEEP

in, e.g., the BASIC programming language; it produces the actual “beep” sound through the
sound card of the computer hardware. The binary code of this command is the concatenation
of the ASCII codes of the capital letters B (which is 01000010), E (which is 01000101), E (the
same), and P (which is 01010000), building together the following finite binary string:

01000010010001010100010101010000. ✧

For defining Ω, Chaitin gave the main idea as, “The idea is you generate each bit of a pro-
gram by tossing a coin and ask what is the probability that it halts.” [7, p. 151]. By “program,”
Chaitin meant an input-free program, and by “bit” of a program, he meant any of the 0’s and 1’s
in its binary (ASCII) code.

Example 1.5 (Programs: Input-Free, Halting, and Non-halting):
Consider the following three programs over a fixed programming language, where the vari-

ables i and n range over the natural numbers.

Program 1 Program 2 Program 3
BEGIN BEGIN BEGIN

LET n :=1 LET n :=1 INPUT i
WHILE n>0 DO WHILE n<9 DO WHILE i<9 DO

begin begin begin

PRINT n PRINT n PRINT i
LET n :=n+1 LET n :=n+1 LET n := i+1

end end end

END END END

* ASCII: American Standard Code for Information Interchange, The Extended 8-bit Table Based on Windows-
1252 (1986), available at https://www.ascii-code.com/

https://www.ascii-code.com/
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Program 1 and Program 2 do not take any input, while Program 3 takes some input (from
the user) and then starts running. Program 1 never halts (loops forever) after it starts running,
but Program 2 halts eventually (when n reaches 9). Program 3 takes the input i and halts on
some values of i (when i⩾9) and loops forever on others (when i<9). ✧

As Chaitin took “programs” for “input-free programs,” we will also use these terms inter-
changeably; so, we disregard the programs that take some inputs and consider only input-free
programs. The number Ω was defined by Chaitin as follows:

What exactly is the halting probability? I’ve written down an expression for
it: Ω=∑p halts 2−|p|. [...] If you generate a computer program at random by
tossing a coin for each bit of the program, what is the chance that the pro-
gram will halt? You’re thinking of programs as bit strings, and you generate
each bit by an independent toss of a fair coin [7, p. 150].

Actually, for an arbitrary set S of binary strings, one can define ΩS as follows:

Definition 1.6 (ΩS):
For a set of binary strings S ⊆ ΣΣΣ, let ΩS=∑σ∈S 2−|σ |; see Definition 1.1. ✧

Example 1.7 (ΩS):
We have Ω{0}=

1
2 , Ω{0,00}=

3
4 =Ω{1,00}, and Ω{0,1,00}=

5
4 . We also have ΩC =1, where

C = {1,00,010,0110,01110,011110, . . .}. ✧

Definition 1.8 (P,H):
Let P denote the set of the binary codes of all the input-free programs over a fixed program-

ming language. Over that fixed language, let H denote the set of the binary codes of all those
input-free programs that halt after running (eventually stop; do not loop forever). ✧

Definition 1.9 (The Omega Number):
Let ΩΩΩ be the number ΩH (see Definitions 1.6 and 1.8). ✧

This finishes our mathematical definition of the Omega Number. Let us notice that “the
precise numerical value of [ΩΩΩ] depends on the choice [of the fixed] programming language” [4,
p. 236].

2 Measuring Up the Omega Number

The number ΩΩΩ as defined in Definition 1.9 may not lie in the interval [0,1], and so it may not
be the probability of anything. As Chaitin warned,

there’s a technical detail which is very important and didn’t work in the early
version of algorithmic information theory. You couldn’t write this: Ω=

∑p halts 2−|p|. It would give infinity. The technical detail is that no extension
of a valid program is a valid program. Then this sum Ω=∑p halts 2−|p| turns
out to be between zero and one. Otherwise it turns out to be infinity. It only
took ten years until I got it right. The original 1960s version of algorithmic
information theory is wrong. One of the reasons it’s wrong is that you can’t
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even define this number. In 1974 I redid algorithmic information theory with
‘self-delimiting’ programs and then I discovered the halting probability, Ω.
[7, p. 150]

Definition 2.1 (Prefix-Free):
A set of binary strings is prefix-free when none of its elements is a proper prefix of another

element. ✧

Example 2.2 (Prefix-Free):
The sets {0} and E = {1,00} are both prefix-free, but their union {0,1,00} is not, since 0

is a prefix of 00; neither is the set {0,00}. The set C = {1,00,010,0110,01110,011110, . . .}
is also prefix-free (see Example 1.7). ✧

The Omega of every prefix-free set is non-greater than one. This is known as Kraft’s In-
equality [11] and will be proved in the following (Proposition 2.9).

Definition 2.3 (binary expansion in base 2):
Every natural number has a binary expansion (in base 2), which is a finite binary string that

starts with 1; that is to say that every n∈N can be written as n=((xkxk−1 . . .x2x1x0))2=∑
k
i=0 xi2i,

where xi ∈{0,1}, for i=0,1,2, . . . ,k−1, and xk =1. Every real number α in the unit interval
(0,1] has a binary expansion (in base 2) as α =((0 � x1x2x3 . . .))2=∑

∞
i=1 xi2−i, where xi∈{0,1},

for i=1,2,3, . . . (see [12]). This expansion could be finite or infinite. ✧

Example 2.4 (binary expansion in base 2):
We have 9=((1001))2, 26=((11010))2, 41=((101001))2, 1=((0 � 111 . . .))2, and also 9

32 =
((0 �01001))2=((0 �01000111 . . .))2. ✧

Remark 2.5 (Uniqueness):
Every natural number has a unique binary expansion, which is a finite binary string. The

infinite binary expansion of any real number in (0,1] is unique. ✧

Definition 2.6 (Iσ ,L):
For a binary string σ ∈ΣΣΣ, let Iσ be the interval

(
((0 �σ))2,,,((0 �σ111. . .))2

]
, which consists

of all the real numbers in (0,1] whose infinite binary expansions after 0� contain σ as a prefix
(cf. [12]). Denote the Lebesgue measure on the real line by L. ✧

Example 2.7 (Iσ ,L):
We have I{0} = (0, 1

2 ], I{1} = (1
2 ,1], I{00} = (0, 1

4 ], and I{01001} = ( 9
32 ,

5
16 ]. The Lebesgue

measures (lengths) of these intervals are L(I{0}) = 1
2 , L(I{1}) = 1

2 , L(I{00}) = 1
4 , and finally

L(I{01001})=
1
32 . ✧

Lemma 2.8 (Iσ\{1}⊆(0,1), L(Iσ )=2−|σ |, Iσ∩Iσ ′ , L(
⋃

σ∈S Iσ )=ΩS for prefix-free S):
Let σ ,σ ′∈ΣΣΣ be fixed.
(1) The interval Iσ is a half-open subinterval of (0,1], i.e., Iσ ⊆(0,1].
(2) The length of Iσ is 1

2|σ | , i.e., L(Iσ )=2−|σ |.
(3) If σ is not a prefix of σ ′ and σ ′ is not a prefix of σ , then Iσ ∩ Iσ ′= /0.
(4) If S ⊆ ΣΣΣ is prefix-free, then L(

⋃
ς∈S Iς )=ΩS.
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Proof::
(1) is trivial; for (2) notice that
L(Iσ ) = ((0 �σ111. . .))2 − ((0 �σ))2

= ((0 � 0 . . .0︸ ︷︷ ︸
|σ |-times

111. . .))2

= ∑
∞
j=1 2−(|σ |+ j)

= 2−|σ |.
(3) If α ∈ Iσ ∩ Iσ ′ , then α =((0 �σx1x2x3. . .))2 and α =((0 �σ ′y1y2y3. . .))2, where the se-

quences {xi}i>0 and {yi}i>0 are not all 0. Thus, by Remark 2.5, the identity ((0 �σx1x2x3. . .))2=
((0 �σ ′y1y2y3. . .))2 implies that either σ should be a prefix of σ ′ or σ ′ should be a prefix of σ .

(4) We have L(
⋃

ς∈S Iς )=∑ς∈SL(Iς ) since Iς ’s are pairwise disjoint by item (3). The result
follows now from item (2) and Definition 1.6. ❑

Proposition 2.9 (Kraft’s Inequality, 1949):
For every prefix-free S ⊆ ΣΣΣ, we have ΩS⩽1.

Proof::
By Lemma 2.8, item (4), we have ΩS=L(

⋃
σ∈S Iσ ), and

⋃
σ∈S Iσ ⊆ (0,1] holds by item (1)

of Lemma 2.8. Therefore, ΩS⩽L(0,1]=1. ❑

For an alternative proof of Proposition 2.9, see, e.g., [14, Thm. 11.4, pp. 182-3]. Let us
notice that the converse of Kraft’s inequality is not true, since, as we saw in Examples 1.7
and 2.2, Ω{0,00}=

3
4 <1, but the set {0,00} is not prefix-free.

One way to ensure that the set of all the programs becomes prefix-free is to adopt the fol-
lowing convention:

Convention 2.10 (Prefix-Free Programs):
Every program ends with the “END” command (see [13, p. 3]). This command can appear

nowhere else in the program, only at the very end. ✧

Every other sub-routine may start with “begin” and finish with “end,” just like the programs
of Example 1.5.

Example 2.11 (Prefix-Free Programs):
The Program i in the following table is a prefix of Program ii (and a suffix of Program iii).

Program i Program ii Program iii
BEEP BEEP PRINT “error!”

PRINT “error!” BEEP

With Convention 2.10, the programs should look like the following:

Program I Program II Program III
BEEP BEEP PRINT “error!”
END PRINT “error!” BEEP

END END
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Program I is not a prefix of Program II (though, even with the above convention, Program I
is a suffix of Program III, which is not a problem). ✧

From now on, let us be given a fixed programming language by Convention 2.10. A
question that comes to mind is:

Question 2.12 (Is ΩS a Probability?):
Why can the number ΩS be interpreted as the probability that a randomly given binary string

σ ∈ΣΣΣ belongs to S? Even when S⊆ΣΣΣ is a prefix-free set. ✧

Let us repeat that the number ΩS could be greater than one for some sets S of finite binary
strings (Example 1.7), but if the set S is prefix-free, then ΩS is a number between 0 and 1
(Proposition 2.9). Let us also note that Ω satisfies Kolmogorov’s axioms of a measure: Ω⋃

iSi =

∑i ΩSi for every family {Si}i of pairwise disjoint sets; thus, Ω /0 =0. But it is not a probability
measure. Restricting the sets to the prefix-free ones will not solve the problem, as they are
not closed under unions (Example 2.2). Now that, by Convention 2.10, all the programs are
prefix-free, a special case of Question 2.12 is:

Question 2.13 (Is ΩΩΩ a Halting Probability?):
Why can the number ΩΩΩ be said to be the halting probability of the randomly chosen finite

binary strings? ✧

Unfortunately, many scholars seem to have believed that the number ΩΩΩ is the halting proba-
bility of input-free programs; see, e.g., [9, 2, 14, 4, 15]. Even though the Ω ’s of prefix-free sets
are non-greater than one, Ω is not a probability measure, even when restricted to the prefix-free
sets, as those sets are not closed under disjoint unions. Restricting the sets to the subsets of a
fixed prefix-free set whose Ω is 1 (such as C in Example 1.7) can solve the problem. But for
the input-free programs, even with Convention 2.10, we do not have this possibility:

Lemma 2.14 (ΩP ̸=1):
ΩP<1.

Proof::
Find a letter or a short string of letters (such as X or XY, etc.) that is not a prefix of any

command, and no program can be a prefix of it. Let X be its ASCII code, and put P′=P∪{X}.
The set P′ is still prefix-free, and so Kraft’s inequality (Proposition 2.9) can be applied to it:
ΩP+2−|X|=ΩP′⩽1. Since 2−|X|>0, then we have ΩP<1. ❑

For making Ω a probability measure, we suggest a two-fold idea:
(1) We consider sets of input-free programs only, and
(2) We divide their Omega by ΩP to get a probability measure.

Definition 2.15 (0S):

For a set S ⊆ P of input-free programs, let 0S=
ΩS

ΩP
. ✧

It is easy to verify that this is a probability measure: we have 0 /0=0, 0P=1, and for every
indexed family {Si⊆P}i of pairwise disjoint sets of input-free programs, we have 0⋃

iSi=∑i0Si .
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2.1 Summing Up
Let us recapitulate. The number ΩΩΩ (Definition 1.9) was meant to be “the probability that a
computer program whose bits are generated one by one by independent tosses of a fair coin will
eventually halt” [4, p. 236]. But the fact of the matter is that if we generate a finite binary code
by tossing a fair coin bit by bit, then it is very probable that the resulted string is not the binary
code of a program at all. It is also highly probable that it is the code of a program that takes
some inputs (see Example 1.5). Lastly, if the generated finite binary string is the binary code of
an input-free program, then we are allowed to ask whether it will eventually halt after running.
After all this contemplation, we may start defining or calculating the probability of halting.

The way ΩΩΩ was defined works for any prefix-free set of finite binary strings (Definition 1.6).
Kraft’s inequality (Proposition 2.9) ensures that the number ΩS, for every prefix-free set S, lies
in the interval [0,1]. But why on earth can ΩS be called the probability that a randomly given
finite binary string belongs to S? (Question 2.12). The class of all prefix-free sets is not closed
under disjoint unions (Example 2.2), and there is no sample space for the proposed measure: the
Ω of all the binary codes of the input-free programs is not equal to 1 (Lemma 2.14), even though
that set is prefix-free by Convention 2.10. Summing up, there is no measure to see that ΩΩΩ is the
halting probability of a randomly given finite binary string, and the answer to Question 2.13 is
a big “no”.

Even though Ω satisfies Kolmogorov’s axioms of a measure, it is not a probability measure,
as some sets get measures bigger than one. Restricting the sets to the prefix-free ones will not
solve the problem, as they are not closed under union. Restricting the sets to the subsets of a
fixed prefix-free set whose Ω is 1 can solve the problem by making Ω a probability measure;
so can restricting the sets to the subsets of a fixed prefix-free set (such as P) and then dividing
the Ω ’s of its subsets by the Ω of that fixed set (just like Definition 2.15).

This was our proposed remedy. Take the sample space to be P, the set of the binary codes of
all the input-free programs. Then, for every set S of (input-free) programs (S ⊆ P), let 0S=

ΩS
ΩP

(Definition 2.15). This is a real probability measure that satisfies Kolmogorov’s axioms. Now,
the new halting probability is 0=0H= ΩΩΩ

ΩP
. Dividing ΩΩΩ by a computable real number (ΩP)

does make it look more like a (conditional) probability, but will not cause it to lose any of the
non-computability or randomness properties. Our upside-down Omega, 0, should have most
(if not all) of the properties of ΩΩΩ established in the literature.

3 The Source of Error

Let us see what possibly went wrong by reading through one of Chaitin’s books:

let’s put all possible programs in a bag, shake it up, close our eyes, and
pick out a program. What’s the probability that this program that we’ve
just chosen at random will eventually halt? Let’s express that probability
as an infinite precision binary real between zero and one. [...] You sum for
each program that halts the probability of getting precisely that program by
chance: Ω=∑program p halts 2−(size in bits of p). Each k-bit self-delimiting pro-
gram p that halts contributes 1/2k to the value of Ω. The self-delimiting
program proviso is crucial: Otherwise the halting probability has to be de-
fined for programs of each particular size, but it cannot be defined over all
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programs of arbitrary size. [8, p. 112, original emphasis]

We are in partial agreement with Chaitin on the following matter:

Lemma 3.1 (Halting Probability of Input-Free Programs with a Fixed Length):
The halting probability of all the input-free programs with a fixed length ℓ is equal to

∑
|p|=ℓ
p halts 2−|p|.

Proof::
Fix a number ℓ. The probability of getting a fixed binary string of length ℓ by tossing a fair

coin (whose one side is ‘0’ and the other ‘1’) is 1
2ℓ , and the halting probability of the input-free

programs with length ℓ is

the number of halting programs with length ℓ

the number of all binary strings with length ℓ
=

#{p∈P : p halts & |p|=ℓ}
2ℓ

,

since there are 2ℓ binary strings of length ℓ (see [12]). Thus, the halting probability of programs
with length ℓ can be written as ∑

|p|=ℓ
p halts 2−|p|. ❑

Definition 3.2 (N (ℓ)):
Let N (ℓ) denote the number of halting input-free programs of length ℓ ([15]). ✧

So, ΩΩΩ can be written as ∑
∞
ℓ=1 N (ℓ)2−ℓ; see [15, p. 1]. By what we quoted above, from

[8], according to Chaitin (and almost everybody else), the halting probability of programs is
∑

∞
ℓ=1 N (ℓ)2−ℓ=∑p halts 2−|p|(=ΩΩΩ)! Let us see why we believe this to be an error. First, we

take a look at an elementary example.

Example 3.3 (One Tail or Two Heads):
Let us toss a fair coin once or twice and compute the probability of getting either one tail

or two heads. For the number of tosses, we choose it randomly at the beginning, by, say, taking
one ball from an urn that contains two balls with labels 1 and 2 (each ball has a unique label;
one has 1 and the other has 2). If we get the ball with label 1 out of the urn, then we toss the
coin once, and if we get the other ball, the one with label 2, then we toss the coin twice. We
wish to see what the probability of getting one tail (T) or two heads (HH) could be. Our event
is E ′ = {T,HH}, and our sample space is S = {H,T,HH,HT,TH,TT}. From the method by which
the number ΩΩΩ is defined in the literature, the probability is assumed to be ΩE ′ = 1

2 +
1
4 = 3

4 . But
we can show that this is impossible under any reasonable probability measure (note that E ′ is
both a prefix-free and a suffix-free set). If p is the probability of getting H, then it will be the
probability of getting T too. Similarly, the probability of each of HH, HT, TH, and TT is a fixed
number q. We should have 2p+ 4q = 1, the probability of the whole of the sample space S.
Then, the probability of E ′ will be p+ q. Since p+ q = 2p+2q

2 ⩽ 2p+4q
2 = 1

2 < 3
4 = ΩE ′ , then

ΩE ′ is not the probability of E ′ (getting one tail or two heads by tossing a fair coin randomly
once or twice) under any reasonable probability measure.

Let us also observe that for the prefix-free set P′ = {T,HH,HT} we have ΩP′ = 1, but the
probability of P′ (under any probability measure p,q with 2p+4q = 1) is p+2q = 2p+4q

2 = 1
2 ,

which is the half of ΩP′; see also Example 3.5 below. ✧
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Theorem 3.4 (Halting Probability [by any measure] <ΩΩΩ):
The halting probability of input-free programs is less than ΩΩΩ under any probability measure

on ΣΣΣ.

Proof::
For every positive integer ℓ, let πππℓ be the probability of an(y) element of ΣΣΣ with length ℓ.

Therefore, ∑
∞
ℓ=1 2ℓπππℓ = 1, since there are 2ℓ binary strings of length ℓ. The halting probability

(with the probability measure πππ) is then ∑
∞
ℓ=1 N (ℓ)πππℓ; see Definition 3.2. Let 2mπππm be the

maximum of {2ℓπππℓ}∞
ℓ=1. We distinguish two cases:

(1) If 2mπππm = 1, then for every ℓ ̸= m, we should have πππℓ = 0. Hence,
∑

∞
ℓ=1 N (ℓ)πππℓ = N (m)πππm = N (m)2−m < ∑

∞
ℓ=1 N (ℓ)2−ℓ = ΩΩΩ,

since there exists some ℓ ̸= m with N (ℓ)> 0.
(2) So, we can assume that 2mπππm < 1. In this case,

∑
∞
ℓ=1 N (ℓ)πππℓ = ∑

∞
ℓ=1 N (ℓ)2−ℓ ·2ℓπππℓ ⩽ 2mπππm ∑

∞
ℓ=1 N (ℓ)2−ℓ < ∑

∞
ℓ=1 N (ℓ)2−ℓ = ΩΩΩ.

Therefore, regardless of the probability measure (πππ), the number ΩΩΩ exceeds the probability of
obtaining an input-free halting program by tossing a fair coin a finite (but unbounded) number
of times. ❑

Thus, there is no reason to believe that the halting probability (of “all programs of arbitrary
size”) is ∑p halts 2−|p|(=ΩΩΩ). As pointed out by Chaitin, the series ∑p halts 2−|p| could be greater
than 1, or may even diverge, if the set of programs is not taken to be prefix-free (what “took
ten years until [he] got it right”). So, the fact that, for prefix-free programs, the real number
∑p halts 2−|p| lies between 0 and 1 (by Kraft’s inequality, Proposition 2.9) does not make it a
probability of finite strings. As we showed above, the number ΩΩΩ is not the probability of halting
the randomly given finite binary strings by any probability measure on ΣΣΣ.

Example 3.5 (E,P,C ):
Let us fix a probability measure πππ on ΣΣΣ; hence, for each positive integer ℓ, the probability

of any element of ΣΣΣ with length ℓ is πππℓ, and so ∑
∞
ℓ=1 2ℓπππℓ = 1. Consider the prefix-free sets

E = {1,00}, P = {1,00,01} (cf. Example 3.3), and C = {1}∪{01n0}∞
n=0 (in Example 1.7).

We have ΩE = 3
4 , and ΩP = ΩC = 1. The probability of E is

πππ(E) = πππ1 +πππ2 ⩽
1
2(∑

∞
ℓ=1 2ℓπππℓ) =

1
2 < 3

4 = ΩE .
Similarly, the probability of P is

πππ(P) = πππ1 +2πππ2 ⩽
1
2(∑

∞
ℓ=1 2ℓπππℓ) =

1
2 < 1 = ΩP,

and the probability of C is
πππ(C ) = ∑

∞
ℓ=1 πππℓ ⩽

1
2(∑

∞
ℓ=1 2ℓπππℓ) =

1
2 < 1 = ΩC . ✧

Let us see one of the most recent explanations as to why ΩΩΩ is considered to be the halting
probability of input-free programs.

Given a prefix-free machine M, one can consider the ‘halting probability’ of
M, defined by ΩM =∑M(σ)↓ 2−|σ |. The term ‘halting probability’ is justified
by the following observation: a prefix-free machine M can be naturally ex-
tended to a partial functional from 2ω , the set of infinite binary sequences,
to 2<ω , where for X ∈ 2ω , M(X) is defined to be M(σ) if some σ ∈ dom(M)

is a prefix of X , and M(X) ↑ otherwise. The prefix-freeness of M on finite
strings ensures that this extension is well-defined. With this point of view,
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ΩM is simply µ{X ∈ 2ω : M(X) ↓}, where µ is the uniform probability mea-
sure (a.k.a. Lebesgue measure) on 2ω , that is, the measure where each bit
of X is equal to 0 with probability 1/2 independently of all other bits. [3,
p. 1613]

See [14, p. 207] for a similar explanation. So, the expression “halting probability” refers to
the probability of some real numbers, not of finite binary strings. Let us consider a randomly
given real number α ∈ (0,1]. The probability that α is less than 1

4 is, of course, 1
4 , since the

length of (0, 1
4) is 1

4 . The probability that α is rational is 0. Let us calculate the probability
that the finite string 01001 is a prefix of the unique infinite binary expansion after 0� of α (see
Definition 2.3). If α is like that, then α =((0 � 01001x1x2x3 . . .))2 for some bits x1,x2,x3, · · · .
This means that α belongs to the interval I{01001} (see Definition 2.6), so the probability is 1

32
(see Example 2.7).

Lemma 3.6 (Probability of Some Events on Real Numbers):
(1) The probability that a randomly given real α ∈(0,1] has a fixed finite binary string σ as

a prefix in its infinite binary expansion after 0� is L(Iσ ).
(2) The probability that a randomly given real α∈(0,1] has a prefix from a fixed set of finite

binary strings S⊆ΣΣΣ in its infinite binary expansion after 0� is L(
⋃

σ∈S Iσ ).

Proof::
(1) Every such α belongs to the interval Iσ (see Definition 2.6). So, the probability is L(Iσ );

cf. [12]. Item (2) follows similarly. ❑

Corollary 3.7 (Omega Numbers as Probabilities of Real Numbers):
(1) The probability that a randomly given real α∈(0,1] has a prefix from a fixed prefix-free

set of finite binary strings S⊆ΣΣΣ in its infinite binary expansion after 0� is ΩS.
(2) Chaitin’s ΩΩΩ is the probability that the unique infinite binary expansion after 0� of a

randomly given real α ∈ (0,1] contains a finite binary strings as a prefix that is the binary code
of a halting input-free program.

Proof::
(1) follows from Lemma 3.6(2) and Lemma 2.8(4). Item (2) is a special case of (1) when

S=H (see Definition 1.8). ❑

After all, ΩΩΩ is the probability of something, an event on real numbers.

3.1 Some Suggestions
Definition 3.8 (integer code, H ):

Every finite binary string σ ∈ΣΣΣ has an integer code defined as ((1σ))2 −1, illustrated by the
following table.

binary string 0 1 00 01 10 11 000 001 010 011 � � �
integer code 1 2 3 4 5 6 7 8 9 10 · · ·

Let H be the set of the integer codes of all the strings in H (see Definition 1.8). ✧
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Example 3.9 (integer code):
The integer code of the binary string 01001 is 40, and the finite binary string with the integer

code 25 is 1010 (see Example 2.4). ✧

Chaitin’s ΩΩΩ has many interesting properties that have attracted the attention of the brightest
minds and made them publish papers in the most prestigious journals and collection books.
Most properties of ΩΩΩ, which we proved not to be a probability of random strings, are also
possessed by K =∑n∈H 2−n (see [9, p. 33]). This number is in the interval (0,1), so it can
be a halting probability with a good measure: for a set of positive integers S⊆N+, let p(S)=
∑n∈S 2−n. Then all the probability axioms are satisfied: p(N+)=1 and p(

⋃
iSi)=∑i p(Si) for

every pairwise disjoint {Si⊆N+}i. One question now is: why not take this number as a halting
probability? Notice that this has some non-intuitive properties: if E is the set of all the even
positive integers and O is the set of all the odd positive integers, then the probability that a
binary string has an even integer code becomes p(E)=∑n∈E 2−n= 1

3 , and the probability that a
binary string has an odd integer code turns out to be p(O)=∑n∈O 2−n = 2

3 , twice the evenness
probability!

For ΩΩΩ, the geometric distribution (see, e.g., [12]) is in play, with the parameter p= 1
2 . Why

not take other parameters, such as p= 1
3 and then define a halting probability as ∑σ∈H 3−|σ | (or

∑n∈H 2 ·3−n)? Note that ∑n>0 2 ·3−n=1, and Kraft’s inequality applies here too: ∑σ∈S 3−|σ |⩽1
for every prefix-free set S ⊆ ΣΣΣ. Or, why not Poisson’s distribution (see, e.g., [12]) with a
parameter λ? Then, a halting probability could be ∑n∈H

e−λ λ−n

n! . One key relation in defining K
is the elementary formula ∑n>0 2−n=1. Let {αn}n>0 be any sequence of positive real numbers
such that ∑n>0 αn=1. Then one can define a halting probability as ∑n∈H αn or ∑σ∈H 2−|σ |α|σ |.
Most, if not all, of the properties of ΩΩΩ should be possessed by these new probabilities. This
seems like a wild, open area to explore.

4 The Conclusion

Chaitin’s ΩΩΩ number is not the probability that a randomly given finite binary string is the binary
code of a halting input-free program under any probability measure. It is the probability that
the unique infinite binary expansion after 0� of a randomly given real number in the unit interval
has a prefix that is the binary code of a halting input-free program. There is no unique halting
probability of finite binary strings, and one can get different values for it by different probability
measures (over a fixed prefix-free programming language).
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