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“Mathematics is the science of learning how not to compute”.
—Heinrich Maschke (1853–1908); see [13, p. 667].

Abstract: We study Chaitin’s well-known constant number Omega, and show that it
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1 Introduction.

There are very many papers and some books on the so-called Halting Probability Ω,
also known as Chaitin’s Constant or Chaitin’s Number. Our aim is to see if Ω de-
fines a probability for the halting problem. And if so, on what measure? What is the
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distribution of that probability? What is the sample space? We will give a system-
atic understanding, with a very brief history, of this number and will suggest some
measures based on which a halting probability can be defined, with all the glory of
mathematical rigour. Let us observe right away that a real number cannot be called
a probability if it is just between 0 and 1; there should be a measure and a space
for a probability that satisfies Kolmogorov axioms (see e.g. [17]): that µ(S)=1 and
µ(

⋃
i Si)=∑i µ(Si), where S is the sample space, {Si} is an arbitrary indexed family

of pairwise disjoint subsets of S, and the partial function µ : P(S) → [0,1] is the
probability measure (defined on the so-called measurable subsets of S).

The number Ω was introduced by Chaitin [6, p. 337] in 1975, when it was denoted
by ω . The symbol Ω appears in Chaitin’s second Scientific American paper [7], where
it was defined as the probability that “a completely random program will halt” (p. 80).
This is sometimes called “the secret number”, “the magic number”, “the number of
wisdom”, etc. [19, p. 178]; it is also claimed “to hold the mysteries of the universe”
[12]. It was stated in [3] that, “The first example of a random real was Chaitin’s Ω”
(p. 1411); but as Barmpalias put it in [2, p. 180, fn. 9], “Before Chaitin’s discovery,
the most concrete Martin-Löf random real known was a 2-quantifier definable number
exhibited [by] Zvonkin and Levin” (in 1970).

Let us look at the formal definition of Ω rigorously.

Definition 1 (binary code, length, ASCII code)
Let {0,1}∗ be the set of all the finite strings of the symbols (binary bits) 0 and 1.
For a string σ ∈ {0,1}∗, let |σ | denote its length.
Every program has a unique ASCII code [1] which is a binary string. This is

called the binary code of the program. ✧

Example 1 (binary code, length, ASCII code)

The object 01001 is a binary string and its length is |01001|=5.
The ASCII code of the symbol @ is 01000000 and 00100000 is the ASCII code

of the blank space, produced by the space bar in the keyboard. ✧

Example 2 (binary code of a program)

Let us consider the command
BEEP

in e.g. the BASIC programming language; it produces the actual “beep” sound through
the sound card of the computer hardware. The binary code of this command is the
concatenation of the ASCII codes of the capital letters B (which is 01000010), E
(which is 01000101), E (the same), and P (which is 01010000), building together
the finite binary string 01000010010001010100010101010000. ✧
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For defining Ω, Chaitin gave the main idea as, “The idea is you generate each bit
of a program by tossing a coin and ask what is the probability that it halts.” [8, p. 151].
By “program”, Chaitin meant an input-free program, and by “bit” of a program, he
meant any of 0’s and 1’s in its binary (ASCII) code.

Example 3 (Programs: Input-Free, Halting, and Non-halting)
Consider the following three programs over a fixed programming language, where

the variables i and n range over the natural numbers.

Program 1 Program 2 Program 3

BEGIN BEGIN BEGIN

LET n :=1 LET n :=1 INPUT i
WHILE n>0 DO WHILE n<9 DO WHILE i<9 DO

begin begin begin

PRINT n PRINT n PRINT i
LET n :=n+1 LET n :=n+1 LET n := i+1

end end end

END END END

Program 1 and Program 2 do not take any input, while Program 3 takes some
input (from the user) and then starts running. Program 1 never halts (loops forever)
after it starts running, but Program 2 halts eventually (when n reaches 9). Program 3
takes the input i and halts on some values of i (when i⩾9) and loops forever on others
(when i<9). ✧

As Chaitin took “programs” for “input-free programs”, we will also use these
terms interchangeably; so, we disregard the programs that take some inputs and con-
sider only input-free programs. The number Ω was defined by Chaitin as follows:

What exactly is the halting probability? I’ve written down an expression for it:

Ω=∑p halts 2−|p|. [...] If you generate a computer program at random by tossing

a coin for each bit of the program, what is the chance that the program will

halt? You’re thinking of programs as bit strings, and you generate each bit by an

independent toss of a fair coin [8, p. 150].

Actually, for an arbitrary set S of binary strings, one can define ΩS as follows:

Definition 2 (ΩS)
For a set of binary strings S ⊆ {0,1}∗, let ΩS=∑σ∈S 2−|σ |. ✧

Example 4 (ΩS)
We have Ω{0}=1/2, Ω{0,00}=3/4=Ω{1,00}, and Ω{0,1,00}=5/4. We also have

Ω{1,00,010,0110,01110,011110,...}=1. ✧
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Definition 3 (P,H)
Let P denote the set of the binary codes of all the input-free programs over a fixed

programming language.
Over that fixed language, let H denote the set of the binary codes of all those

input-free programs that halt after running (eventually stop; do not loop forever). ✧

Definition 4 (The Omega Number)
Let ΩΩ be the number ΩH (see Definitions 2 and 3). ✧

This finishes our mathematical definition of the Omega Number. Let us notice that
“the precise numerical value of [ΩΩ] depends on the choice [of the fixed] programming
language” [5, p. 236].

2 Measuring Up the Omega Number.

The number ΩΩ as defined in Definition 4 may not lie in the interval [0,1] and so may
not be the probability of anything. As Chaitin warned,

there’s a technical detail which is very important and didn’t work in the early ver-

sion of algorithmic information theory. You couldn’t write this: Ω=∑p halts 2−|p|.

It would give infinity. The technical detail is that no extension of a valid program

is a valid program. Then this sum Ω=∑p halts 2−|p| turns out to be between zero

and one. Otherwise it turns out to be infinity. It only took ten years until I got

it right. The original 1960s version of algorithmic information theory is wrong.

One of the reasons it’s wrong is that you can’t even define this number. In 1974

I redid algorithmic information theory with ‘self-delimiting’ programs and then

I discovered the halting probability, Ω. [8, p. 150]

Definition 5 (Prefix-Free)
A set of binary strings is prefix-free when none of its elements is a proper prefix

of another element. ✧

Example 5 (Prefix-Free)

The sets {0} and {1,00} are both prefix-free, but their union {0,1,00} is not,
since 0 is a prefix of 00; neither is the set {0,00}. The following infinite set is also
prefix-free: {1,00,010,0110,01110,011110, . . .} (see Example 4). ✧

The Omega of every prefix-free set is non-greater than one. This is known as
Kraft’s Inequality [15] and will be proved in the following (Proposition 1).
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Definition 6 (binary expansion in base 2)
Every natural number has a binary expansion (in base 2) which is a finite bi-

nary string that starts with 1; it is to say that every n ∈N can be written as n =

((xkxk−1 . . .x2x1x0))2=∑
k
i=0 xi2i, where xi∈{0,1}, for i=0,1,2, . . . ,k−1, and xk =1.

Every real number α in the unit interval [0,1] has a binary expansion (in base 2)
as α =((0 � x1x2x3 . . .))2 =∑

∞
i=1 xi2−i, where xi ∈{0,1}, for i= 1,2,3, . . . (see [17]).

This expansion could be finite or infinite. ✧

Example 6 (binary expansion in base 2)
We have 9=((1001))2, 26=((11010))2, 41=((101001))2, 1=((0 �111 . . .))2, and

9/32=((0 �01001))2=((0 �01000111 . . .))2. ✧

Remark 1 (Uniqueness)
Every natural number has a unique binary expansion, which is a finite binary

string. The infinite binary expansion of any real number in (0,1] is unique. ✧

Definition 7 (Iσ , ℓ)
For a binary string σ ∈{0,1}∗, let Iσ be the interval

(
((0 �σ))2,((0 �σ111. . .))2

]
,

which consists of all the real numbers in (0,1] whose infinite binary expansions after
0� contain σ as a prefix (cf. [17]).

Denote the Lebesgue measure on the real line by ℓ. ✧

Example 7 (Iσ , ℓ)
We have I{0}=(0,1/2], I{1}=(1/2,1], I{00}=(0,1/4], and I{01001}=(9/32,5/16].

The Lebesgue measures (lengths) of these intervals are ℓ(I{0})=1/2, ℓ(I{1})=1/2,
ℓ(I{00})=1/4, and ℓ(I{01001})=1/32. ✧

Lemma 1 (Iσ\{1}⊆(0,1), ℓ(Iσ )=2−|σ |, Iσ∩Iσ ′ , ℓ(
⋃

σ∈S Iσ )=ΩS for prefix-free S)
Let σ ,σ ′∈{0,1}∗ be fixed.
(1) The interval Iσ is a half-open subinterval of (0,1], i.e., Iσ ⊆(0,1].
(2) The length of Iσ is 1/2|σ |, i.e., ℓ(Iσ )=2−|σ |.
(3) If σ is not a prefix of σ ′ and σ ′ is not a prefix of σ , then Iσ ∩ Iσ ′ = /0.
(4) If S ⊆ {0,1}∗ is prefix-free, then ℓ(

⋃
ς∈S Iς )=ΩS.

Proof :
(1) is trivial; for (2) notice that
ℓ(Iσ ) = ((0 �σ111. . .))2 − ((0 �σ))2

= ((0 � 0 . . .0︸ ︷︷ ︸
|σ |-times

111. . .))2

= ∑
∞
j=1 2−(|σ |+ j)

= 2−|σ |.
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(3) If α∈Iσ ∩Iσ ′ , then we have α=((0 �σx1x2x3. . .))2 and α=((0 �σ ′y1y2y3. . .))2,
where the sequences {xi}i>0 and {yi}i>0 are not all 0. Thus, by Remark 1, the identity
((0 �σx1x2x3. . .))2 =((0 �σ ′y1y2y3. . .))2 implies that either σ should be a prefix of σ ′

or σ ′ should be a prefix of σ .
(4) We have ℓ(

⋃
ς∈S Iς )=∑ς∈S ℓ(Iς ) since Iς ’s are pairwise disjoint by item (3).

The result follows now from item (2) and Definition 2. ❑

Proposition 1 (Kraft’s Inequality, 1949)
For every prefix-free S ⊆ {0,1}∗, we have ΩS⩽1.

Proof :
By Lemma 1, item (4), we have ΩS = ℓ(

⋃
σ∈S Iσ ), and

⋃
σ∈S Iσ ⊆ (0,1] holds by

item (1) of Lemma 1. Therefore, ΩS⩽ℓ(0,1]=1. ❑

For an alternative proof of Proposition 1, see e.g. [19, Thm. 11.4, pp. 182-3].
Let us notice that the converse of Kraft’s inequality is not true, since as we saw in
Examples 4 and 5, Ω{0,00}=3/4<1, but the set {0,00} is not prefix-free.

One way to ensure that the set of all the programs becomes prefix-free is to adopt
the following convention.

Convention 1 (Prefix-Free Programs)
Every program ends with the “END” command (see [18, p. 3]). This command can

appear nowhere else in the program, only at the very end. ✧

Every other sub-routine may start with “begin” and finish with “end”, just like
the programs of Example 3.

Example 8 (Prefix-Free Programs)
The Program i in the following table is a prefix of Program ii (and is a suffix of

Program iii).

Program i Program ii Program iii

BEEP BEEP PRINT “error!”
PRINT “error!” BEEP

With Convention 1, the programs should look like the following.

Program I Program II Program III

BEEP BEEP PRINT “error!”
END PRINT “error!” BEEP

END END

Program I is not a prefix of Program II (though, even with the above convention,
Program I is a suffix of Program III, which is not a problem). ✧
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From now on, let us be given a fixed programming language by Convention 1.
A question that comes to mind is:

Question 1 (Is ΩS a Probability?)
Why the number ΩS can be interpreted as the probability that a randomly given

binary string σ ∈{0,1}∗ belongs to S? Even when S⊆{0,1}∗ is a prefix-free set. ✧

Let us repeat that the number ΩS could be greater than one for some sets S of finite
binary strings (Example 4); but if the set S is prefix-free, then ΩS is a number between
0 and 1 (Proposition 1). Let us also note that Ω satisfies Kolmogorov’s axioms of a
measure: Ω⋃

iSi =∑i ΩSi for every family {Si}i of pairwise disjoint sets; thus Ω /0=0.
But it is not a probability measure. Restricting the sets to the prefix-free ones will
not solve the problem, as they are not closed under unions (Example 5). Now that by
Convention 1, all the programs are prefix-free, a special case of Question 1 is:

Question 2 (Is ΩΩ a Halting Probability?)
Why the number ΩΩ can be said to be the halting probability of the randomly

chosen finite binary strings? ✧

Unfortunately, many scholars seem to have believed that the number ΩΩ is the
halting probability of input-free programs; see e.g. [12,16,11,3,19,10,5,20]. Even
though the Ω of prefix-free sets are non-greater than one, Ω is not a probability
measure, even when restricted to the prefix-free sets, as those sets are not closed under
disjoint unions. Restricting the sets to the subsets of a fixed prefix-free set whose
Ω is 1 (such as {1,00,010,0110,01110,011110, . . .} in Example 4) can solve the
problem. But for the input-free programs, even with Convention 1, we do not have
this possibility:

Lemma 2 (ΩP ̸=1)
ΩP<1.

Proof :
Find a letter or a short string of letters (such as X or XY, etc.) that is not a prefix of

any command, and no program can be a prefix of it. Let X be its ASCII code, and put
P′=P∪{X}. The set P′ is still prefix-free, and so Kraft’s inequality (Proposition 1)
is applicable: ΩP+2−|X|=ΩP′ ⩽1. Since 2−|X|>0, then we have ΩP<1. ❑

For making Ω a probability measure, we suggest a two-fold idea:
(1) we consider sets of input-free programs only, and
(2) we divide their Omega by ΩP to get a probability measure.

Definition 8 (0S)

For a set S ⊆ P of input-free programs, let 0S=
ΩS

ΩP
. ✧
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It is easy to verify that this is a probability measure: we have 0 /0=0, 0P=1, and
for every indexed family {Si ⊆P}i of pairwise disjoint sets of input-free programs,
we have 0⋃

iSi =∑i0Si .

2.1 Summing Up.

Let us recapitulate. The number ΩΩ (Definition 4) was meant to be “the probability
that a computer program whose bits are generated one by one by independent tosses
of a fair coin will eventually halt” [5, p. 236]. But the fact of the matter is that if we
generate a finite binary code by tossing a fair coin bit by bit, then it is very probable
that the resulted string is not the binary code of a program at all. It is also highly
probable that it is the code of a program that takes some inputs (see Example 3).
Lastly, if the generated finite binary string is the binary code of an input-free program,
then we are allowed to ask whether it will eventually halt after running. After all this
contemplation, we may start defining or calculating the probability of halting.

The way ΩΩ was defined works for any prefix-free set of finite binary strings (Def-
inition 2). Kraft’s inequality (Proposition 1) ensures that the number ΩS, for every
prefix-free set S, lies in the interval [0,1]. But why on earth can ΩS be called the
probability that a randomly given finite binary string belongs to S? (Question 1). The
class of all prefix-free sets is not closed under disjoint unions (Example 5) and there
is no sample space for the proposed measure: the Ω of all the binary codes of the
input-free programs is not equal to 1 (Lemma 2), even though that set is prefix-free
by Convention 1. Summing up, there is no measure to see that ΩΩ is a halting proba-
bility of finite binary string, and the answer of Question 2 is a big “no”.

Even though Ω satisfies Kolmogorov’s axioms of a measure, it is not a probability
measure as some sets get measures bigger than one. Restricting the sets to the prefix-
free ones will not solve the problem, as they are not closed under union. Restricting
the sets to the subsets of a fixed prefix-free set whose Ω is 1 can solve the problem by
making Ω a probability measure; so can restricting the sets to the subsets of a fixed
prefix-free set (such as P) and then dividing the Ω ’s of its subsets by the Ω of that
fixed set (just like Definition 8).

This was our proposed remedy. Take the sample space to be P, the set of the binary
codes of all the input-free programs. Then, for every set S of (input-free) programs
(S ⊆P), let 0S=ΩS/ΩP (Definition 8). This is a real probability measure that satisfies
Kolmogorov’s axioms. Now, the new halting probability is 00=0H=ΩΩ/ΩP. Dividing
ΩΩ by a computable real number (ΩP) does make it look like more of a (conditional)
probability, but will not cause it to lose any of the non-computability or randomness
properties. Our upside-down Omega, 00, should have most (if not all) of the properties
of ΩΩ established in the literature.
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3 The Source of Error.

Let us see what possibly went wrong by reading through one of Chaitin’s books:

let’s put all possible programs in a bag, shake it up, close our eyes, and pick

out a program. What’s the probability that this program that we’ve just cho-

sen at random will eventually halt? Let’s express that probability as an infi-

nite precision binary real between zero and one. [...] You sum for each pro-

gram that halts the probability of getting precisely that program by chance:

Ω = ∑program p halts 2−(size in bits of p). Each k-bit self-delimiting program p that

halts contributes 1/2k to the value of Ω. The self-delimiting program proviso

is crucial: Otherwise the halting probability has to be defined for programs of

each particular size, but it cannot be defined over all programs of arbitrary

size. [9, p. 112, original emphasis]

We are in partial agreement with Chaitin on the following matter.

Lemma 3 (Halting Probability of Input-Free Programs with a Fixed Length)
The halting probability of all the input-free programs with a fixed length l is equal

to ∑
|p|=l
p halts 2−|p|.

Proof :
Fix a number l. The probability of getting a fixed binary string of length l by

tossing a fair coin (whose one side is ‘0’ and the other ‘1’) is 1/2l , and the halting
probability of the input-free programs with length l is

the number of halting programs with length l
the number of all binary strings with length l

=
#{p∈P : p halts & |p|= l}

2l ,

since there are 2l binary strings of length l (see [17]). Thus, the halting probability of
programs with length l can be written as ∑

|p|=l
p halts 2−|p|. ❑

Definition 9 (N (l))
Let N (l) denote the number of halting input-free programs of length l ([20]). ✧

So, ΩΩ can be written as ∑
∞
l=1 N (l)2−l ; see [20, p. 1]. By what we quoted above

from [9], according to Chaitin (and almost everybody else), the halting probability of
programs with length⩽N is equal to ∑

N
l=1 N (l)2−l=∑

|p|⩽N
p halts 2−|p|; and so, the halting

probability is ∑
∞
l=1 N (l)2−l =∑p halts 2−|p|(=ΩΩ)! Let us see why we believe this to

be an error.

Theorem 2 (Halting Probability of Input-Free Programs with Length⩽N)
For sufficiently large N’s, the halting probability of all the input-free programs

with length⩽N is not equal to ∑
|p|⩽N
p halts 2−|p|; it is indeed less than (2/3)∑

|p|⩽N
p halts 2−|p|.
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Proof :
The halting probability of programs with length⩽N is in fact

the number of halting programs with length⩽N
the number of all binary strings with length⩽N

=
∑

N
l=1 N (l)

∑
N
l=1 2l

.

Note that N (l)⩾0 for each l>0, and for a sufficiently large M>2, ∑
M
l=1 N (l)>0

holds; thus, ∑
N
l=1 N (l)>0 for every N⩾M. By ∑

N
l=1 2l =2N+1 −2, and N (l)⩾0 for

each l>0, we have

∑
N
l=1 N (l)

∑
N
l=1 2l

=
∑

N
l=1 N (l)

2N+1 −2
⩽

2N

2N+1 −2

N

∑
l=1

N (l)
2l =(

1
2
+

1
2N+1 −2

)
N

∑
l=1

N (l)
2l . (✵)

Now, M>2 implies 1
2+

1
2M+1−2 <

2
3 , and so by (✵) and ∑

N
l=1 N (l)2−l >0 for every

N⩾M, we have

∑
N
l=1 N (l)

∑
N
l=1 2l

<
2
3

N

∑
l=1

N (l)
2l =

2
3

|p|⩽N

∑
p halts

2−|p|,

for all N⩾M. ❑

Corollary 1 (Asymptotic Halting Probability⩽
ΩΩ

2
)

limN→∞

∑
N
l=1 N (l)

∑
N
l=1 2l

⩽
ΩΩ

2
.

Proof :
By taking limits from (✵) in the proof of Theorem 2, we get

lim
N→∞

∑
N
l=1 N (l)

∑
N
l=1 2l

⩽
1
2

lim
N→∞

N

∑
l=1

N (l)
2l =

1
2

∞

∑
l=1

N (l)2−l =
ΩΩ

2
.

❑

Therefore, there is no reason to believe that the halting probability of programs
with length ⩽N is ∑

|p|⩽N
p halts 2−|p|, or, for that matter, that the halting probability (of

“all programs of arbitrary size”) is ∑p halts 2−|p|(=ΩΩ). As pointed out by Chaitin, the
series ∑p halts 2−|p| could be greater than 1, or may even diverge, if the set of programs
is not taken to be prefix-free (what “took ten years until [he] got it right”). So, the fact
that, for prefix-free programs, the real number ∑p halts 2−|p| lies between 0 and 1 (by
Kraft’s inequality, Proposition 1) does not make it a probability of finite strings.

Let us see one of the most recent explanations as to why ΩΩ is considered to be the
halting probability of input-free programs.
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Given a prefix-free machine M, one can consider the ‘halting probability’ of M,

defined by ΩM =∑M(σ)↓ 2−|σ |. The term ‘halting probability’ is justified by the

following observation: a prefix-free machine M can be naturally extended to a

partial functional from 2ω , the set of infinite binary sequences, to 2<ω , where

for X ∈ 2ω , M(X) is defined to be M(σ) if some σ ∈ dom(M) is a prefix of X ,

and M(X) ↑ otherwise. The prefix-freeness of M on finite strings ensures that

this extension is well-defined. With this point of view, ΩM is simply µ{X ∈ 2ω :

M(X) ↓}, where µ is the uniform probability measure (a.k.a. Lebesgue measure)

on 2ω , that is, the measure where each bit of X is equal to 0 with probability 1/2

independently of all other bits. [4, p. 1613]

See [19, p. 207] for a similar explanation. So, the expression “halting probability”
refers to the probability of some real numbers, not of finite binary strings. Let us
consider a randomly given real number α ∈ [0,1]. The probability that α is less than
1/4 is of course 1/4, since the length of [0,1/4) is 1/4. The probability that α is rational
is 0. Let us calculate the probability that the finite string 01001 is a prefix of the
unique infinite binary expansion after 0� of α (see Definition 6). If α is like that, then
α =((0 �01001x1x2x3 . . .))2 for some bits x1,x2,x3, · · · . This means that α belongs to
the interval I{01001} (see Definition 7); so the probability is 1/32 (see Example 7).

Lemma 4 (Probability of Some Events on Real Numbers)
(1) The probability that a randomly given real α ∈ [0,1] has a fixed finite binary

string σ as a prefix in its infinite binary expansion after 0� is ℓ(Iσ ).
(2) The probability that a randomly given real α ∈ [0,1] has a prefix from a

fixed set of finite binary strings S⊆{0,1}∗ in its infinite binary expansion after 0�
is ℓ(

⋃
σ∈S Iσ ).

Proof :
(1) Every such α belongs to the interval Iσ (see Definition 7). So, the probability

is ℓ(Iσ ); cf. [17]. Item (2) follows similarly. ❑

Corollary 2 (Omega Numbers as Probabilities of Real Numbers)
(1) The probability that a randomly given real α ∈ [0,1] has a prefix from a fixed

prefix-free set of finite binary strings S⊆{0,1}∗ in its infinite binary expansion after
0� is ΩS.

(2) Chaitin’s ΩΩ is the probability that the unique infinite binary expansion after
0� of a randomly given real α ∈ [0,1] contains a finite binary strings as a prefix that
is the binary code of a halting input-free program.

Proof :
(1) follows from Lemma 4(2) and Lemma 1(4). Item (2) is a special case of (1)

when S=H (see Definition 3). ❑
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After all, ΩΩ is the probability of something, an event on real numbers.

3.1 Some Suggestions.

Definition 10 (integer code, H )
Every finite binary string σ ∈{0,1}∗ has an integer code defined as ((1σ))2 − 1,

illustrated by the following table.

binary string 0 1 00 01 10 11 000 001 010 011 � � �

integer code 1 2 3 4 5 6 7 8 9 10 · · ·

Let H be the set of the integer codes of all the strings in H (see Definition 3). ✧

Example 9 (integer code)
The integer code of the binary string 01001 is 40, and the finite binary string with

the integer code 25 is 1010 (see Example 6). ✧

Chaitin’s ΩΩ has many interesting properties that have attracted the attention of the
brightest minds and made them publish papers in the most prestigious journals and
collection books. Most properties of ΩΩ, which we proved not to be a probability of
random strings, are also possessed by K=∑n∈H 2−n (see [12, p. 33]). This number
is in the interval (0,1), so it can be a halting probability, with a good measure: for a
set of positive integers S⊆N+, let p(S)=∑n∈S 2−n. Then all the probability axioms
are satisfied: p(N+)=1 and p(

⋃
iSi)=∑i p(Si) for every pairwise disjoint {Si⊆N+}i.

One question now is: why not take this number as a halting probability? Notice that
this has some non-intuitive properties: if E is the set of all the even positive integers
and O is the set of all the odd positive integers, then the probability that a binary
string has an even integer code becomes p(E)=∑n∈E 2−n =1/3, and the probability
that a binary string has an odd integer code turns out to be p(O)=∑n∈O 2−n =2/3,
twice the evenness probability!

For ΩΩ, the geometric distribution (see e.g. [17]) is in play; with the parameter
p= 1/2. Why not take other parameters, such as p= 1/3 and then define a halting
probability as ∑σ∈H 3−|σ | (or ∑n∈H 2 ·3−n)? Note that ∑n>0 2 ·3−n=1, and the num-
ber ∑σ∈H 3−|σ | could be a probability that a randomly chosen σ ∈ Σ ∗ is the code of a
program that halts; notice that Kraft’s inequality applies here too: ∑sσ∈S 3−|σ |⩽1 for
every prefix-free set S ⊆ {0,1}∗. Or, why not Poisson’s distribution (see e.g. [17]),
with a parameter λ? Then, a halting probability could be ∑n∈H

e−λ λ−n

n! . One key re-
lation in defining K is the elementary formula ∑n>0 2−n=1. Let {αn}n>0 be any se-
quence of positive real numbers such that ∑n>0 αn=1. Then one can define a halting
probability as ∑n∈H αn. Most, if not all, of the properties of ΩΩ should be possessed
by these new probabilities.
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The most natural definition, we believe, for a halting probability (if a randomly
chosen binary string is the binary code of an input-free program that eventually halts
after running) is the asymptotic probability (cf. [14,10]): for every n∈N+, count
h̄n the number of halting programs which have integer codes less than or equal to

n. Then define the halting probability to be limn→∞

h̄n

n
if it exists. Note that h̄n is

not computable, so the limit, if any, does not look like a computable number. Note

also that
∑

N
l=1 N (l)

∑
N
l=1 2l

(see Theorem 2) is a subsequence of
h̄n

n
(when n is the num-

ber of all the binary strings with length ⩽ N). Thus, if limn→∞

h̄n

n
exists, so will

limN→∞

∑
N
l=1 N (l)

∑
N
l=1 2l

, and they will be equal. Thus, the (asymptotic) halting proba-

bility will be this number, which we showed to be non-greater than half of Chaitin’s
ΩΩ (see Corollary 1). Or, one can let ℘n be the number of (input-free) programs with
integer codes less than or equal to n. Then the conditional halting probability can be

defined as limn→∞

h̄n

℘n
, which is equal to (limn→∞

h̄n

n
)//(limn→∞

℘n

n
), the ratio of “the

probability of being a halting program” to “the probability of being a program”, if
the limits exist. This seems like a wild, open area to explore.

4 The Conclusion.

Chaitin’s ΩΩ number is not the probability that a randomly given finite binary string is
the binary code of a halting input-free program. It is the probability that the unique
infinite binary expansion after 0� of a randomly given real number in the unit interval
has a prefix that is the binary code of a halting input-free program. There is no unique
halting probability of finite binary strings, and one can get different values for it by
different probability measures (over a fixed prefix-free programming language).
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