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In this paper we present a brief study of the o-set-o-antiset duality that occurs in o -set theory and
we also present the development of the integer space 34 = (24,24 ") for the cardinals

|A| = 2, 3 together with its algebraic properties. In this article, we also develop a presentation of
some of the properties of fusion of o -sets and finally we present the development and definition of a

type of equations of one o -set variable.

1. o-Sets and o-Antisets

As we have seen intl]| an o -antiset is defined as follows:

Definition 1.1. Let A be a o -set, then B is said to be the o -antiset of A if and only if A ® B = (), where & is

the fusion of o -sets.

We must observe that given the definition of the fusion operator @ inlt) it is clear that it is

commutative and therefore if B is an o-antiset of A, then it will be necessary that A is also the o-
antiset of B. On the other hand, following Blizard notation,[Z] p- 347, we will denote B the o-antiset

of Aas B = A~ inthisway we will havethat A = (A7)

Continuing with the development of the o-sets we have constructed three primary o -sets, which are:
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={1
2,3,4,
Natural Numbers 5,6,7,
8,9,
10, ...

NO

= {103
20: 307
0-Natural Numbers 40,50,
60: 707
80a 907
10y, ..

2* , 3* ,
. 4*,5*
Antinatural Numbers I
6*,7",
8*,9%,
10%, ..

where 1 = {a}, 19 = {0} and 1* = {w}, we must clarify that we have changed the letter 8 for the

letter w for symmetry reasons, we must also remember that:
L.Ea€a 1 €EaEQ €.,
and
L EW2EW 1 EWEW Ewy € ...

where both chains have the linear €-root property and are totally different, i.e. they do not have a

link-intersection.

On the other hand, we must remember the definition of the space generated by two o-sets A and

B which is:

Definition 1.2. Let A and B be o -sets. The Generated space by A and B is given by
2428y = {z@y:zc 2 Ay 2B},

where @ is the fusion operator.
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Let us recall a few things about the fusion operator @. To begin this brief analysis, we must observe
that given z, y two o-sets, if {z} U {y} = 0 then it will be said that y is the antielement of z and z the
antielement of y, where the union of pairs U axiomatized within the theory of o-sets is used, in

particular in the completion axioms A and B, which we will call annihilation axioms from now on.

Notation 1.3. Let « be an element of some o -set, then we will denote as =* the antielement of z, in the case

that it exists.

Now we move on to define the new operations with o-sets which will help us define the fusion of o-

sets.

Definition 1.4. Let A and B be o -sets, then we define the x-intersection of A with B by
ANB={z € A:z* € B}.
Example 1.5. Let A = {1,2,3*,4} and B = {2, 3,4"}, then we have that:
ANB = {3*,4}
and
BNA = {3,4"},
it is clear that the x-intersection operator is not commutative.
Theorem 1.6. Let A be o-set, then ANA = 0.
Proof. Let A be a o -set, by definition we will have that
ANA={zc A:z* € A}.

Suppose now that ANA # (), then there exists an 2 € A such that z* € A, therefore we will have that

z,x* € A, which is a contradiction with Theorem 3.39 (Exclusion of inverses) from [11, soif Aisao-

set then
ANA = 0.

Regarding Theorem 1.6, we can observe that given a o -set A the o-set theory does not allow the coexistence
of a o-element x and its o-antielement in the same o-set A, and this is because A is a o-set. However,

since o-set theory is a o-class theory, one can find the o-elements together with the o-antielements
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coexisting without problems in what we call the proper o -class, in this way one will have that {z,z*} is a

proper o -class and not a o -set.
Theorem 1.7. Let A be o-set, then AND = 0 and O)NA = 0.

Proof. Let A be a o -set, by definition we will have that
AND ={z € A:z* €0}.

Now suppose that AN # @, then there exists an z € A such that z* € §, which is a contradiction,

hence AN0D = 0. On the other hand, 0NA C 0 thus we will have that 004 = 0.0

On the other hand, we will define the *-difference between o -sets, a fundamental operation to be able

to define the fusion between o -sets.

Definition 1.8. Let A and B be o -sets, then we define the x-difference between Ay B by
A% B=A—(ANB),

where A—B={zc A:z ¢ B}.

Example 1.9. Let A = {1,2,3*,4} and B = {2, 3,4"}, thenwe have that:

ANB = {3*,4},
therefore

Ax B=A—(ANB) = {1,2,3",4} — {3*,4} = {1,2}

Ax B=1{1,2}.
We also have to

BNA = {3,4*}
therefore

Bx A= B— (BNA) ={2,3,4"} — {3,4*} = {2}
Bx A={2}.

Corollary 1.10. Let A be o-set. Then A x A = A.

Proof. Let A be a o-set, then by Theorem 1.6 we will have that ANA = @ therefore
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AsA=A—(ANA)=A—0= A

O
Corollary 1.11. Let Abe o-set. Then A x ) = Aand 0 x A = 0.

Proof. Let A be a o-set, then by Theorem 1.7 we will have that AN) = PNA = () therefore
AxD=A—(A0)=A-0=A

and
DxA=0—(0NA)=0-0=0.

O

Now after defining the x-intersection and the x-difference we can define the fusion of o-sets as

follows:

Definition 1.12. Let A and B be o -sets, then we define the fusion of A and B by
A®B={z:z€ AxBVz e Bx A}

It is clear that the fusion of o -sets is commutative by definition. Now let us show an example

Example 1.13. Let A = {1,2,3*,4} and B = {2, 3,4"}, then we have that:
A®B={z:z€ AxBVzec Bx A},
A®B={z:z e {1,2} Ve e {2}},
A® B=1{1,2},
therefore we have that
{1,2,3",4} ® {2,3,4"} = {2,3,4"} & {1,2,3",4} = {1,2}.

Corollary 1.14. Let Abe ac-set,then A® A = A.

Proof. Let A be a o -set, by definition we have that,
AdA={z:zc AxAVvzec Ax A}
Now by corollary 1.10, we have that

AdA={z:zc AV c A},
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A A={z:zc A},

thereforeitisclearthat A C A® Aandthat A® A C A, therefore Ad A = A.00
Corollary 1.15. Let Abe o-set,then A® D =0 @ A = A.

Proof. First we will show that A & () = A. By definition we will have that,
Aol={z:zc Ax0Vvzxecdx A}
Now by the corollary 1.11, we will have that
AoD={z:zc Avzecl}
Add={z:z e A},

from this it is clearthat A C A® () andthat A® () C A, inthisway A& () = A.

Second we will show that ) @ A = A. By definition we will have that,
PpA={z:zclxAVvzec Ax0}.
Now by the corollary 1.11, we will have that
leA={z:zcDVvazec A}
A®D={z:z e A},

from this it is clear that A C 0 ® A andthat@ ® A C A, inthisway0® A = A.0J

Theorem 1.16. Let X be a o -set, then for all A, B € 2%, we have that:
A® B=AUB,

where AUB={z:z€ AVz € B}.

Proof. Let Xbeaoc-setand A, B € 2X . Then, by theorem 3.39 of [1l we have that
ANB = BNA =0,
in this way
AxB=ANBxA=B.

FinalyA@ B={z:z€ AVz € B} = AUBO

Corollary 1.17. Let X be a o -set, then for all A € 2%, we have that:
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A X =X.
Proof. Let X beao-set and A € 2%. Then by theorem 1.16 we have that
A X=AUX.
Nowas A C X, then AU X = X, therefore
Ao X =X

O

As we said before the fusion of o-sets @ is commutative by definition but as we demonstrated in [13]

4] this operation is not associative.

Example 1.18. Let A = {1*,2*}, B = {1,2} and C = {1}, then
AoBaC=00C=C
and
A®BaoC=A9B=1,
therefore we have that

(A®@B)@C # A& (BaC).

2. Generated space

As we have already indicated in the definition 1.2 we will have that the space generated by two o-sets

Aand Bis:
(2428 = {z@y:z c 24 Ay e 25},

Now taking into account the duality o -set, o -antiset we could consider the following example.

Example 2.1. We consider the o-set A = {1,2,3} and its o-antiset A~ = {1*,2*,3*} then we obtain the

integer space 34 where,
34 = (24,24,

Is important to observe that

geios.com doi.org/10.32388/FWQK6T


https://www.qeios.com/
https://doi.org/10.32388/FWQK6T

and

24 = {0,{1},{2}, {3}, {1,2}, {1,2},{2,3}, 4}

24 = {07 {1} {2}, 3" 1 {1, 2}, {17, 2}, {2, 3"}, 4 )

Also is important to observe that ) = ()~ , which is very important for the construction of 34.

Now considering the definition of generated space,

=42 = {XoY:Xc2nY c24 },

where the operator & is the fusion of o -sets, we will obtain the following matrix:

e [ 0 {1} {2} (3) [ {12} [ (1,33 | {23} [ A ]
0- 0 {1,2} {1,3} {2,3} A
{1} i {1*,2} {1*,3} {17,2,3} | {2,3}
{27} {1,2"} i {2*,3} {1,3}
{3*} {1,3*} {2,3*} 03 {1,2,3*} {1,2}
{1%,2*} || {1%,2*} {1%,2%,3} 03 {2%,3} {1%,3}

{173} || {1%, 3"} {2,3"} 03 {1*,3}

{2%,3*} | {27,3*} | {1,2%,3*} {1,3*} {1,2*} [

A A {2*,3*} {1*,3*} {1%,2*} 03

Table 1. Integer Space.

It is important to note that from the perspective of o-sets we have that () = )~ = () with

1 €{0,1,2,3,4,5,6,7} and j € {0,1,2,3}, where the difference of the o-emptysets (D; is given by

annihilation, which come from the equation A ® A~ = 0.

From the matrix representation of the integer space 34, we can present another representation of the

same integer space. This representation of the integer space 34 is a graphical representation which we

show in figure 1.
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Figure 1. Integer Space SE

Finally as a theoretical result we have a cardinal theorem:

Theorem 2.2.

Let A = {1,2,3}, then 34| = [(24,24 )| = 3% = 2T.

Proof. Let A = {1, 2,3}, the proof is the same fusion matrix for this o-set. (J

We should also note that we have obtained other cardinal results for the integer space 34 with

|A| € {0,1,2,3,4,5}. The cardinal results are the following:
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o-Set o-Antiset Generated Cardinal
A=0 A" =0 (24,247) P =1
A={1} A™ ={1*} (24,247) 31=3
A={1,2} A ={1",2"} (24,247) 32=9
A={1,2,3} A ={17,2",3"} (24,247) 3% =27
A={1,2,3,4} A ={1*,2",3",4*} (24,247 3t =81
A=1{1,2,3,4,5} A ={1%,2*,3",4",5"} (24,247) 35 =243

From these calculations made with the fusion matrix we can obtain the following conjecture.
Conjecture 2.3. Let A be o-set such that | A| = n, then 34| = |(24,24 )| = 3™

On the other hand, as we have already said, we are going to change the notation of 1¢ to 1y, in this way

we will have the set 0-natural numbers defined as follows:

1o = {0}
20 =9{0,1o}
30 =90,10,20}

40 = {(ba 10720530}

and so on, forming the 0-natural numbers
NO = {]-Oa 207 307 407 503 607 707 807 907 1007 .. ‘}a

where one of the important properties of this o-set is that it does not annihilate with the natural
numbers N nor with the antinatural numbers N, in this way we can consider the following example

for the generated space.

Example 2.4. We consider the o-sets A = {1¢,20} and B = {1,2}, therefore the space generated by

A® Band A ® B~ will be:

<2A€BB,2A®B_> — {w@y cx € 2A@B /\y c 2A@B_}

geios.com doi.org/10.32388/FWQK6T
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<2A®B’ 2A®B?> = {@, {10}a {1}7 {1*}’ {20}’ {2}’ {2*}7 {107 20}’ {107 1}a {107 1*}7
{10a 2}7 {105 2*}’ {207 1}’ {207 1*}a {20’ 2}7 {20’ 2*}7 {17 2}7 {1’ 2*}7 {1*a 2}’ {1*7 2*}a
{1o,1,2},{10,1,2"},{10,1%,2},{10,1%,2"},{20,1,2},{20,1,2"}, {20, 1%, 2},
{20,1%,2"},{10,20,1},{10,20,1%}, {10, 20,2}, {10, 20,2" }, {10, 20, 1,2},
{10,20,1,2%},{10,20,1%,2},{10,20, 17,2 }}
In this case the generated space becomes a meta-space generated by A = {1y,20} and B = {1, 2} which

can be ordered graphically as shown in figure 2.

Figure 2. Meta-space <2A€BB’ 9A®B~ >

Now if we count the number of elements that the meta-space generated by A = {1¢,20} and
B = {1,2} has, we will have that they are 36, where the prime decomposition of this number is
36 = 22 . 32 which is equivalent to the following multiplication of cardinals 36 = 214! . 3|5/ from here

we can obtain the following conjecture:

Conjecture 2.5. Forall A € 2V and B € 2V, then }<2A@B,2A@Bf >’ =24l . 3IBl,
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Example 2.6. We consider A = {1,} and B = {1, 2}, then we obtain that

(227,297 ) = {0, {10}, {1}, {1}, {2}, {2'},

{107 1}7 {105 2}’ {107 1*}’ {107 2*}a {1’ 2}7 {17 2*}7 {1*5 2}’ {1*7 2*}a {107 1; 2}a
{10,1,2*},{1o,1%,2},{10,1%,2"}}

Thus, we have that |A| = 1and | B| = 2 and ‘<2A®B,2A@Bf>’ =24l 318l =21 .32 — 18,
Example 2.7. We consider A = () and B = {1, 2}, then we obtain that
(2497, 24987} — (0,41}, {1}, {2}, {2}, {1, 25, {1, 21 {17, 2 {1, 2 1)

Thus, we have that |A| = 0 and |B| = 2 and ‘<2A®B,2A@Bf>‘ =2l . 3Bl = 20.32 — 9

3. Algebraic structure of integer space 34
With respect to the algebraic structure of the Integer Space 34 for all A € 2V we think that these
structures are related with structures called NAFIL (non-associative finite invertible loops)
Theorem 3.1. Let A = {1,2}, then (34, ®) satisfies the following conditions:

1L (VX,Y € 34) (XY € 34),

2.3 e3) (VX e3)(Xald=00 X = X),

3.(VX e3)AX e (XX =X X=0),

(

4.(VX,)Y €3 (XY =Y @ X)).

Proof. Let A = {1,2}, then we quote the fusion matrix represented in table 2 for 3{1:2},

® 0 {1} {2} {1,2}

0 05 {1} {2} {1,2}
{1} {1} 0} {17,2} {2}
{2"} {2*} {1,2"} 03 {1}
{17,2"} {1,2"} {2"} {1} 03

Table 2. Integer Space 3{1:2}.
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From here it is clearly seen that the conditions (1), (2) and (3) of theorem 3.1 are satisfied, where the

condition (4) is obvious by definition.

We must clarify that since o-set ) = (~, and also 0 = 03 = 0} = 0 = 03, from here we have the
condition (2) and the difference is in another dimension, the dimension of annihilation. Here we must
clarify that the fusion operation @ is not associative. Let X = {1*,2*}, Y = {1,2} and Z = {1} then

we will have that ({1*,2*} & {1,2}) ® {1} = 0@ {1} = {1}
on the other hand
{1, 2}® ({1,2} & {1}) = {1",2*} & {1,2} =0
therefore we have that
XeYV)oZ£Xo (Yo 2),
which shows that the structure (34, ®), is non-associative.
O
We now present a new conjecture.
Conjecture 3.2. Let A € 2N, then (34, @) satisfies the following conditions:
L(VX,Y €34)(X @Y € 34),
2.3 e3) (VX e3dh)( Xl =00 X = X),
3.(VX e3)AX e3)(Xe X =X X =0),
N

4L (VXY €3 (XY =Y @ X)).

4. o-Sets Equations

Continuing with the analysis of the o -sets, we now have the development of the equations of o -sets of
a o-set variable, equations that play a very important role when solving a o-set equation, now let’s

define and go deeper into the o -sets variables.

We must remember that for every o-set A and B, the fusion of both is defined as:
AeB={z:z2€c AxBVzecBxA}

Definition 4.1. Let A be a o-set, then A is said to be an entire o -set if there exists the o -antiset A~.
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Example 4.2. Let A = {10, 20, 30}, then this o-set is not an integer, since A~ does not exist, on the
other hand the o-set A = {1,2, 3,4}, is an integer o-set since A~ = {1*,2*,3*,4"} exists which is the

o-antiset of A.

It is clear that if a o-set A is integer, then by definition there exists the integer space 34. We should
also note that if A is an integer o-set, then [AU A~] is a proper o-class, for example, consider

A=1{1,2},then[AU A"] = [1,2,1*,2*], is a proper o-class.

Definition 4.3. Let A be an integer o -set such that |A| = n, then X is said to be a o-set variable of 34, if

and only if
X ={z1,z2,23,...,Tm },

where m < n and z; a variable of the proper class [A U A~].

Example 4.4. Let A= {1,2,3} be a o-set, it is clear that A is an entire o-set since there exists

A~ = {1*,2*,3*} and therefore 34, in this way we will have that
X=0,
X ={z},
X = {z1, 22},
X = {z1, 22,23},

are o-sets variables of 34, where {z, 1,22, 23} € [1,2,3,1*,2*%,3*].

Lemma 4.5. Let A be an integer o-set and X a o-set variable of 34, then A® X = AU X, with

ACcAUXand X C AUX.

Proof. Let A be an integer o-set and X a o -set variable of 34, then
Ao X={z:zc AxXVzecXxA}
Now we have that
AxX=A
and

XxA=X
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since X is a o-set variable, therefore we will have that
Ao X={r:zcAvee X} =AUX.

We can also observe that A N X = () since X is a o-set variable, therefore A C AU X and X C AU X.

O

Example 4.6. Let A = {1,2,3}, and X be a o-set variable of 34, that is,
X=0
X ={z},
X = {21, 22},

X ={z1,22,23},
are o -sets variable of 34, where {x, z1, x5, 23} € [1,2,3,1*,2%,3*]. then

Ao X ={1,2,3},

A X ={1,2,3,z},
A X ={1,2,3,z1,22},
Ad X =1{1,2,3,z1,23,23}

After the lemma 4.5 we proceed to analyze some equations of a o -set variable and their solutions

Let A be an integer o-set, X a o-set variable and M and N two o -sets of the integer space 34, then an

equation of a o -set variable will be

X®M=N.
Now if M = N, then the equation becomes

XeM=M,

and by the corollary 1.17 we have that the solutions are all X € 2M where we naturally count X = (),

hence we have an equation of a o-set variable with multiple solutions.

Now consider M # N, then the o-set equation becomes:

X@M =N,

geios.com doi.org/10.32388/FWQK6T
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We must remember that the structure in general is not associative, therefore we cannot freely use this
property, so to find the solution to the equation we must develop a previous theorem. To develop this
theorem we will assume that for every integer o-set A then the generated space (24,24 ) = 34, and

also that 34 satisfies the conjecture 3.2.
Theorem 4.7. Let A be an integer o-set, X be a o-set variable of 34 and M € 3“. Then
(XeMeM =X
Proof. Let A be an entire o-set, X be a o-set variable of 34 and M < 34, then by lemma 4.5 we have
that X M = XU M,with X N M = 0.
Therefore we have that

®XeM)eM ={a:ac(X®&M)xM VacM x(X&M)}
={a:ac(XUM)%xM Vac M x(XUM)}

s0
(XUM)x M~ =(XUM)— (XUM)ANM~ = (XUM) - M = X,
and
M % (XUM)=M -M N(XUM)=M —-M =0.

Now replacing these calculations in (®) we will have that
XeM)oM ={a:ac XVacl}
XeM)eM ={a:ac X},
(XeM)oM =X

O

Now that theorem 4.7 has been proved, we can solve some o-set equation for the integer o-set
A = {1,2}, since the generated space is effectively equal to 34, that is, (24,24 ) = 34, and also 34 is a

non-associative abelian loop.

Let A = {1,2} be an integer setand M, N € 34, then the equation
X®M =N,

has the following solution

XoM=N\&M".
(XeM)eM =NeM",

geios.com doi.org/10.32388/FWQK6T
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then by theorem 4.7 we will have that
X=NoM".

Let us now show a concrete example for A = {1,2}.

Example 4.8. Let A = {1,2} be an integer o-set, M = {1,2*} and N = {1}, then the equation of a o-set

variable
Xo{1,2'} ={1}

has the following solution.

Xo{1,2"} = {1} \ &{1", 2},
Xe{1,27}) e{1%,2} = {1} & {12},
X ={2}.
Here we can see that the equation has as solution the o-set S1 = {2}, since

{2re{1,2"} = {1},

but like the equation X & M = M, this one does not have a unique solution since the o-set Sy = {1,2}, is

also a solution for the equation of a o -set variable,
{1,2}® {1,2"} = {1}.
In this way we have two solutions for our equation of a o -set variable which are:
S = {S1,82} = {{2},{1,2}}.

Before we conclude our study of o-sets and o -antisets we are going to present a conjecture regarding

the possible solutions of a particular type of equations of a o-set variable.

Conjecture 4.9. Let A be an integer o-set, X a o-set variable of 34, and M, N € 34, then a solution of the

equation
X®M=N,

isS=NeM-.

Let us look into the following case, where M = {1*} and N = {1}, so for the equation

Xeo {1} ={1},

geios.com doi.org/10.32388/FWQK6T
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there is no element z such that {z,1*} = {1}. This lead us into a more general case where N C M~ or
N D M, being the conjecture false, which take us into establishing the following condition in order

for this type of equation being solvable.

Definition 4.10. A o -set equation X & M = N is said to be fusionable if MON = 0.

With this, let us conclude with a bounded theorem to find some solutions of the o -set equation.
Theorem 4.11. Let A be an integer o-set, X a o-set variable of 34, and M, N € 34, then two possible
solutions S = {S1, S2} of the fusionable equation

X@ M =N,

areS;=N®R and Sy = R~,where R: =M ®d N".

Proof. For the first solution S; we have that

S1=No®&R™
=No(MoN )
=No(NeM)
=Ne M,
where Sy = (M @ N~)~ = N @ M~ because of the result iteration seen above. Hence both results are

actually a fusion solution for X & M = N, where S; = R~ is an exact solutionand S; = N @ R~ isan
intersected rest solution. Because of MNN = @ (Definition 4.10) as the equation X & M = N is

fusionable, both S; & M and S, & M will be fusionable into another o-set N. (]

As we looked above, the solution space is reduced such that the solutions are indeed N & M ~, being
by consequence possible solutions for the fusionable equation X & M = N.
Example 4.12. Let A = {1,2,3,4,5,6} be an integer o-set, M = {1,2,3*,4*,5,6*} and N = {1,2}, then

the equation of a o -set variable
X®{1,2,3",4%,5,6"} = {1,2},

which is fusionable because MON = {1,2,3*,4*,5,6*}1{1,2} = 0.
Now, by using Theorem 4.11, let us first obtain

R=(M&N")
=({1,2,3*,4*,5,6*} & {1,2} )"
= ({1,2,3*,4%,5,6*} @ {1%,2°})"
= ({3*,4%,5,6"})"

= {3,4,5%,6},
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soweget S;=N® R =1{1,2,3,4,5*,6} and S, = R~ = {3,4,5*,6}, which can be easily proved that
both solutions gives SitoM=5eM=N as a resulting o-set. Hence

S =1{{1,2,3,4,5*,6},{3,4,5*,6}} is a solution set for the fusionable equation X & M = N.
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