
Star-Agents: Automatic Data Optimization with LLM
Agents for Instruction Tuning

Hang Zhou1,2, Yehui Tang2, Haochen Qin2, Yujie Yang2, Renren Jin1,
Deyi Xiong1∗, Kai Han2∗, Yunhe Wang2∗

1College of Intelligence and Computing, Tianjin University, Tianjin, China.
2Huawei Noah’s Ark Lab.

{zhouhang25, yehui.tang, qinhaochen1, yangyujie26}@huawei.com,
{rrjin, dyxiong}@tju.edu.cn, {kai.han, yunhe.wang}@huawei.com.

Abstract

The efficacy of large language models (LLMs) on downstream tasks usually hinges
on instruction tuning, which relies critically on the quality of training data. Un-
fortunately, collecting high-quality and diverse data is both expensive and time-
consuming. To mitigate this issue, we propose a novel Star-Agents framework,
which automates the enhancement of data quality across datasets through multi-
agent collaboration and assessment. The framework adopts a three-pronged strategy.
It initially generates diverse instruction data with multiple LLM agents through a
bespoke sampling method. Subsequently, the generated data undergo a rigorous
evaluation using a dual-model method that assesses both difficulty and quality.
Finaly, the above process evolves in a dynamic refinement phase, where more
effective LLMs are prioritized, enhancing the overall data quality. Our empirical
studies, including instruction tuning experiments with models such as Pythia and
LLaMA, demonstrate the effectiveness of the proposed framework. Optimized
datasets have achieved substantial improvements, with an average increase of 12%
and notable gains in specific metrics, such as a 40% improvement in Fermi, as
evidenced by benchmarks like MT-bench, Vicuna bench, and WizardLM testset.
Codes will be released soon1.

1 Introduction

The research and development of natural language understanding and generation have been dramat-
ically accelerated with the emergence and prevalence of LLMs [39, 31, 30]. These models have
been extensively applied in a wide range of scenarios, e.g., question answering and text generation,
significantly enhancing downstream task performance due to their exceptional ability to follow
instructions [3, 53, 49, 10, 28]. Such an instruction-following capability is primarily acquired through
a process known as instruction tuning [40, 23, 5], where LLMs are fine-tuned on instruction data. It
is hence widely acknowledged that the quality of instructions plays a pivotal role [5, 20, 48, 29].

Historically, the creation of instruction data for training LLMs has heavily relied on the expertise of
human annotators, as evidenced by substantial scholarly contributions [14, 50, 41, 38, 9, 27, 21].While
expert-driven data generation assures the production of high-quality instructions, the enormous
volume of data necessary for effective training renders this method economically untenable. In
response, recent efforts have shifted towards the utilization of LLMs to automatically generate
instructions, thereby mitigating the reliance on costly human annotation [37, 32, 44, 18]. Concurrently,

∗Corresponding authors.
1https://github.com/CANGLETIAN/Star-Agents

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

ar
X

iv
:2

41
1.

14
49

7v
1

 [
cs

.C
L

]
 2

1
N

ov
 2

02
4

Preprint — https://doi.org/10.32388/FZGMPF

there is a growing emphasis on the generation and selection of challenging examples, grounded in
the belief that more complex and difficult instructions can substantially elevate model capabilities
[22, 17].

Despite the clear advantages of using LLMs for data generation, several challenges persist in this
strategy. Primarily, previous efforts often depend on a single LLM, resulting in data that may lack
stylistic variety [4] and encompass a limited range of difficulty levels , which may not be ideal for all
models. Additionally, there is a trend towards the creation of exceedingly complex instructions [19,
44, 18], which may surpass the operational capabilities of models with small parameter scale, thereby
hindering their ability to fully capitalize on the data’s potential for performance enhancement.

To address the aforementioned challenges, we propose the Star-Agents framework, an advanced
automatic data optimization system specifically designed to learn and refine instruction samples with
suitable complexity and diversity for target LLMs. The framework consists of three main components.
First, to increase the diversity of generated data, an instruction data rewriting process involving
multiple advanced LLM agents is proposed. This process samples different LLM agents for rewriting
instructions and responses separately (referred to as agent-pairs). Next, to select high-quality samples,
the generated data undergo a dual-model evaluation function with appropriate complexity as the
selection metric. Finally, to balance data diversity and quality, the sampling probability of agent-pairs
is adjusted and evolved based on the composite scores of the selected data, identifying agent-pairs
that generate high-quality data.

Extensive experiments are conducted to evaluate instruction-following capabilities of LLMs on a
variety of benchmark datasets, including MT-bench [54], Vicuna-bench [54], and the WizardLM
testset [44]. Instruction tuning experiments with LLMs such as Pythia and LLaMA, demonstrate
the effectiveness of the Star-Agents framework. LLMs trained on data generated by Star-Agent
outperform those (the same LLMs) trained on the Evol-Instruct dataset [44] or data selected according
to the Instruction-Following Difficulty (IFD) metric [20]. Significantly, the optimized datasets
have resulted in an average performance improvement of 12%, with some metrics such as Fermi
demonstrating gains of over 40%.

2 Related Work

Our work is related to both instruction data generation and selection. We briefly review these topics
within the constraint of space.

Instruction Data Generation Datasets like Dolly [7] and OpenAssistant [15] are built from human-
generated instruction data. The ShareGPT dataset, built from conversations between humans and
ChatGPT, has been effectively used to improve the instruction-following performance of fine-tuned
models [6]. Both Self-Instruct [36] and Alpaca [33] leverage the generation capabilities of GPT-3
to expand seed instructions. The generated instructions undergo filtering to eliminate low-quality
instructions while the kept instructions are used to fine-tune the model to enhance the model’s ability
to respond to instructions. Baize [45] proposes a self-dialogue framework, using questions from
popular Q&A websites as starting topics, then having LLMs converse with themselves. CAMEL
[16] introduces a role-playing framework where LLMs discuss a given topic when playing a role
as either “user” or “assistant”. UltraChat [8] uses real-world named entities combined with various
text-writing tasks to generate diverse and high-quality multi-turn dialogues for LLMs. Lion [13]
introduces the concept of adversarial distillation, using the Imitation-Discrimination-Generation
stages to iteratively generate data, refine existing instructions, and produces more complex and
diverse instructions to expand the capabilities of the student model. Evol-Instruct [44] uses five
manually designed prompts to explicitly guide LLM in rewriting existing simple instructions into
more complex ones. The WizardLM model, trained with Evol-Instuct, ranks highly on MT-Bench
[54], highlighting the importance of data quality in training effective LLMs.

Instruction Data Selection With the aforementioned methods, it is not difficult to use LLMs to
generate large instruction tuning datasets at low cost. However, for instruction-tuned language models,
data quality is more crucial than quantity. In this aspect, ALPAGASUS [5] evaluates the effectiveness
of instruction data by leveraging ChatGPT. INSTAG [24] automatically generates tags for instruction
samples with ChatGPT and keeps diversity by selecting subsets with more tags. Cherry LLM [20]
pioneers the self-guided approach, using the IFD metric to measure the difficulty for an LLM to learn

2

Step 2
Evaluating Tailored Data via a Dual-model Strategy

Step 1
Generating

Diverse Data

Step 3
Evolving

Star-Agents

Tailored Data

Seed Data

LLM Evaluation
Dual-model

Evaluation

Small

Model

Large

Model

Instruction: Given some binary…

Agent-Pair 1 Response: The suitable

machine learning ……

Agent-Pair 2 Response: A suitable

machine learning ……

Agent-Pair 3 Response: For binary

classification tasks,……

LLM

Update

Star-Agents

Star-Agents

Seed

Data

Instruction

Memory

Bank

Instruction: Given some binary classification data, identify a suitable machine learning model

that can be applied to this task.

Agent-Pair 1 Response: The suitable machine learning models for binary classification tasks

include: 1) Logistic regression: It is a statistical method that uses a logistic function to model

a binary dependent variable.……

Agent-Pair 2 Response: A suitable machine learning model for this task would be a Random

Forest Classifier. This model is effective in handling both categorical and numerical data, and

can handle large datasets with high dimensionality..…….

Diverse Data

……

Agent-Pair 3 Response: : For binary classification tasks, several machine learning models are

suitable, depending on the size of the dataset, complexity of the problem, and the availability

of features.…….

Star-Agents

Seed

Data

Instruction

Memory

Bank

+0.01%

Agent-Pair 1

Instruction: …

Add

Figure 1: The diagram of the Star-Agents Framework. Step 1 is designed to gather diverse instructions
and responses as shown in Appendix A.3. Step 2 focuses on selecting high-quality, tailored data from
the data collected in Step 1. Finally, Step 3 aims to enhance the effectiveness and efficiency of the
data generation process by evolving the Star-Agents framework.

an instruction sample. This allows to select instruction samples that significantly enhance training
efficiency without resorting to an external model. DEITA [22] first uses ChatGPT to evaluate the
complexity and quality of samples, then assesses the diversity of samples based on the distance
between model embeddings, thereby guaranteeing complexity, quality, and diversity in the subset.
LIFT [46] first guides GPT-4 to generate challenging instructions to expand the data distribution and
then uses dimensionality reduction and row variance analysis to select representative high-quality
data, where GPT-4 generates a quality score for each instruction. LESS [43] first stores the gradient
features of samples in the dataset, then calculates the similarity between a small number of samples
from the target task and the training data samples. Based on the calculated similarity scores, it selects
the training samples whose gradient features are most similar to those of the target task samples
as the fine-tuning instances. Data selection not only improves training efficiency but also prevents
low-quality or poison data from undermining model performance by filtering them out [47].

3 Star-Agents

The aim of our research is to construct a high-quality dataset T of tailored complexity for the target
LLM through the enhancement of an initial seed dataset S = (Ii, Ri)

N
i=1, consisting of instruction-

response pairs (I,R).
To this end, we introduce the Star-Agents Framework, depicted in Figure 1, which is segmented
into three steps. The first step leverages a spectrum of advanced LLMs, each trained independently.
These models are engaged in a dynamic interaction to generate a diverse data candidate set D(Si)
by sampling agent-pair derived from Si as detailed in Section 3.1. Following this, we apply a dual-

3

model evaluation strategy π(·) to meticulously extract the most suitable data from D(Si), aiming to
substantially elevate the target model’s performance. This process is elaborated in Section 3.2. To
enhance the effectiveness and efficiency of the Star-Agents framework in generating tailored data, we
have developed an evolutionary strategy for the Star-Agents, as discussed in Section 3.3. After these
three steps, a tailored high-quality dataset T is obtained from the seed dataset, which is formulated
as:

T = {arg max
d∈D(Si)

π (D(Si)) | i = 1, 2, · · · , N}. (1)

3.1 Generating Diverse Data

To improve the instruction-tuned model, it is crucial to assemble a high-quality and diverse instruction
dataset [22]. Traditional methods often use a single LLM, such as ChatGPT, for data enrichment.
In contrast, our approach employs multiple LLMs to avoid monotonous data distribution. This
multifaceted strategy also addresses the limitations and risks of quality degradation on domain-
specific tasks associated with using a single model. To counter these challenges, we propose to use
an Agent-Pair strategy.

Agent-Pair. Utilizing a spectrum of LLMs, each trained with discrepant setting, facilitates the
generation of varied responses to given instructions. This diversity is crucial for synthesizing a dataset
characterized by high richness [24].

The Star-Agents framework strategically pairs different LLMs to rewrite the instructions in the
seed dataset and generate new responses to increase the diversity. With agent-pair (AI

j , A
R
k), a new

instruction data can be generated as follows:

fj,k (Ii, Ri) = (AI
j (Ii), A

R
k (Ri)), (2)

where AI and AR represent the agents that rewrites the instruction and response to the instruction,
respectively.

Given the high cost of deploying all agent-pairs, a feasible solution to balance cost and agent diversity
is to sample a subset of agent-pairs from the Star-Agents for data generation. Equation 3 formulates
this process, where D is collected dataset generated by performing f over all sampled pairs (AI

j , A
R
k)

of instruction agents AI
j and response agent AR

k with sampling probabilities pjk:

D (Si) = {fj1,k1
(Si) , · · · , fjM ,kM

(Si) | (jm, km) ∼ pjk,m = 1, 2, · · · ,M}, (3)

M is number of agent-pairs sampled for a single seed sample. The sampling probability pjk is
initialized as a uniform distribution and will be updated using the method described in Subsection 3.3
during data generation. Meanwhile, an Instruction Memory Bank that stores high-quality instructions
will be updated. To ensure the lower bound of data quality, each iteration will consistently call a fixed
set of agent-pairs, referred to as base agent-pairs.

3.2 Evaluating Tailored Data via a Dual-model Strategy

Identifying and selecting tailored data from a diverse dataset is crucial for enhancing model per-
formance, especially since the presence of low-quality data can impede model functionality. It is
acknowledged that data samples that are lengthy, complex, and challenging significantly benefit the
instruction tuning process [22].

Nevertheless, too complex instruction data may be not necessarily benefit model performance. We
have observed that for models with 14M and 70M parameters as illustrated in Figure 2, the Evol-
Instruct dataset, though more challenging than the Alpaca dataset, results in diminished model
performance. This suggests that intricate examples may surpass the capabilities of small models and
be harmful for model performance, despite the advantages of using complex data for large models.

4

0 50 100 150
1.2

1.4

1.6

1.8

2

2.2

Datasets

Alpaca

Evol-Instruct

Model Size (M)

P
e
r
fo

r
m

e
n
c
e

Figure 2: Performance comparison of varied-
scale models on the Alpaca and Evol-Instruct
datasets. The tasks from the Evol-Instruct dataset
are more complex than those from Alpaca.

IFD

Complexity

Large model

Small model

Figure 3: Illustration of dual-model evaluation.
Data with a significant gap between the IFD
scores of the small and large models will be pri-
oritised.

Dual-model Evaluation. To address the issue mentioned above, we propose to use a larger model
to evaluate the difficulty of data instances together with the evaluation from a smaller model (target
LLM), hence termed as dual-model evaluation. Inspired by Cherry LLM [20], we employ the IFD
metric to measure the degree of difficulty a data sample presents to the target model, which is
calcuated as

IFD(Ii, Ri) =
exp

(
− 1

|Ri|
∑

w∈Ri
logP (w|Ii)

)
exp

(
− 1

|Ri|
∑

w∈Ri
logP (w)

) . (4)

We assume that for the same sample, stronger model yields a smaller IFD score. When the IFD
scores of the two models are close to each other, it indicates that the sample is either too simple or
too complex, which is not contributive to effective learning. However, when their IFD scores differ
significantly, it indicates that the data is sufficiently complex for the smaller model but still within the
capability range of the stronger model. This is a tailored complexity for facilitating learning. The
above data assessment method is illustrated at Figure 3 and formulated as

πi
dual =

IFDsmall(Ii, Ri)− IFDlarge(Ii, Ri)

max
1≤i≤m

(IFDsmall(Ii, Ri)− IFDlarge(Ii, Ri))
. (5)

Noising data can be endowed with high score since the dual-model metric considers only the relative
complexity with the neglect of generation quality. To address this issue, we utilize an LLM as referee
for data sample scoring. This involves comparing each data sample in the same batch of diverse data
samples generated by selected agent-pairs against a base data sample generated by base agent-pairs.
There are three potential outcomes: the base data sample is better, the diverse data sample is better,
or a tie, as shown in Appendix A.1. These outcomes are quantitatively assigned as quality scores,
thereby avoiding collecting noising instruction samples:

πllm =

0, if the base data sample is better,
1, if the generated data sample is better,
0.5, if tie.

(6)

Finally, the evaluation scores from both the LLM and the dual-model evaluation are combined to
compute a final composite score:

π = πllm · πdual. (7)

This score determines the overall quality and suitability of data for enhancing the model’s capabilities.
The highest scoring data sample is then selected into dataset T and Instruction Memory Bank as
detailed in Section 3.3, ensuring that the chosen dataset maximizes potential improvements in model
performance.

5

3.3 Evolving Star Agents

As mentioned in Section 3.1, we use the joint probability of instruction agents and response agents to
regulate the invocation of each agent-pair. Considering the abilities and specialities of each LLM
vary, however, sampling each agent-pair with the same probability is not optimal. We hence use
the score from Section 3.2 to dynamically evolve the sampling probability. Additionally, since the
generation performance of agent-pairs is task-dependent, we also propose an Instruction Memory
Bank to select the most suitable agent-pair for particular tasks.

Agent-Pair Sampling Evolution. Section 3.2 has introduced the score π, which effectively esti-
mates the quality of generated samples. During each iteration, if the generated samples are of high
quality, we will increase the sampling probability of the selected agent-pair, which is updated as
follows:

p̃jk = pjk + β · π(Ii, Ri),

pjk ←
p̃jk∑
j,k p̃jk

.
(8)

The updated sampling probability for the agent-pair of the j-th instruction agent and k-th response
agent that successfully process the i-th data sample will be used in the next iteration, where β
denotes the evolution rate.This formula adjusts the sampling probabilities based on the effectiveness
demonstrated by agent-pairs in generating relevant data. Iterative updates ensure that as the synthesis
process advances, the probability of selecting more effective agent-pairs increases, while less effective
pairs are gradually phased out.

Instruction Memory Bank Evolution. We establish an Instruction Memory Bank storing high-
quality instructions aiming to accelerate sampling and relate the evolution with task data. When
processing a data sample (Ii, Ri), we perform a query in the Instruction Memory Bank for Ii,
retrieving the top n closest matches according to embedding similarity. The associated agent-pairs,
identified as highly proficient for tasks similar to Ii, are then sampled. We sample l agent-pairs from
this pool using normalized probabilities to generate diverse data. Moreover, to foster the creation
of a diverse dataset, additional M − l agent-pairs are sampled from the remaining pool using their
respective probabilities to assist in data synthesis. As a result, M new samples are generated and
then feed for data assessment. Subsequently, the Instruction Memory Bank will continuously evolve
by incorporating tailored high-quality data, which get high socres as introduced in Section 3.2.

4 Experiments

We conducted extensive experiments to evaluate the proposed Star-Agents framework. A wide range
of LLMs, benchmark datasets were used in our experiments to guarantee the robustness of our
evaluation.

4.1 Setups

Datasets. In alignment with the WizardLM [44], we adopted the Supervised Fine-Tuning (SFT)
dataset, designated as the Evol-Instruct dataset, which consists of 70,000 instruction-response pairs.
The instructions in this dataset were refined using “In-Depth Evolving” and “In-Breadth Evolving”
methods, which were tailored to enhance the base instructions by adding intricate details or expanding
the overall scope, respectively. To guarantee the fidelity of the data, ChatGPT was also integrated
as generator into the refinement process. The quality of the instruction data from the Evol-Instruct
dataset has been validated as superior [44, 25]; hence, our research continues to leverage these
refined instructions. Employing the Star-Agents framework, our study invokes multiple LLMs
to generate diverse and high-quality responses for these instructions. For further enriching our
comparative analysis, we employed the Alpaca dataset [32], comprising 52,000 instruction-following
samples. This dataset, developed under the self-instruct paradigm, utilizes the ChatGPT2 instead of
text-davinci-003 for a fair comparison [44].

2https://chatgpt.com/

6

Table 1: Typical LLMs utilized in Star-Agents.

Model Famliy Model Size Data Size Method Source

Phi [11] 2.7B 1.4T Pretrain Microsoft
ChatGLM [51] 6B 1T+ SFT & RLHF Zhipu AI
Gemma [34] 7B 6T SFT & RLHF Google
Mistral [12] 7B - SFT Mistral

Qwen [1] 14B - SFT & RLHF Alibaba
ChatGPT - - SFT & RLHF OpenAI

Models. In response to the growing need for cost-effective inference of LLMs at the edge, our
study explores the capabilities of target models scaled at 1B and 7B parameters. The 1B models,
specifically the Pythia-1B [2], were trained on roughly 300 billion tokens derived from the Pile
dataset. The 7B models, represented by the Llama-2-7B [35], were trained on an extensive corpus of
2 trillion tokens.

During our experiments, we integrated as generator a diverse array of LLMs, as detailed in Table
1. Our hypothesis posits that models from different development teams possess unique capabilities,
yielding rich responses to identical prompts due to the diversity in their training data and strategies.
For instance, the Phi2 [11] employed 1.4T tokens of meticulously curated textbook-like data without
undergoing Reinforcement Learning with Human Feedback (RLHF) while the Gemma [34] was
trained on 6T tokens primarily sourced from English web documents, mathematical content, and
code, with subsequent fine-tuning through SFT and RLHF. To ensure the diversity and quality of
generated data, we assembled LLMs trained by different teams, widely regarded for their exceptional
performance. In pursuit of fostering the generation of data across varying levels of difficulty, the
utilized LLMs range from 2.7B to 14B parameters, including even larger models via API access. For
a fair comparison with the Evol-Instruct dataset, the most capable model employed was the ChatGPT,
which was also used for generating responses within the Evol-Instruct dataset. Notably, the ChatGPT
was also served as evaluator to compute the comparison score πllm.

Benchmarks. To rigorously evaluate the instruction-following capabilities of AI models, we utilized
three widely used benchmarks: MT-bench, Vicuna-bench, and the WizardLM testset. Specifically,
MT-bench and Vicuna-bench are designed to test the models’ competencies in various complex
cognitive tasks, including mathematics, reasoning, complex format handling, and writing through
both multi-turn and single-turn dialogues. The WizardLM testset, conversely, extends the evaluation
to encompass diverse fields such as technology, biology, and law. It also features varied difficulty
levels to facilitate a more nuanced comparison of models’ performance disparities. Following
established protocols, we employed the Fast-Chat [54] to assess model performances, with GPT-4
acting as the judge model.

Baselines. For baseline comparisons, we employed the Pythia-1B and Llama-2-7B, both trained
using the Evol-Instruct datasets. The Alpaca datasets were also referenced for comparative analysis,
alongside IFD [20] and Random select as an additional comparsion for data selection methods.

Implementation Details. We fine-tuned our models (Pythia-1B and Llama-2-7B) over three epochs
using the Adam optimizer, with an initial learning rate of 2× 10−5, a maximum token count of 2048,
and a batch size of 64. For the Star-Agents, 10 agent-pairs were employed.

4.2 Main Results

GPT-4 Automatic Evaluation Based on the findings summarized in Table 2, comprehensive
training sessions were conducted for the Pythia-1B and Llama-2-7B models utilizing three distinct
datasets: Alpaca, Evol-Instruct, and the optimally refined Star Instruct datasets. The latter was
developed through the application of Star-Agents, which are derivatives of the Evol-Instruct datasets.
Through comparative analyses with other contemporary state-of-the-art models, we observe that the
SFT-aligned models employing the Star Instruct datasets consistently outperform nearly all aligned
counterparts, across all evaluated model families.

7

Table 2: Results of different models on Vicuna-bench, WizardLM testset and MT-Bench.

Model Vicuna-Bench WizardLM testset MT-Bench Average
1B Models

Pythia-1B [2] 1.68 1.34 1.17 1.40
OPT-1.3B [52] 2.49 1.64 1.12 1.75
Sheared-LLaMA-1.3B [42] 2.73 1.86 1.59 2.06
Pythia-1B-alpaca 4.14 2.97 2.20 3.10
Pythia-1B-evol_instruct 5.07 3.55 2.56 3.73
Pythia-1B-IFD [20] 4.60 3.21 1.98 3.26
Pythia-1B-Random 5.13 3.39 2.35 3.62
Pythia-1B-star_instruct 5.93 3.90 2.69 4.17

7B Models
Llama-2-7B [35] - - 3.95 -
zephyr-beta-sft [22] - - 5.32 -
mpt-7B-chat [22] - - 5.45 -
XGen-7B-8k-Inst [26] - - 5.55 -
sRecycled-Wiz-7B-v2 [17] - - 5.56 -
Llama-2-7B-alpaca 6.33 5.08 3.63 5.01
Llama-2-7B-evol_instruct 7.27 6.57 5.21 6.35
Llama-2-7B-star_instruct 8.24 6.87 5.74 6.95

generic

knowledge

roleplay

common-sense

fermicounterfactual

coding

math

writing

0 2 4 6 8 10

model Llama-2-7B-star_instruct

Llama-2-7B-evol_instruct

(a) Vicuna-bench

writing

roleplay

reasoning

math

coding

extraction

stem

humanities

0 2 4 6 8 10

model Llama-2-7B-star_instruct

Llama-2-7B-evol_instruct

(b) MT-bench

Figure 4: Radar plot of detailed scores for Llama-2-7B-star_instrcut against the major baseline on
different subtasks of (a) Vicuna-Bench and (b) MT-Bench.

Notably, at the 1B scale, models trained with the Star Instruct dataset demonstrate significant
superiority, surpassing baselines across diverse evaluation datasets. Remarkably, in comparison to
models trained with the Evol-Instruct dataset, those utilizing Star Instruct achieve an average absolute
improvement of approximately 0.45, which is corresponding to a performance enhancement of about
12%. Additionally, when compared to models trained with the Alpaca dataset, our framework achieves
an absolute improvement of 1 point, thereby affirming that the Star Instruct dataset is particularly well-
suited for the Pythia-1B model, significantly boosting its operational efficacy. Additionally, within the
7b model category, the Llama-2-7B-star_instruct outperforms the sRecycled-Wiz-7B-v2 [17], which is
trained on the Evol-Instruct dataset enhanced by Selective Reflection-Tuning. Figure 4a illustrates the
Llama-2-7B-star_instruct’s performance enhancements across nine metrics, with notable substantial
improvements in math, coding and fermi problem-solving, where improvements surge up to 40%. A
similar phenomenon can be observed in Figure 4b. Additionally, comparative examples of single-turn
and multi-turn dialogues are provided in Appendix A.2, and the performance on the Open LLM
Leaderboards of LLMs can be found in Appendix A.4.

8

Table 3: Impact of different components.

Components Average Score
Diversity Data selection Evolutiuon

✓ ✓ ✓ 4.17
✓ ✓ ✕ 3.97
✓ ✕ ✕ 3.62
✕ ✕ ✕ 3.73

Table 4: Imapct of the selection method.

Model Average Score
Pythia-1B-evol_instruct 3.73
Pythia-1B-IFD [20] 3.26
Pythia-1B-Random 3.62
Pythia-1B-star_instruct 4.17

0 10k 20k 30k 40k 50k 60k 70k

0

0.1

0.2

0.3

0.4
Agent-Pairs

Mistral-ChatGPT

ChatGLM3-ChatGPT

ChatGPT-0613-ChatGPT

Phi2-ChatGPT

Iteration

S
a
m

p
li
n
g
 P

r
o
b
a
b
il
it
y

Figure 5: Evolution of the typical Agent-Pairs.

4.3 Ablation Study

Main Components. As illustrated in Table 3, we conducted ablation experiments on the three
principal components within the Star-Agents framework. Results indicate that models using solely
diversified datasets with random sampling yield a bit lower performance than the baseline. This
occurs because the baseline employs data generated by ChatGPT, which is of high quality. In contrast,
the diversified datasets draw from a variety of sources, making it challenging to ensure uniformly
high quality. Thus, random sampling may introduce low-quality data, leading to diminished model
performance. The inclusion of a data selection module subsequently leads to a recovery in model
performance, suggesting that this module effectively selects high-quality data suitable for the model.
Integration of the evolution strategy also provides a significant improvement, demonstrating that
the evolution module can effectively select the most appropriate data generation agent-pairs from a
complex array of candidate agent-pairs.

Selection Method. As demonstrated in Table 4, we evaluated a range of conventional selection
methods, including both random selection and strategies informed by the IFD [20]. Our dual-model
selection strategy significantly outperforms these approaches. Compared to random selection, our
method achieves a significant improvement, registering an improvement exceeding 0.5 points on
average across a variety of test sets. When compared with the IFD approach, our enhancement
approaches a 0.9 point. These findings robustly validate the effectiveness of our dual-model selection
strategy, illustrating its superior performance in refining model selection precision using diverse
evaluation metrics.

Evolution. As depicted in Figure 5, we analyzed the sampling probability curves of typical agent-
pairs throughout an iterative evolutionary process. Initially, each agent-pair began with a sampling
probability of approximately 10%. Due to its robust performance, the Mistral-ChatGPT receives
consistent rewards, which leads to a gradual increase in its sampling probability. By the completion
of about 70,000 iterations, this probability has escalated to 30%. In stark contrast, the Phi2-ChatGPT
undergoes a steady decline over the same period, with its sampling probability ultimately plummeting
to near zero as it is progressively phased out. Concurrently, the ChatGLM3-ChatGPT exhibits a
relatively stable trajectory, albeit with a slight downward trend. Evolutionary trajectories present
significant discrepancy indicating different generation suitability of different generators on different
tasks, where all the differences are captured by our evolution mechanism.

9

5 Conclusion

In this paper, we have presented the Star-Agents framework, an automated system for optimizing data
to be optimally challenging for target LLMs. This framework has been applied to the open-source SFT
datasets, and we conduct training sessions on a variety of model families, adjusting the data to enhance
its efficacy. Our empirical investigations include a series of instruction tuning experiments that utilize
both multiple baselines and specially optimized datasets on well-known models such as Pythia
and LLaMA. Extensive experiments confirm the substantial impact of our method: the optimized
tailored datasets result in an average performance enhancement of approximately 12%, with certain
metrics, especially those involved in Fermi problem tasks exhibiting increases exceeding 40%, as
substantiated by results on benchmarks such as MT-bench, Vicuna bench, and the WizardLM testset.
These findings underscore the premise that strategically diverse and tailored data can profoundly
improve model alignment and performance. In conclusion, our research details a highly effective
automated framework that significantly augments dataset functionality, thus fostering more efficient
model alignment.

Limitations. Our approach achieves remarkable performance improvements on single-turn instruc-
tion datasets. However, it has not yet been evaluated on multi-turn conversations. We hence leave
the evaluation on multi-turn instruction datasets and validation on datasets with domain-specific
instructions to our future work.

Acknowledgements

The present research was partially supported by the National Key Research and Development Program
of China (Grant No. 2023YFE0116400). We would like to thank the anonymous reviewers for their
insightful comments.

References
[1] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,

Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[2] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia:
A suite for analyzing large language models across training and scaling. In International Conference on
Machine Learning, pages 2397–2430. PMLR, 2023.

[3] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie. A
survey on evaluation of large language models, 2023.

[4] Justin Chih-Yao Chen, Swarnadeep Saha, Elias Stengel-Eskin, and Mohit Bansal. Magdi: Structured
distillation of multi-agent interaction graphs improves reasoning in smaller language models. arXiv
preprint arXiv:2402.01620, 2024.

[5] Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data. arXiv
preprint arXiv:2307.08701, 2023.

[6] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April 2023), 2(3):6, 2023.

[7] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open instruction-tuned llm.
Company Blog of Databricks, 2023.

[8] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. Enhancing chat language models by scaling high-quality instructional conversations. arXiv
preprint arXiv:2305.14233, 2023.

[9] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. GLM:
General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 320–335,
Dublin, Ireland, May 2022. Association for Computational Linguistics.

10

[10] Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan Shi, Linhao Yu, Yan Liu, Jiaxuan Li, Bojian
Xiong, Deyi Xiong, et al. Evaluating large language models: A comprehensive survey. arXiv preprint
arXiv:2310.19736, 2023.

[11] Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio César Teodoro
Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al. Phi-2: The surprising power
of small language models. Microsoft Research Blog, 2023.

[12] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

[13] Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei Wang. Lion: Adversarial distillation of closed-source
large language model. arXiv preprint arXiv:2305.12870, 2023.

[14] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. UNIFIEDQA: Crossing format boundaries with a single QA system. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 1896–1907, Online, November 2020.
Association for Computational Linguistics.

[15] Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant conversations-
democratizing large language model alignment. Advances in Neural Information Processing Systems, 36,
2024.

[16] Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for" mind" exploration of large scale language model society. 2023.

[17] Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Jiuxiang Gu, and Tianyi Zhou. Selective reflection-tuning:
Student-selected data recycling for llm instruction-tuning. arXiv preprint arXiv:2402.10110, 2024.

[18] Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Heng Huang, Jiuxiang Gu, and Tianyi Zhou. Reflection-
tuning: Data recycling improves llm instruction-tuning. ArXiv, abs/2310.11716, 2023.

[19] Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi Zhou.
Superfiltering: Weak-to-strong data filtering for fast instruction-tuning, 2024.

[20] Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou,
and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data selection for
instruction tuning. arXiv preprint arXiv:2308.12032, 2023.

[21] Chuang Liu, Linhao Yu, Jiaxuan Li, Renren Jin, Yufei Huang, Ling Shi, Junhui Zhang, Xinmeng Ji,
Tingting Cui, Tao Liu, et al. Openeval: Benchmarking chinese llms across capability, alignment and safety.
arXiv preprint arXiv:2403.12316, 2024.

[22] Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for alignment? a
comprehensive study of automatic data selection in instruction tuning. arXiv preprint arXiv:2312.15685,
2023.

[23] S. Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret
Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods for effective
instruction tuning. ArXiv, abs/2301.13688, 2023.

[24] Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. # instag: Instruction tagging for analyzing supervised fine-tuning of large language models. In The
Twelfth International Conference on Learning Representations, 2023.

[25] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Nick Barnes, and Ajmal Mian. A comprehensive overview of large language models. arXiv preprint
arXiv:2307.06435, 2023.

[26] Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang, Congying Xia, Chen Xing, Jesse Vig, Semih Yavuz,
Philippe Laban, Ben Krause, et al. Xgen-7b technical report. arXiv preprint arXiv:2309.03450, 2023.

[27] Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei Wu, Yan Liu,
and Deyi Xiong. Large language model alignment: A survey. arXiv preprint arXiv:2309.15025, 2023.

[28] Tianhao Shen, Sun Li, Quan Tu, and Deyi Xiong. Roleeval: A bilingual role evaluation benchmark for
large language models. arXiv preprint arXiv:2312.16132, 2023.

[29] Manli Shu, Jiongxiao Wang, Chen Zhu, Jonas Geiping, Chaowei Xiao, and Tom Goldstein. On the
exploitability of instruction tuning, 2023.

[30] Haoran Sun, Renren Jin, Shaoyang Xu, Leiyu Pan, Menglong Cui, Jiangcun Dui, Yikun Lei, Lei Yang,
Ling Shi, Juesi Xiao, et al. Fuxitranyu: A multilingual large language model trained with balanced data.
arXiv preprint arXiv:2408.06273, 2024.

11

[31] Yehui Tang, Fangcheng Liu, Yunsheng Ni, Yuchuan Tian, Zheyuan Bai, Yi-Qi Hu, Sichao Liu, Shangling
Jui, Kai Han, and Yunhe Wang. Rethinking optimization and architecture for tiny language models. arXiv
preprint arXiv:2402.02791, 2024.

[32] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.
com/tatsu-lab/stanford_alpaca, 2023.

[33] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

[34] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[35] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[36] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. arXiv
preprint arXiv:2212.10560, 2022.

[37] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 13484–13508, Toronto, Canada, July 2023. Association for Computational Linguistics.

[38] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan Pathak, Giannis
Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi,
Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney,
Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur
Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen. Super-
NaturalInstructions: Generalization via declarative instructions on 1600+ NLP tasks. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pages 5085–5109, Abu Dhabi,
United Arab Emirates, December 2022. Association for Computational Linguistics.

[39] Yunhe Wang, Hanting Chen, Yehui Tang, Tianyu Guo, Kai Han, Ying Nie, Xutao Wang, Hailin Hu,
Zheyuan Bai, Yun Wang, et al. Pangu-pi: Enhancing language model architectures via nonlinearity
compensation. arXiv preprint arXiv:2312.17276, 2023.

[40] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International Conference on
Learning Representations, 2022.

[41] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

[42] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model
pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

[43] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting
influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

[44] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

[45] Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv preprint arXiv:2304.01196, 2023.

[46] Yang Xu, Yongqiang Yao, Yufan Huang, Mengnan Qi, Maoquan Wang, Bin Gu, and Neel Sundaresan.
Rethinking the instruction quality: Lift is what you need, 2023.

[47] Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang Ren,
and Hongxia Jin. Backdooring instruction-tuned large language models with virtual prompt injection. In
NeurIPS 2023 Workshop on Backdoors in Deep Learning-The Good, the Bad, and the Ugly, 2023.

[48] Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang Ren,
and Hongxia Jin. Virtual prompt injection for instruction-tuned large language models, 2023.

[49] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. Harnessing the power of llms in practice: A survey on chatgpt and beyond, 2023.

12

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

[50] Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. CrossFit: A few-shot learning challenge for cross-task
generalization in NLP. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 7163–7189, Online and Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics.

[51] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi
Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint arXiv:2210.02414,
2022.

[52] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

[53] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of
large language models, 2023.

[54] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36, 2024.

13

A Appendix

A.1 Prompt Examples

Following the Fast-Chat [54], the prompts used in the data selection process are as listed in Table 5.

Table 5: Prompts of data selection for LLMs.

System Prompt: Please act as an impartial judge and evaluate the quality of the responses
provided by three AI assistants to the user question displayed below. You should choose the
assistant that follows the user’s instructions and answers the user’s question best. Your evaluation
should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of
detail of their responses. Begin your evaluation by comparing the two responses and provide a
short explanation. Avoid any position biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the length of the responses to influence
your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After
providing your explanation, output your final verdict by strictly following this format: “[[A]]” if
assistant A is the bset, “[[B]]” if assistant B is the bset, and “[[C]]” for a tie.

Prompt Template:
[User Question]
<question>
[The Start of Assistant A’s Answer]
<answer_a>
[The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer]
<answer_b>
[The End of Assistant B’s Answer]
[Final Verdict]:

A.2 Case Study

Examples of the single-turn dialogue and multi-turn dialogue are presented in Table 6 and Table 7.

Table 6: Single-turn dialogue example.

Instruction: A tech startup invests $8000 in software development in the first year, and then
invests half of that amount in software development in the second year. What’s the total amount
the startup invested in software development over the two years?

Llama-2-7B-evol_instruct: The total amount
the startup invested in software development
over the two years is $12,000.

Llama-2-7B-star_instruct: To calculate the
total amount the startup invested in software de-
velopment over the two years, we need to find
the total investment in software development
for each year and then add them together. In the
first year, the startup invested $8000 in software
development. In the second year, the startup in-
vested half of that amount, which is $4000. So,
the total investment in software development
for the two years is: $8000 (first year) + $4000
(second year) = $12000 Therefore, the total
amount the startup invested in software devel-
opment over the two years is $12000.

14

Table 7: Multi-turn dialogue examples.

Instruction: Act as a math teacher. I will provide some mathematical equations or concepts, and it will be
your job to explain them in easy-to-understand terms. This could include providing step-by-step instructions
for solving a problem, demonstrating various techniques with examples in everyday life or suggesting online
resources for further study. My first request is "I need help understanding how probability works."

Llama-2-7B-evol_instruct: Sure, I’d be happy to
help! Probability is the likelihood of something
happening, and it’s a fundamental concept in math
and science. To explain it simply, probability is the
chance of something happening out of all possible
outcomes. For example, if you flip a coin, the proba-
bility of getting heads is 1 out of 2, or 50%. Proba-
bility can be used to make predictions and calculate
risks, and it’s important in fields like finance, statis-
tics, and data analysis.
To calculate probability, you can use different formu-
las depending on the type of problem you’re solving.
One common method is to use a formula called the
probability mass function, which tells you the likeli-
hood of getting a certain outcome. Another method
is to use the probability density function, which tells
you the likelihood of getting a certain range of out-
comes.
There are many resources available online to help
you learn more about probability, including video
tutorials, interactive simulations, and practice prob-
lems. Some popular websites for learning probability
include Khan Academy, Mathway, and Coursera. I
hope this helps!

Llama-2-7B-star_instruct: Sure, I’d be happy to
help explain probability! Probability is a measure of
how likely an event is to occur. It’s often expressed
as a number between 0 and 1, where 0 represents
a very unlikely event and 1 represents a very likely
event. To calculate probability, you need to know the
total number of possible outcomes and the number
of favorable outcomes for the event you’re interested
in. For example, if you’re flipping a fair coin, there
are two possible outcomes (heads or tails), and the
probability of getting heads is 1/2 or 0.5, because
there’s only one way to get heads out of two possible
outcomes. In everyday life, probability can be used
to calculate the likelihood of certain events, such as
the chance of rain on a particular day or the proba-
bility of getting a certain grade on a test. It’s also
used in decision-making situations, like calculating
the risk of a particular investment or the likelihood
of success in a business venture. There are many
resources available online to help you learn more
about probability, such as video tutorials, practice
problems, and interactive simulations. Some popular
websites include Khan Academy, Coursera, and edX,
which offer free courses and resources on probability
and other mathematical concepts.

Instruction: What are the differences between Riemannian geometry and euclidean geometry?

Llama-2-7B-evol_instruct:Riemannian geometry
and Euclidean geometry are two different types of
geometries. In Euclidean geometry, the distance be-
tween two points is always a straight line, and the
angles of a triangle always add up to 180 degrees.
In Riemannian geometry, the distance between two
points is not always a straight line, and the angles of
a triangle can add up to more than 180 degrees.
Another key difference between the two geometries
is the way they handle curved surfaces. In Euclidean
geometry, a flat surface is a rectangle with parallel
sides, while in Riemannian geometry, a surface can
be curved in any way. This means that Riemannian
geometry is better suited for describing the geometry
of the universe, as it can handle the curvature of
space-time.
Overall, Riemannian geometry is a more complex
and advanced form of geometry, and it has many
practical applications in fields such as physics and
engineering.

Llama-2-7B-star_instruct: Great question! Rie-
mannian geometry and Euclidean geometry are two
different types of geometry that are used to describe
and analyze the properties of spaces. The main differ-
ences between the two are as follows: 1. Metric: In
Euclidean geometry, the distance between two points
is defined by the Pythagorean theorem, which states
that the sum of the squares of the two sides of a right
triangle is equal to the square of the length of the
hypotenuse. In Riemannian geometry, the distance
between two points is defined by a metric, which
is a function that describes how much the shortest
path between two points is curved. 2. Curvature:
Euclidean geometry deals with flat spaces where the
curvature of the Earth’s surface is negligible. In
contrast, Riemannian geometry deals with curved
spaces, such as the surface of the Earth, where the
curvature plays a significant role in determining the
properties of the space. 3. Geodesics: In Euclidean
geometry, the shortest path between two points is a
straight line. In Riemannian geometry, the shortest
path between two points is called a geodesic, which
can be curved and depends on the metric. 4. Tensor
Fields: Riemannian geometry involves the use of
tensor fields, which are mathematical objects that
describe the geometry of a space. These fields are
used to calculate the curvature of the space and the
behavior of objects moving through it. Overall, Rie-
mannian geometry and Euclidean geometry are two
different approaches to understanding the properties
of spaces, with Riemannian geometry being more
applicable to curved spaces and Euclidean geometry
being more applicable to flat spaces.

15

A.3 Data Examples

Data examples are shown in Table 8.

Table 8: Diverse Data Examples.

Instruction: Given some binary classification data, identify a suitable machine learning model that can be applied to this task.

Evol Instruct: The suitable machine learning models for binary classification tasks include:
1) Logistic regression: It is a statistical method that uses a logistic function to model a binary dependent variable. It is a relatively simple
and interpretable model that works well with linearly separable datasets.
2) Support Vector Machines (SVMs): It is a popular classifier that is used for binary classification tasks. SVMs can handle high-dimensional
data and work well with datasets that are not linearly separable.
3) Random Forests: It is an ensemble learning method that works by constructing a multitude of decision trees at training time and outputs
the class that is the mode of the classes output by the individual trees.
4) Neural networks: It is a type of machine learning model that is widely used for binary classification tasks. Neural networks can handle
non-linear relationships between variables and are capable of learning complex patterns in the data.
The choice of the model depends on the particular characteristics of the data and the specific requirements of the project."

Agent-Pair A: There are several machine learning models that can be applied to binary classification tasks, depending on the nature of the
data and the problem at hand. Here are a few popular ones:
1. Logistic Regression: This is a simple and effective model that can be used for binary classification problems. It works by estimating the
probability of the positive class and using it to make predictions.
2. Decision Trees: Decision Trees are a popular machine learning model that can handle both categorical and numerical features. They
work by recursively splitting the data into subsets based on the values of the input features.
3. Random Forest: Random Forest is an ensemble learning method that combines multiple decision trees to improve the accuracy of the
model. It works by creating a set of decision trees and then averaging their predictions.
4. Support Vector Machines (SVM): SVM is a powerful model that can handle high-dimensional data. It works by finding the hyperplane
that maximally separates the classes in the feature space.
5. Neural Networks: Neural Networks are a set of algorithms that can learn and classify from data. They can handle complex and nonlinear
relationships between the input features and the output labels.
1The choice of the model depends on various factors such as the size and complexity of the dataset, the type of features, the computing
resources, and the desired level of accuracy.

Agent-Pair B: For binary classification tasks, several machine learning models are suitable, depending on the size of the dataset, complexity
of the problem, and the availability of features. Here are some popular models that can be applied:
1. Logistic Regression: A simple and interpretable model that works well for small to medium-sized datasets. It’s linear and can handle both
categorical and continuous features.
2. Decision Trees and Random Forest: These are easy to interpret and can handle both numerical and categorical data. Random Forest is an
ensemble method that combines multiple decision trees, reducing overfitting.
3. Support Vector Machines (SVM): Effective for high-dimensional data and can handle non-linear relationships through kernel functions.
SVMs are robust to outliers and can be used for both linear and non-linear classification.
4. Naive Bayes: A probabilistic model that assumes features are independent. It’s fast, easy to implement, and works well for text
classification or when features are not highly correlated.
5. K-Nearest Neighbors (KNN): A simple model that classifies based on the majority class of its nearest neighbors. It’s non-parametric and
can be useful for small datasets.
6. Neural Networks (e.g., Feedforward, Convolutional, or Recurrent Neural Networks): Deep learning models that can capture complex
patterns in large datasets. They are powerful but require more data and computational resources.
7. Gradient Boosting Machines (GBM) or XGBoost: Ensemble methods that iteratively build weak learners (e.g., decision trees) to create a
strong classifier. They are often used for structured data and can handle high dimensionality.
8. AdaBoost: Another boosting algorithm that combines weak learners to create a strong classifier. It’s particularly useful when dealing
with imbalanced datasets.
9. Neural Network Ensembles (e.g., stacking, blending): Combining predictions from multiple models can improve performance and
robustness.
To choose the best model, it’s essential to perform exploratory data analysis, split the data into training and testing sets, and evaluate the
models using appropriate metrics (e.g., accuracy, precision, recall, F1-score, or AUC-ROC for imbalanced datasets). Cross-validation can
help in selecting the optimal model and hyperparameters

Agent-Pair C: A suitable machine learning model for this task would be a Random Forest Classifier. This model is effective in handling
both categorical and numerical data, and can handle large datasets with high dimensionality.

Agent-Pair D: One suitable machine learning model for binary classification tasks is the Logistic Regression model. Logistic Regression
is commonly used for binary classification as it provides the probability of an instance belonging to a particular class. It is a simple and
efficient algorithm that works well with linearly separable data.
Other popular machine learning models for binary classification tasks include Support Vector Machines (SVM), Decision Trees, Random
Forest, Gradient Boosting Machines (GBM), and Neural Networks. The choice of the model depends on the complexity of the data, size of
the dataset, interpretability requirements, and computational resources available.

16

A.4 Performance on Open LLM Leaderboards

The performance on Open LLM Leaderboards is shown in Table 9.

Table 9: Performance on Open LLM Leaderboards.

Model ARC HellaSwag MMLU TruthfulQA Average
Wizardlm 51.60 77.74 42.74 45.75 54.18
Llama-2-7B-evol_instruct 51.88 76.70 45.76 46.10 55.11
Llama-2-7B-star_instruct 54.44 77.64 46.94 46.13 56.29

A.5 Computational Cost.

The computational overhead of our proposed method primarily depends on the inference computa-
tional load of the various LLMs used:

• Qwen-14B: During inference with a sequence length of 256 tokens, the computational load
is approximately 4× 1012 Multiply-Add cumulations (MACs).

• Phi-2-2.7B: For the same sequence length, the inference computational load is around
7× 1011 MACs.

• ChatGPT: Given that ChatGPT is a proprietary model, we don’t have details on its computa-
tional requirements.

Nonetheless, for estimation purpose, we can approximate the overall computational cost. Assuming
an iterative process involving multiple LLMs (e.g., 10 LLMs) and a large dataset (e.g., 70,000
samples), the total computation without using our framework can be roughly estimated as:

• 4× 1012 FLOPs (Qwen-14B) × 10 LLMs × 70,000 samples = 2.8× 1018 MACs

While, when the Agent-Pairs Sampling and Instruction Memory Bank are employed, 5 of 10 LLMs
are used to generate data , therefore, total computation can be significantly reduced and roughly
estimated as:

• 4× 1012 FLOPs (Qwen-14B) × 5 LLMs × 70,000 samples = 1.4× 1018 MACs

17

	Introduction
	Related Work
	Star-Agents
	Generating Diverse Data
	Evaluating Tailored Data via a Dual-model Strategy
	Evolving Star Agents

	Experiments
	Setups
	Main Results
	Ablation Study

	Conclusion
	Appendix
	Prompt Examples
	Case Study
	Data Examples
	Performance on Open LLM Leaderboards
	Computational Cost.

