
Open Peer Review on Qeios

Human and Environmental Factors Shape Tree Species
Assemblages in West African Tropical Forests

Sijeh Agbor Asuk1, Joseph P. Wayman2, Jonathan P. Sadler2, Thomas A. M. Pugh2, Thomas J. Matthews2, Vincent T.
Ebu3, Oliver L. Phillips4, Simon Lewis5, Bonaventure Sonké6, Joey Talbot4, James Comiskey, Lise Zemagho6, Lucas Ojo7,
Serge Begne4, Hermann Taedoumg6, Terry Sunderland8, Wannes Hubau9, Vincent Droissart10, Lan Qie11, Martin B.
Gilpin5, Murielle Simo-Droissart6, Ted R. Feldpausch12, Kelvin S. H. Peh13, Lindsay F., Banin14, Marie Noel Djuikouo
Kamdem15, Nicholas Kettridge2

1 Loughborough University
2 University of Birmingham
3 University of Calabar
4 University of Leeds
5 University College London, University of London
6 Université de Yaoundé I
7 University of Agriculture Abeokuta
8 University of British Columbia
9 Ghent University
10 Institut de Recherche pour le Développement
11 University of Lincoln
12 University of Exeter
13 University of Southampton
14 UK Centre for Ecology & Hydrology
15 University of Buea

Funding: Funding was provided by Petroleum Technology Development Fund (PTDF), Nigeria. Grant/Award Number: PTDF/ED/PHD/ASA/1342/18

Potential competing interests:  No potential competing interests to declare.

Abstract

Human activities exert pronounced influence on forest ecosystems, impacting biodiversity and functions across multiple

scales. However, the consequences of low-intensity human activities on tropical forest ecosystems are difficult to

assess and remain poorly explored. The influence of human activities and other site-specific variables on forest tree

assemblages in central-west Africa was investigated. The greatest impact of human activity was expected to be seen

on edible tree species. Tree species in the forest were divided into edible (consumed by humans) and inedible species

to assess the differential impacts of human resource use on species. Tree data from 66 plots in Nigeria and Cameroon

(collected between 2002 and 2019) were analysed using Generalized Dissimilarity Models (GDMs) to assess pairwise

beta-diversity between plots. Human activity significantly affected beta-diversity within the Nigeria-Cameroon forest

region. Total beta-diversity was shaped by geographical distance between plots, plot elevation, stem density, proximity

to human presence, and forest species composition. The forest species composition (monodominant or mixed forest)

appeared to influence dissimilarity in beta-diversity for edible tree species only, likely linked to cultural practices in the

region. Influence of elevation was significant for inedible species only, due to access restriction. These findings

underscore the role of human influence in shaping tree species assemblages in African tropical forests and stress the

necessity for further research in this area.
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1. Introduction

Forest biodiversity and their functions are rapidly changing at local, regional, and global scales due to large-scale habitat

loss and modification from anthropogenic activities (McMichael et al., 2017a; Bush et al., 2015; Piperno et al., 2015;

Clement et al., 2015; Helmus et al., 2014; Steadman, 1993; Stahl, 2015; Jarzyna and Jetz, 2018). Anthropogenic activities

such as selective harvesting, illegal logging, clear-cutting for agricultural purposes, foraging of fruit/seed for food, and

conservation modify the composition and distribution of species in tropical forests (Benchimol and Peres, 2013; Asuk et

al., 2022; Elo et al., 2018). These anthropogenic impacts can vary depending on utilisation (food, timber, medicine,

alongside other uses), intensity, duration of the activity, and the type of species (Asuk et al., 2023; Adeyemi, 2016; Adnan

et al., 2015; Aigbe and Omokhua, 2015; Jimoh et al., 2012). Forests clear-cutting prior to the attainment of “protected” or

“reserve” status might be at an early stage of succession and dominated by fast-growing pioneers compared to forests left

to their natural growth (Aigbe and Omokhua, 2015). The migratory history of forest dependent human communities could

contribute to changes in the forest species composition via deliberate planting of preferred tree species (McMichael et al.,

2017a; Adnan et al., 2015; Aigbe and Omokhua, 2015; Jimoh et al., 2012).

Investigations into the effects of anthropogenic activities on forest biodiversity have focused primarily on the high-intensity

impacts, such as deforestation, fragmentation, and degradation (Swenson et al., 2011; Gallardo-Cruz et al., 2009;

Alahuhta et al., 2017; Donoso et al., 2017; García-Navas et al., 2020). Yet, growing evidence suggests that low-intensity

human activities such as foraging for food, selective species conservation, dispersal of seeds of desirable species (e.g.,

species with fruits eaten by humans) and enrichment planting may modify forest ecosystems more than previously

thought, and thus potentially affect ecological and macroecological patterns (McMichael et al., 2017a; Piperno et al., 2015;

Singh et al., 2022; Chaturvedi et al., 2017; Asuk et al., 2023). For example, the modern floristic composition and structure

of some areas of natural forests in Amazonia have been linked to past low-intensity human activities (e.g., plant

cultivation, seed dispersal and propagation, and incidental domestication) (Levis et al., 2017). However, the general

effects of low-intensity anthropogenic impacts on spatial ecological patterns in tropical forests are poorly understood

(Jarzyna and Jetz, 2018; Anderson et al., 2011), likely due to the difficulty in measuring impacts (McMichael et al., 2017a;

Stahl, 2015; Piperno et al., 2015; Asuk et al., 2023). Given that remote sensing of forests easily detects coarse structural

changes (e.g. deforestation, logging) much more than subtle floristic changes induced by management, without extensive

ground surveys it is likely that the extent of human impact on forest communities will be underestimated.

The impact of low-intensity drivers on tropical forest composition can be assessed by measuring the effects of human

activities such as foraging, preferential planting and deliberate conservation on the spatial beta-diversity of the forest

(Singh et al., 2022; Biswas and Mallik, 2011; Bush et al., 2015; Roberts et al., 2021; Asuk et al., 2023). Spatial beta-

diversity, defined as the dissimilarity in species composition between two or more communities separated in space
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(Pound et al., 2019; Anderson et al., 2011), has been successfully used to analyse differences in tree species

composition within and between forests (Condit et al., 2002). Spatial beta-diversity patterns combined with environmental

and ecological measurements have also been used to identify key drivers of spatial dissimilarity in community composition

of Oban forest in Nigeria (Asuk et al., 2023). While there have been numerous ecological studies on beta-diversity of

forest tree species, these have mostly focused on identifying high-intensity drivers of dissimilarity in beta-diversity at

global scales, as well as mainly being focused on temperate forests, with less work focused solely on tropical forests

(Jarzyna and Jetz, 2016; Herault et al., 2010; Barnagaud et al., 2017; Aspin et al., 2018; Waddell et al., 2020; Fu et al.,

2019; Swenson et al., 2011; Devictor et al., 2010; Biswas and Mallik, 2011; García-Navas et al., 2020; Lueder et al., 2022;

Biswas and Mallik, 2010; Zambrano et al., 2020). 

African forests are biodiversity hotspots with numerous endemic species (Myers et al., 2000; Agaldo et al., 2016; Oates et

al., 2004; Seifert et al., 2022). They play a vital role in climate regulation by absorbing atmospheric carbon dioxide, thus

mitigating climate change effects (Núñez et al., 2022; Oyewole et al., 2019; Artaxo et al., 2022). Until 2015, intact

Afrotropical forests have maintained a consistent carbon sink in live aboveground biomass averaging about 0.66 tonnes of

carbon per hectare per year (Hubau et al., 2020). These forests have also indicated a more resilient and stable carbon

sink in contrast to the Amazonian forests over the same period (Hubau et al., 2020). Furthermore, African forests

contribute to water cycle regulation, soil conservation, agriculture support during crop failure, and ecological balance (Raj

et al., 2022; Meinhold and Darr, 2022). Understanding the processes which have shaped the forests in Africa is essential

for developing effective conservation and management strategies. Yet, these forests remain largely understudied,

particularly in terms of spatial composition patterns.

There have been reports of large-scale trends of deliberate planting and conservation of preferred tree species in the

Amazon forest (Levis et al., 2017). The selective logging of certain species, along with the preservation of other species,

results in a change in the species composition due to the turnover of species within the forest over time (Bousfield et al.,

2023). The patchiness of these activities within the forest can manifest as a change in beta diversity. A study on the

“human experience of nature” in Africa revealed that forests respond differently to the intensity of anthropogenic usage

they are exposed to (Cazalis et al., 2023). A localised study in Oban Forest, a tropical African rainforest located in Nigeria,

assessed the impact of low-intensity anthropogenic activities on tree species diversity by comparing patterns in tree

species that were foraged for food and those that were not (Asuk et al., 2023). The results of the study suggested that

beta-diversity trends, as well as patterns of relative species abundance, varied according to the use of the tree species by

humans (i.e., those utilized for food and those not utilised for food). This finding pointed to a potentially pervasive impact

of low-intensity human foraging practices on tropical forest composition. For example, humans may disperse the seeds of

edible species across the landscape and conserve those trees by not cutting them for timber due to the fruits/seeds they

produce being highly valued as food sources. Similarly, with regard to timber harvest, while certain species of trees are

cut down, some tree species with food value have been reported to remain in the forest estate or within old, abandoned

farm estates (Ellis et al., 2021; Jansen et al., 2020; Asuk et al., 2023; Levis et al., 2017). However, whether such effects

are prevalent across tropical ecosystems in West Africa at larger scales is unknown.

A better understanding of the magnitude and dynamics of impacts from low-intensity anthropogenic activities on spatial
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beta-diversity at a regional scale, or how these activities interact with other drivers, is essential to accurately predict the

future impacts of humans on tree community composition and dynamics (McMichael et al., 2017b; Piperno et al., 2015;

Stahl, 2015; Wayman et al., 2021). Due to the rugged topography and remote nature of some West African forests, the

intensity of impact from human activities on the ecosystem could reasonably vary depending on the accessibility of these

forests to people (Asuk et al., 2023). 

Although this variability has been observed locally (Asuk et al., 2023), it remains unclear whether the same patterns will be

seen at a regional scale. Based on this prior work, it was hypothesized that human impacts on the distribution and

composition of tree species at a local scale should also be present at a larger regional scale. This study aims to address

this research gap for the Nigeria-Cameroon region, which has a continuous forest area with varied human access and

elevational variability. In addition, the studied ecosystem is threatened and poorly studied, yet is one of the most culturally

and biologically diverse forest regions in all of tropical Africa (Fotang et al., 2021a, 2021b). 

To explore dissimilarity between forested regions, a beta-diversity framework was used to evaluate the impact of low-

intensity anthropogenic activities on the composition of tree assemblages in tropical West Africa at regional scales. Using

a regional dataset of West African tropical forests, containing presence/absence information of tree species categorized

into edible (produce seeds and fruits eaten by humans) and inedible (not eaten by humans) species, patterns of spatial

beta-diversity alongside predicted drivers were calculated and analysed to answer the following questions: (1) is there an

influence of human presence on the spatial beta-diversity of forest trees at a regional scale? and if so, (2) does this

influence differ between those species used for food and those which are not? 

2. Methods

2.1. Plot and species composition data

The study was carried out using tree data (min 10 cm DBH) from long-term plots established in the tropical forests of

Nigeria and Cameroon, bordering countries located in the West and West-Central regions of Africa, respectively (Figure

3.1). The forests of both countries are contiguous via their common borders (Nigerian National Park Service, 2019; Enuoh

and Ogogo, 2018). The species composition data used for the study comprised single census tree-by-tree samples

collected between 2002 and 2019 from five plots established in Nigeria (Asuk et al., 2022, 2023) and 61 plots established

in Nigeria and Cameroon, accessed from the ForestPlots.net database (Lopez-Gonzalez et al., 2009; ForestPlots.net et

al., 2021). The selected plots in Cameroon all measured 100m x 100m except for one plot that measured 40m x 100m

(see Appendix S1, Table S1). The plots in Nigeria were smaller than those in Cameroon, measuring 40m x 120m (see

Appendix S1, Table S1).

The plots were grouped into four spatial clusters based on their spatial proximity (Fig. 1). The associated plot metadata

also included information on elevation, average plot slope, longitude, and latitude, stem density, forest status and forest

composition. Elevation was recorded as the elevation of plots in metres above mean sea level during field inventories. The
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average slope of the plots was measured at 20m distance, and the slope was scaled into intervals: flat (0 – 2 degrees),

almost flat (2 to 5 degrees), slightly sloping (5 to 10 degrees), moderately sloping (10 to 20 degrees) and steep (greater

than 20 degrees) slope. Geographical data consisted of information on longitude and latitude in metres (UTM) at the

centre of the plot collected during forest inventories (used to measure geographical distance between plots). Stem

density, which refers to the number of living individual tree stems per unit area, was generated by counting the total

number of stems in each plot. To produce forest composition data, the composition of each plot was classified as either

mixed forest, monodominant, or savanna following ForestPlots.net (see Appendix S1, Tables S2 and S3). Forest status

data contained information about the status of the forest within the plots in relation to past or present anthropogenic

disturbance as described by ForestPlots.net, including old-growth, secondary forest, logged, burned and other mixed

classifications (Lopez-Gonzalez et al., 2011). 

Figure 1. Map of Nigeria and Cameroon showing the location of the 66 plots used for the study. The plots were grouped into four spatial clusters

(blue broken lined circles), numbered 1 to 4.

2.1.1. Plot selection criteria

To reduce any area effect on tree composition and thus ensure a justifiable pairwise comparison of the plot data,

differences in plot dimension/area (i.e., plots that were much larger/smaller compared to other plots) were reduced. Data

from the last tree censuses collected between 2002 and 2019 were filtered from the multiple census tree data for the
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study. Only plots that fell between the size range of 40 by 100 m and 100 by 100 m with mixed and monodominant

species composition in old-growth and secondary forest ecotones were selected for the study. Specifically, for the

Nigerian plots, five groups of three adjacent plots that were below 100 m by 100 m in size were merged into plots of size

40 m by 120 m. GPS coordinates for the centre plot amongst the three adjacent plots was used as the centre point for the

new plot. Filtering and joining the plots resulted in a dataset consisting of 66 plots across the study region (i.e., Cameroon

and Nigeria), with an average size of 94.6 m (std. 17.4 m) by 101.5 m (std 5.3 m) and containing a total of 28,299

individual trees. All other plots that did not meet the above criteria were discarded leaving a total of 66 plots. As outlined

above, due to the geographic distances between plots, the 66 plots were further grouped into four clusters based on the

geographical proximity of the plots. Cluster one had three plots, cluster two had 25 plots, cluster three had seven plots

and cluster four had 31 plots.

2.2. Species categorization

Tree species were categorized into those with fruits, nuts and seeds that are edible by humans and all other species were

classified as inedible. The categorization was based on a combination of structured questionnaires (see Appendix S2)

administered to four forest-dependent / support zone communities within Oban Forest in Nigeria (Asuk et al., 2023), and

secondary data on the utilization of tree species collected from online databases between December 2021 and February

2022. These online databases included Useful Tropical Plants database (https://tropical.theferns.info/), the PlantUse

database (https://uses.plantnet-project.org/en/), the Royal Botanical Gardens Kew/Plants of the World Online database

(https://powo.science.kew.org/), PlantZAfrica (http://pza.sanbi.org/), World Agroforestry

(https://apps.worldagroforestry.org/usefultrees/), and ebooks and journal publications.

2.3. Human influence/presence

Two variables were used as proxies to assess the impact of humans on the tree species composition in the region (see

Appendix 3):

1. Distance to the nearest anthropogenic edge (DNAE), calculated as the straight-line distance from the plot centre to the

nearest anthropogenic edge of the forest at the time of the census. Information on the nearest anthropogenic edge

was available for the plots in the Oban Division dataset, but few other plots in the forestplots.net dataset. For plots

without this information, open street map and Google Earth were used to measure a straight-line distance from the

GPS location of the centre of each plot to the nearest sign of anthropogenic edge (e.g., farm, settlement, construction

but excluding footpaths). DNAE was used as an indicator to measure the possible presence of relatively high-impact

human activity in the region.

2. Distance to the closest human presence (DCHP) – calculated as the straight-line distance from the GPS centre point of

the plot to the closest identified footpaths, often used to forage for food and hunting; thus, it was used as an indicator

for relatively low-impact human activities. Human presence measurement was generated from Open Street Map and

validated on Google Earth. Because of a combination of data from censuses carried out in different years, Google
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timelines on Google Earth was used to select an available aerial image closest to the years the census measurement

was taken (see Fig. S1 and S2 in Appendix S3). DCHP generally had shorter distances than DNAE and is arguably a

more accurate measure of low-impact human presence in the forest region.

2.4. Data analysis

Data analysis involved three main steps: the generation of a tree species presence-absence matrix for each plot,

calculation of Sørensen’s pairwise beta-diversity between plots (partitioned into nestedness and turnover components),

and the use of Generalized Dissimilarity Models (GDMs) to identify variables that drive spatial beta-diversity. The data

were analysed using R (R Core Team, 2022).

2.4.1. Presence-absence matrix and beta-diversity calculation

For each plot, a presence-absence matrix was constructed separately for all species (a combination of edible and inedible

species), edible species, and inedible species. Then the pairwise dissimilarity (beta-diversity; Sørensen index) was

computed between each plot and every other plot within the dataset for each presence-absence matrix. The pairwise

dissimilarity was partitioned into the turnover (which is independent of richness differences) and nestedness components

(Baselga, 2012). All beta-diversity components were calculated using the “betapart” package in R (Baselga et al., 2018; R

Core Team, 2022).

2.4.2. Generalized Dissimilarity Models (GDM)

GDMs and variance partitioning are valuable tools for disentangling what proportion of variation in dissimilarity between

communities is due purely to the effect of distance between the communities, what proportion is explained uniquely by

environmental (including anthropogenic) gradients, and what proportion of variance is shared between the two (Buzatti et

al., 2019; Guerin et al., 2013; He et al., 2020; Wayman et al., 2021).

The “gdm” R package (Ferrier et al., 2007; Mokany et al., 2022) was used to fit the GDMs, which involved modelling a

measure of compositional difference between sites (here, the total pairwise beta-diversity and separately the turnover and

nestedness components) against the selected environmental variables and geographic distance to assess which predictor

variables drive spatial taxonomic dissimilarity between plots. GDMs utilize the pairwise dissimilarity from beta-diversity

matrices as the response variable and transform this dissimilarity to allow for meaningful comparison with combinations of

predictor variables on different scales in the form of site pairwise distances (Mokany et al., 2022). A linear combination of

I-spline basis functions fit using non-negative least squares regression was used to transform each predictor variable in

the GDM (Mokany et al., 2022). The spline function of each predictor variable is relatively flexible in shape. However,

because GDMs assume that dissimilarity can only increase between two sites that become more different in their predictor

variables, I-splines are constrained to increase monotonically (Mokany et al., 2022).

Separate GDM models were fitted for total beta-diversity, turnover, and nestedness calculated from each of the three

presence-absence matrices (all species, edible species only, and inedible species only) (Mokany et al., 2022). These
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models included all the environmental variables (elevation, average plot slope), plot-level variables (stem density, forest

status and forest composition), and a measure of distance between each plot. The direct impact of each variable along

the dissimilarity gradient was assessed by applying a permutation and backwards selection approach, allowing the

calculation of variable significance and variable importance (applied using the function ‘gdm.varImp’ within the ‘gdm’

package(Mokany et al., 2022; Ferrier et al., 2007)). This approach fits a model using all the unpermuted predictor

variables. The rows containing the variables are then permuted 100 times between the plots (columns), and a separate

GDM is fitted to each. Deviance between the unpermuted and permuted models is then calculated. The process is then

repeated for each individual predictor, whilst holding the others constant, to calculate importance scores and significance

for each one. The least significant predictor is then dropped, and the permutation is repeated with the remaining

predictors until a model is found where all those remaining are significant (p < 0.05; model 1). The predictor importance

for each variable was calculated from the percent change in deviance explained between the unpermuted and permuted

models for that variable (Mokany et al., 2022; Ferrier et al., 2007).

Geographical distance (the Euclidean distance between sites based on the x and y coordinates) was included as a

predictor to account for the direct or indirect likelihood of distance-induced dissimilarity between site-pairs through

dispersal limitations (Mokany et al., 2022). However, the dissimilarity driven by environmental gradients could be

suppressed or wrapped up in the dissimilarity from the distance between sites, leading to the variance explained by each

to be shared. Therefore, two more models were fitted for each response: one containing only geographical distance

(model 2) and one with only environmental predictors that were significant in the model selection process (model 3). The

shared variance between the environmental predictors and geographical distance was generated using the formula (Ray-

Mukherjee et al., 2014) below.

Vs = Vfull − (Vfull − Vg) − (Vfull − Ve) Equation (1)

where Vs is the shared variance explained between the environmental and geographical variables, Vfull is the total

variance explained by the model (model 1), Vg is the variance explained by the model containing only geographical

variables (model 2), and Ve is the variance explained by the environmental model only (model 3). 

The distinct cluster groups were coded from 1 to 4 (Fig. 1) and included as a variable (cluster identity) in the Generalized

dissimilarity models (GDMs) to check the effect of cross-cluster variation. The GDMs were then run with data from each of

the four cluster groups individually to compare within-cluster variation and drivers. In addition to this, GDM models were

run with and without cluster identity as a variable.

3. Results

3.1. Regional, taxonomic beta-diversity, turnover and nestednes

Among the 66 plots, there were a total of 28,299 individual sampled trees with a gamma diversity of 708 species within

316 genera. From a view of human consumption, 236 species were classified as edible, and 472 species were classified
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as inedible with 11,097 and 17,202 stems, respectively (Table S4 in Appendix S4). The mean total pairwise beta-diversity

between sites was similar (Figure 2) for all species (0.74 ± 0.13), edible species (0.73 ± 0.14) and inedible species (0.75 ±

0.13). The turnover component of beta-diversity was the main determinant of the overall beta-diversity, while nestedness

contributed a very small proportion in the region and in the clusters. For all species, turnover (0.67 ± 0.15) accounted for

90.5% of total beta-diversity, while nestedness resultant dissimilarity (0.07 ± 0.08) was responsible for 9.5%. For inedible

species, turnover (0.67 ± 0.16) was responsible for 90.1% of total beta-diversity while nestedness (0.07 ± 0.09) described

9.9% of total beta-diversity. Similarly, 89% of total beta-diversity for edible species was due to turnover (0.65 ± 0.17), and

11% was due to nestedness resultant dissimilarity (0.08 ± 0.08). For the nestedness GDMs, no explanatory variables

explained any variation and, therefore, they are excluded from further discussion.

Figure 2. Boxplots of pairwise spatial dissimilarity of all (a), edible (b), and inedible (c) tree species found in the region. Plots display total beta-

diversity (Total) as well as the turnover (Turn) and nestedness (Nest) components.

3.2. GDM results 

As expected, Model 1 (a combination of geographical distance and environmental variables) had the highest variance

explained with 40.9%, 36.8% and 31.8% explained for total beta-diversity, for the models containing all, inedible-only and

edible-only species groups, respectively. Similarly, Model 1 also recorded the highest percentage of variance explained in

turnover (species replacement) for the inedible, all and edible species groups with 43.5%, 41.6% and 27.7% (Table 1).

Model 3 (models run with environmental variables only) recorded the second highest variance explained for total beta-

diversity with 30.9%, 23.1%, and 24.8% (all, edible, inedible species groups, respectively), while Model 2 (models run

with only geographical distance) had the least variance explained in total beta-diversity, between 18.3%, 13.2%, and

17.4% for all, edible, and inedible species groups respectively (see Table 1). A low shared explained variance between
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geographical distance and environmental predictors was observed, with percentages ranging from 8.3%, 5.4% and 4.6%

for dissimilarity due to total beta-diversity and 5.9%, 4.2%, and 5.8% in dissimilarity due to turnover in all, edible, and

inedible species group respectively (see Table 1).

Groups
All Edible Inedible

Total Turn Total Turn Total Turn

GDM Deviance 104.19 127.37 157.09 208.10 120.16 142.20

Null Deviance 176.20 218.03 230.25 287.99 190.19 251.47

Intercept 0.66 0.50 0.66 0.42 0.71 0.48

Model 1 40.87 41.58 31.77 27.74 36.82 43.45

Model 2 18.26 17.30 13.22 13.19 17.38 15.54

Model 3 30.89 30.13 23.12 18.75 24.83 33.70

Shared Variance (%) 8.28 5.85 4.57 4.20 5.39 5.79

Variable importance
      

Geographical distance (m) 24.38 27.51 27.18 32.36 32.54 22.42

Elevation 19.83 25.23 - - 19.99 26.98

Stem density (stems/ha) - - 19.31 15.04 - -

DNAE (m) - - - 15.24 - -

DCHP (m) 18.35 24.34 14.07 24.01 21.54 26.65

Forest composition 18.25 NA 26.86 - - -

Table 1. Results from the generalized dissimilarity models analysing the

spatial dissimilarity between forest plots. “Total” refers to total Sørensen’s

beta-diversity while “Turn” refers to the Simpson’s turnover partition of

beta-diversity. Dashed lines indicate where variables were non-significant

within models. Shared variance (%) was calculated from the variance

explained by the full model, the geographical distance only model, and

the environment only model. Model 1 (all significant predictor variables),

Model 2 (only geographical distance) and Model 3 (only significant

environmental predictors from model 1) rows show the percentage

deviance explained for the models. Variable importance is percent change

in deviance explained between the unpermuted and permuted models for

that variable. DNAE is the ground distance of plots to nearest

anthropogenic edge. DCHP is the ground distance to closest human

presence to each plot. “m” is ground distance measured in metres.

3.2.1. Drivers of spatial taxonomic beta-diversity across all, edible and inedible species

A total of six variables (geographical distance, elevation, stem density, DNAE, DCHP, forest composition) out of the eight

variables imputed in model 1 significantly affected beta-diversity at varying levels of importance across all groups (all,

edible and inedible) (Table 1).
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All species models

In the all-species model (all; Table 1), geographical distance, elevation, DCHP, and forest composition were significant

predictors of total beta-diversity. Geographical distance, the variable with highest importance in most models (except in

the model for turnover of inedible species), showed a rising trend up to 200-300 km before levelling off (Figure 3a).

Elevation, the second most important, increased gently up to 500-700 m, then sharply increased after that point (Figure

3a). DCHP, the third key predictor, had a slight initial rise followed by a steady increase (Figure 3a). Forest composition

had a minor yet significant linear relationship with beta-diversity (Figure 3a). The turnover model identified geographical

distance, elevation, and DCHP as significant, with trends similar to those in the total beta-diversity model (see Figure 4a¸

Tables 1 and S5 in Appendix S5), but interpretations should be made with caution as the data spread shown on the x-axis

was skewed with only a few forest plots having high values of DCHP or DNAE (see rug plot on the x-axis in Fig. 3). 

Figure 3. Plotted I-splines of the three variables with highest importance scores from the GDMs analysing the spatial relationship between

geographical gradients, environmental variables, and tree species composition. Plots are the Total Sørensen’s beta-diversity for all the species in

the region (a), for the edible species category (b), and for the inedible species (c). Plots are organized from left to right in order of decreasing

importance.
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Figure 4. Plotted I-splines of the three variables with highest importance scores from the GDM analysing the spatial relationship between the

turnover component of Sørensen’s beta-diversity and geographical gradients, environmental variables, and tree species composition. Plots on row

(a) are for all species, (b) are for the edible species category, and (c) for the inedible species. Plots are organized from left to right in order of

increasing importance.

Edible species models

For edible species model, total dissimilarity in the community assemblage was significantly influenced by geographical

distance, forest composition, stem density and DCHP, in order of decreasing variable importance (Table 1). The I-splines

indicated that the relationship between geographical distance and total beta-diversity had an initial steep linear trend that

then plateaued. Forest composition exhibited a slight linear trend, while stem density had a steeper linear trend (Figure

3b). DCHP exhibited a very steep initial increase, followed by a continuous linear increase (Figure 4b). The turnover

resultant beta-diversity of edible species was driven by four significant variables: geographical distance (most important

variable), DCHP, DNAE, and stem density (least important variable) (Table 1), although DNAE and stem density had

similar importance scores. The I-splines indicated that the relationship between geographical distance and total beta-

diversity had an initial steep linear trend that then remained constant at the peak, just as seen in total beta-diversity. Both

DCHP and DNAE exhibited positive roughly linear relations with beta-diversity. However, caution should be taken when

interpreting this relationship as most of the trend in DCHP was driven by four points with higher values while other plots

were skewed (Figure 4b).
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Inedible species models

The models for total and turnover resultant beta-diversity using the inedible species data produced the same three

significant predictors of dissimilarity but with varied importance values (Table 1). Significant predictors with the highest

variable importance for the total beta-diversity of inedible species were geographical distance, DCHP and elevation, in

order of decreasing importance. The effects of geographical distance on total beta-diversity increased (based on the I-

splines) with a steep linear trend and then remained constant at its peak. DCHP exhibited a very steep initial increase

followed by a continuous linear increase, while elevation showed a gentle trend that levelled off at about 600m followed by

a sharp continuous increase (Figure 3c). Inedible turnover resultant beta-diversity models showed that elevation had the

highest variable importance, followed by DCHP and geographical distance. However, the variable importance values for

DCHP (26.65) and elevation (26.98) were similar.  

The total beta-diversity models for edible and inedible species had two common variables that were significant

(geographical distance and DCHP). While there were differences in the variable importance hierarchy, the maximum I-

spline values for these variables were higher when using the inedible species data than when using the edible data

3.2.2. Effects of spatial clusters on the model outcome

When the plot cluster (Table S6 to S7 and Figure S3 to S4 in Appendix S5) was included as a predictor in the models,

there was an increase in the overall GDM deviance and a slight decrease in the variance explained for total beta-diversity

in each model group (all, edible and inedible species). When attempting to run the GDMs for individual clusters, the

models for cluster one, two, and three did not run due to too few data points. In cluster four, there was an increase in

variable importance of human influence variables (DCHP and DNAE) as predictors of the total beta-diversity of inedible

species, while they were less important for edible species (Figure S5 to S6 in Appendix S5). 

4. Discussion

4.1. Drivers of West African tropical forest tree beta-diversity

The finding that geographic distance had the largest variable importance score, combined with the low shared explanatory

power between distance and environment (for all models except for the inedible turnover model), shows that dispersal

limitation likely plays a strong role in the spatial beta-diversity patterns observed in the region. There was also a large

proportion of variance explained by environmental filtering (due to site-specific driver), as also reported in other studies in

the Ebinur Lake National Wetland Nature Reserve in China, montane forest in North America and tropical island in South

China (Jiang et al., 2021; Verrico et al., 2020; He et al., 2020). Impact of environmental filtering on the tree species

community composition of the Nigeria-Cameroon region was reflected as higher variance explained in the models with

environmental variables alone (Model 3) compared to that explained by geographical distance solely (Model 2). A similar

study in the Cuitzeo basin, Mexico, revealed that environmental heterogeneity has a greater impact on spatial beta-
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diversity due to niche-based processes than geographical distance (Vega et al., 2020). Although the current study did not

account for regional climate variables like He et al. (2020), difference in regional species composition can be driven by

spatial changes in climate variables between plots. 

The variable importance values observed for DCHP across the group (All, Edible and Inedible) suggests possible

modification of the forest due to a historical shift from a nomadic lifestyle to a stable settlement near forests (Asuk et al.,

2023; Adnan et al., 2015). This has changed forest resource utilisation by indigenous human communities whose

medicinal, land management, foraging for food, wildcrafting, and conservation customs are tied to cultural and spiritual

forest connections (FAO, 1999; Falconer, 1993). In addition, there has also been historical shift from sustainable, small-

scale agricultural and logging practices to large-scale plantation farming (like cocoa plantations) and extensive commercial

logging, which has profoundly impacted forest ecosystems (Fongnzossie et al., 2020; FAO, 1999). These practices could

have differed impact of the tree species assemblage translating to the observed result for human impacts indicators.

4.2. The impact of human influence on regional beta-diversity

The combination and intensity of variables driving species composition in edible and inedible species groups in the

regional forest differed between the two species groups. Such a difference may have been observable due to the history

and frequency of forest disturbance, successional processes, varying distances of plots from high-intensity and low-

intensity human activities, and differences in topography, climate, and soil conditions (Williams et al., 2020; Fotang et al.,

2021c; Yuan et al., 2022; Asuk et al., 2023). Low-intensity human influence (DCHP - distance to closest human presence)

was a significant predictor of dissimilarity in tree species composition across all species groups (all, edible and inedible) in

the forest. While low-intensity human influence (DCHP) had a higher impact on inedible species than edible species, high-

intensity human activities (DNAE - distance to nearest anthropogenic edge) such as logging, agricultural expansion and

other large-scale disturbance drove the turnover of edible species only. This was different from the finding in a previous

local study within one of the locations in the same region, which suggested that high-impact human activities could

increase the turnover of all species while low-impact activities reduced the turnover of edible species (Asuk et al., 2023).

Other studies have shown that human activities, including logging, agricultural expansion, and harvesting for livelihood

(like firewood and other non-timber forest products), significantly alter habitats and species composition in African tropical

forests (Auliz-Ortiz et al., 2024; Assede et al., 2023; Hussein, 2023; Asuk et al., 2023). The results from this study

corroborate this but also show that human influence, whether low-intensity or high-intensity, impacts species dissimilarity

between areas within the Nigeria-Cameroon region. 

In addition, forest composition (mixed or monodominant) and stem density significantly predicted total beta diversity of

edible species, while DNAE significantly predicted their turnover. These variables were not significant for inedible species.

Monodominant forests are characterized by one single species making up more than 60% of the tree canopy resulting

from coppicing (sprout or regrowth formed at the tree base or root) and edaphic factors (ter Steege et al., 2019). Edible

species have cultural and agroforestry values beneficial to different communities in the Nigeria-Cameroon

region (Falconer, 1993; Fongnzossie et al., 2020). Thus, the predominance of one species category (edible or inedible) in

one location could contribute to the beta-diversity patterns observed (Shiembo et al., 1996; FAO, 1999; Hundera, 2007;
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Klein et al., 2003). Some species favoured by local communities for their food and trade value could be dominant is

certain area (due to hitorical settlements), and thus contribute to forest composition being a significant driver of

dissimilarity between plots (Asuk et al., 2023; Adnan et al., 2015). These species include African Walnut (Coula edulis),

Bush Mango (Irvingia spp.), Kola Nut (Cola spp.), Baobab (Adansonia digitata), African Bush Mango (Irvingia

gabonensis), Safou (Dacryodes edulis), African Breadfruit (Treculia africana), Bitter Kola (Garcinia kola), African Star

Apple (Chrysophyllum albidum), and Monkey Kola (Cola lepidota and Cola pachycarpa) (Shiembo et al., 1996; FAO, 1999;

Hundera, 2007; Klein et al., 2003; Fongnzossie et al., 2020).  

High stem density and heterogeneous microhabitats resulting from disturbances in tropical forests can create unique

environmental requirement to support different tree species. The effect of stem density on total beta diversity and turnover

of edible species might translate to high spatial migration of species either naturally through propagation or through the

management and cultivation influence of humans (Abbasi et al., 2023; Godlee et al., 2021; Yano et al., 2021).  Stem

density being non-significant for inedible species may be due to the influence of other ecological factors influencing their

presence and community composition such as greater adaptability to survive in smaller, isolated habitats or possibly other

species use such as medicine and gum (Bailey et al., 2010; Fahrig, 2003; de Lima Filho et al., 2021). Comparing results of

this study with those of Asuk et al. (2023) indicates that the factors driving beta-diversity are apparent for inedible species

at both local and regional scales in West African tropical forests but differ for edible species. This supports findings from

other studies, for example those undertaken in the Amazon, that have suggested that the selection and stewardship of

desired tree species by indigenous populations over time could leave strong imprints on patterns of forest composition

(Roberts et al., 2021; Levis et al., 2017; Scerri et al., 2022). 

4.3. Effects of spatial distance and elevation on the beta-diversity of tree species in the region

Although the combined effect of environmental variables (see model 3 in Table 1) was greater than the geographical

distance (see model 2 in Table 1), in the overall model (model 1), the geographical distance between sites had the highest

variable importance score (except for the turnover of inedible species, where elevation had the highest variable

importance). The role of geographic distance in the models points to dispersal limitation, along with the possible impact of

geographical barriers such as water bodies, fragmentation by large road and human settlements, driving turnover in

species composition (Abiem et al., 2022; He et al., 2020; Wayman et al., 2021; Yang et al., 2015; Zahawi et al., 2021).

Elevation plays a crucial role in the composition and spatial distribution of tree species exerting varying niche-based

effects on species due to changes in climate, wind, soil, the identity of seed dispersers, and the activities of humans along

the elevational gradient, all of which could result in strong environmental filtering and the replacement of species (Adnan

et al., 2015; Asuk et al., 2023; Malizia et al., 2020; Verrico et al., 2020; Yano et al., 2021). Elevation was a significant

variable in all species and inedible species models however, not a significant predictor of total beta-diversity and turnover

of edible species. The interaction between elevation and human activities (Asuk et al., 2023; Yano et al., 2021; Malizia et

al., 2020) may result in an uneven distribution of activities along elevational gradients which could potentially affect the

pairwise turnover between plots (Asuk et al., 2023; Verrico et al., 2020; Adnan et al., 2015; Aigbe and Omokhua, 2015).
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However, low-intensity activities (e.g., foraging for food) may occur across the elevational gradient, leading to more

similar species composition across the gradient due to humans spreading the seeds of edible species; (Jansen et al.,

2020; Williams et al., 2020; Guo et al., 2022; Scerri et al., 2022; Asuk et al., 2023) and may explain why elevation was not

a significant predictor in the edible species models. Although these forests were not actively logged at the time of the

census, any past timber harvesting would likely have been restricted to lower elevations (Adnan et al., 2015; Asuk et al.,

2023; Socolar et al., 2016; Verrico et al., 2020). This will have increased the effect of elevation on dissimilarity (especially

in regard to inedible species), while selective pressure due to species preferences could reduce populations of certain

species, causing a marked turnover in species composition (Asuk et al., 2023; Ellis et al., 2010).

4.4. Limitations associated with the study

Understanding the impact of human influence on tree species dissimilarity in the Nigeria-Cameroon forest region using

this dataset presents significant challenges. The lack of historical data on how long-term human impacts have shaped

current forest structure and species composition, limited the conclusion from the study to spatial impacts.

The proxies for human activities, combined with the omission of potentially crucial environmental gradients such as

temperature, precipitation, and evapotranspiration, could result in an incomplete understanding of the drivers of species

dissimilarity. The dataset lacked systematic sampling in space, particularly across key variables such as DCHP (Distance

to Closest Human Population) and DNAE (Distance to Nearest Agricultural Expansion), making relatively small numbers

of plots responsible for the strong gradients observed in the I-splines. This means that the attribution of a large role of

DCHP must be considered with some caution, however it should be note that even without these few data points above

(Figure 3 and 4) the response shape was also positive across the narrower DCHP range.

The available data from plots that fit the selection criteria were constrained by spatial and temporal scope, with single

census data collected from a limited number of plots between 2002 and 2019. This limitation hindered the observation of

long-term trends and changes in species composition and human influence, potentially not fully representing broader

regional patterns.

While the study provides valuable insights, these limitations could impact the precision of inferences regarding past

human impacts on tree species composition, as well as the spatial and temporal dynamics of tree species dissimilarity.

Addressing these limitations in future research is essential for a more accurate and comprehensive understanding of

human impacts on forest ecosystems.

A study conducted in Hainan, China, highlighted factors such as temperature, precipitation, and evapotranspiration as

significantly influencing tree species composition more than geographical distance alone (He et al., 2020). This

underscores the importance of niche-based processes over dispersal limitation. The current study did not account for

these environmental gradients, which could be crucial in shaping dissimilarity patterns in the region and should be

considered in future research.
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5. Conclusion

This study evaluated the drivers of beta-diversity in tree species, while emphasizing the impact of human activities in the

Nigeria-Cameroon forest region. The primary driver of tree species dissimilarity was found to be turnover across all

species groups analysed (all, edible, inedible). Key factors driving beta-diversity included geographical distance, plot

elevation, stem density, human proximity, and forest species composition, with environmental variables as a group

explaining more variance across all of the models than geographic distance alone. However, there was shared variance

explained between the environmental variables and distance, and a proportion of variance was explained uniquely by

distance alone. 

The variables observed to predict beta-diversity differed between edible and inedible tree species. While forest

composition (mixed or monodominant forest) significantly influenced beta-diversity in edible species, this pattern was not

observed in inedible species. Geographical distance was a more dominant factor in plot dissimilarity than any single

environmental factor, and elevation was particularly influential in the diversity of inedible species, suggesting the

importance of niche-filtering and human activities along elevational gradients (Asuk et al., 2023).

Despite the limitations on what is possible with the currently available data, the findings suggest that human influence is

an important driver of beta-diversity in the Nigeria-Cameroon forest region. As discussed, the type of intensity and

duration of different human activities can exert a different response on the beta-diversity of different species. The study

highlights the role of environmental filtering, spatial factors, and human influence in shaping tree species dissimilarity

between plots within the region. However, further research is necessary to understand the links between species

dissimilarities and tree traits, and the effects of both past and present anthropogenic disturbance. Any future analysis

exploring the link between species traits and community dissimilarity would be aided by incorporating a combination of

socio-economic such as historical resource use and tree stand data to develop sustainable conservation and

management strategies, particularly focusing on sustainable resource use to support forest-dependent communities.

Considering the significant impact of human activities on tree species assemblages, understanding human impact of

forest ecosystems is vital for guiding conservation efforts in Afrotropical forests and supporting forest-dependent

communities.
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Drivers of tree diversity in West Africa

ABSTRACT

Human activities exert pronounced influence on forest ecosystems, impacting biodiversity and functions across multiple

scales. However, the consequences of low-intensity human activities on tropical forest ecosystems are difficult to assess

and remain poorly explored. The influence of human activities and other site-specific variables on forest tree assemblages

in central-west Africa was investigated. The greatest impact of human activity was expected to be seen on edible tree

species. Tree species in the forest were divided into edible (consumed by humans) and inedible species to assess the

differential impacts of human resource use on species. Tree data from 66 plots in Nigeria and Cameroon (collected

between 2002 and 2019) were analysed using Generalized Dissimilarity Models (GDMs) to assess pairwise beta-diversity

between plots. Human activity significantly affected beta-diversity within the Nigeria-Cameroon forest region. Total beta-

diversity was shaped by geographical distance between plots, plot elevation, stem density, proximity to human presence,

and forest species composition. The forest species composition (monodominant or mixed forest) appeared to influence

dissimilarity in beta-diversity for edible tree species only, likely linked to cultural practices in the region. Influence of

elevation was significant for inedible species only, due to access restriction. These findings underscore the role of human

influence in shaping tree species assemblages in African tropical forests and stress the necessity for further research in

this area.

Keywords:

West Africa, beta-diversity, species turnover, human presence, tree species assemblages, tropical forest, generalized

dissimilarity models (GDMs), environmental gradients, elevational variability, forest composition 

 

1.         INTRODUCTION 

Forest biodiversity and their functions are rapidly changing at local, regional, and global scales due to large-scale habitat

loss and modification from anthropogenic activities (McMichael et al., 2017a; Bush et al., 2015; Piperno et al., 2015;

Clement et al., 2015; Helmus et al., 2014; Steadman, 1993; Stahl, 2015; Jarzyna and Jetz, 2018). Anthropogenic activities

such as selective harvesting, illegal logging, clear-cutting for agricultural purposes, foraging of fruit/seed for food, and

conservation modify the composition and distribution of species in tropical forests (Benchimol and Peres, 2013; Asuk et

al., 2022; Elo et al., 2018). These anthropogenic impacts can vary depending on utilisation (food, timber, medicine,

alongside other uses), intensity, duration of the activity, and the type of species (Asuk et al., 2023; Adeyemi, 2016; Adnan

et al., 2015; Aigbe and Omokhua, 2015; Jimoh et al., 2012). Forests clear-cutting prior to the attainment of “protected” or

“reserve” status might be at an early stage of succession and dominated by fast-growing pioneers compared to forests left

to their natural growth (Aigbe and Omokhua, 2015). The migratory history of forest dependent human communities could

contribute to changes in the forest species composition via deliberate planting of preferred tree species (McMichael et al.,
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2017a; Adnan et al., 2015; Aigbe and Omokhua, 2015; Jimoh et al., 2012).

Investigations into the effects of anthropogenic activities on forest biodiversity have focused primarily on the high-intensity

impacts, such as deforestation, fragmentation, and degradation (Swenson et al., 2011; Gallardo-Cruz et al., 2009;

Alahuhta et al., 2017; Donoso et al., 2017; García-Navas et al., 2020). Yet, growing evidence suggests that low-intensity

human activities such as foraging for food, selective species conservation, dispersal of seeds of desirable species (e.g.,

species with fruits eaten by humans) and enrichment planting may modify forest ecosystems more than previously

thought, and thus potentially affect ecological and macroecological patterns (McMichael et al., 2017a; Piperno et al., 2015;

Singh et al., 2022; Chaturvedi et al., 2017; Asuk et al., 2023). For example, the modern floristic composition and structure

of some areas of natural forests in Amazonia have been linked to past low-intensity human activities (e.g., plant

cultivation, seed dispersal and propagation, and incidental domestication) (Levis et al., 2017). However, the general

effects of low-intensity anthropogenic impacts on spatial ecological patterns in tropical forests are poorly

understood (Jarzyna and Jetz, 2018; Anderson et al., 2011), likely due to the difficulty in measuring impacts (McMichael et

al., 2017a; Stahl, 2015; Piperno et al., 2015; Asuk et al., 2023). Given that remote sensing of forests easily detects coarse

structural changes (e.g. deforestation, logging) much more than subtle floristic changes induced by management, without

extensive ground surveys it is likely that the extent of human impact on forest communities will be underestimated.

The impact of low-intensity drivers on tropical forest composition can be assessed by measuring the effects of human

activities such as foraging, preferential planting and deliberate conservation on the spatial beta-diversity of the

forest (Singh et al., 2022; Biswas and Mallik, 2011; Bush et al., 2015; Roberts et al., 2021; Asuk et al., 2023). Spatial beta-

diversity, defined as the dissimilarity in species composition between two or more communities separated in

space (Pound et al., 2019; Anderson et al., 2011), has been successfully used to analyse differences in tree species

composition within and between forests (Condit et al., 2002). Spatial beta-diversity patterns combined with environmental

and ecological measurements have also been used to identify key drivers of spatial dissimilarity in community composition

of Oban forest in Nigeria (Asuk et al., 2023). While there have been numerous ecological studies on beta-diversity of

forest tree species, these have mostly focused on identifying high-intensity drivers of dissimilarity in beta-diversity at

global scales, as well as mainly being focused on temperate forests, with less work focused solely on tropical

forests (Jarzyna and Jetz, 2016; Herault et al., 2010; Barnagaud et al., 2017; Aspin et al., 2018; Waddell et al., 2020; Fu

et al., 2019; Swenson et al., 2011; Devictor et al., 2010; Biswas and Mallik, 2011; García-Navas et al., 2020; Lueder et al.,

2022; Biswas and Mallik, 2010; Zambrano et al., 2020). 

African forests are biodiversity hotspots with numerous endemic species (Myers et al., 2000; Agaldo et al., 2016; Oates et

al., 2004; Seifert et al., 2022). They play a vital role in climate regulation by absorbing atmospheric carbon dioxide, thus

mitigating climate change effects (Núñez et al., 2022; Oyewole et al., 2019; Artaxo et al., 2022). Until 2015, intact

Afrotropical forests have maintained a consistent carbon sink in live aboveground biomass averaging about 0.66 tonnes of

carbon per hectare per year (Hubau et al., 2020). These forests have also indicated a more resilient and stable carbon

sink in contrast to the Amazonian forests over the same period (Hubau et al., 2020). Furthermore, African forests

contribute to water cycle regulation, soil conservation, agriculture support during crop failure, and ecological balance (Raj
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et al., 2022; Meinhold and Darr, 2022). Understanding the processes which have shaped the forests in Africa is essential

for developing effective conservation and management strategies. Yet, these forests remain largely understudied,

particularly in terms of spatial composition patterns.

There have been reports of large-scale trends of deliberate planting and conservation of preferred tree species in the

Amazon forest (Levis et al., 2017). The selective logging of certain species, along with the preservation of other species,

results in a change in the species composition due to the turnover of species within the forest over time (Bousfield et al.,

2023). The patchiness of these activities within the forest can manifest as a change in beta diversity. A study on the

“human experience of nature” in Africa revealed that forests respond differently to the intensity of anthropogenic usage

they are exposed to (Cazalis et al., 2023). A localised study in Oban Forest, a tropical African rainforest located in Nigeria,

assessed the impact of low-intensity anthropogenic activities on tree species diversity by comparing patterns in tree

species that were foraged for food and those that were not (Asuk et al., 2023). The results of the study suggested that

beta-diversity trends, as well as patterns of relative species abundance, varied according to the use of the tree species by

humans (i.e., those utilized for food and those not utilised for food). This finding pointed to a potentially pervasive impact

of low-intensity human foraging practices on tropical forest composition. For example, humans may disperse the seeds of

edible species across the landscape and conserve those trees by not cutting them for timber due to the fruits/seeds they

produce being highly valued as food sources. Similarly, with regard to timber harvest, while certain species of trees are

cut down, some tree species with food value have been reported to remain in the forest estate or within old, abandoned

farm estates (Ellis et al., 2021; Jansen et al., 2020; Asuk et al., 2023; Levis et al., 2017). However, whether such effects

are prevalent across tropical ecosystems in West Africa at larger scales is unknown.

A better understanding of the magnitude and dynamics of impacts from low-intensity anthropogenic activities on spatial

beta-diversity at a regional scale, or how these activities interact with other drivers, is essential to accurately predict the

future impacts of humans on tree community composition and dynamics (McMichael et al., 2017b; Piperno et al., 2015;

Stahl, 2015; Wayman et al., 2021). Due to the rugged topography and remote nature of some West African forests, the

intensity of impact from human activities on the ecosystem could reasonably vary depending on the accessibility of these

forests to people (Asuk et al., 2023). 

Although this variability has been observed locally (Asuk et al., 2023), it remains unclear whether the same patterns will be

seen at a regional scale. Based on this prior work, it was hypothesized that human impacts on the distribution and

composition of tree species at a local scale should also be present at a larger regional scale. This study aims to address

this research gap for the Nigeria-Cameroon region, which has a continuous forest area with varied human access and

elevational variability. In addition, the studied ecosystem is threatened and poorly studied, yet is one of the most culturally

and biologically diverse forest regions in all of tropical Africa (Fotang et al., 2021a, 2021b). 

To explore dissimilarity between forested regions, a beta-diversity framework was used to evaluate the impact of low-

intensity anthropogenic activities on the composition of tree assemblages in tropical West Africa at regional scales. Using

a regional dataset of West African tropical forests, containing presence/absence information of tree species categorized

into edible (produce seeds and fruits eaten by humans) and inedible (not eaten by humans) species, patterns of spatial
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beta-diversity alongside predicted drivers were calculated and analysed to answer the following questions: (1) is there an

influence of human presence on the spatial beta-diversity of forest trees at a regional scale? and if so, (2) does this

influence differ between those species used for food and those which are not? 

2.         METHODS

2.1.      Plot and species composition data

The study was carried out using tree data (min 10 cm DBH) from long-term plots established in the tropical forests of

Nigeria and Cameroon, bordering countries located in the West and West-Central regions of Africa, respectively (Figure

3.1). The forests of both countries are contiguous via their common borders (Nigerian National Park Service, 2019; Enuoh

and Ogogo, 2018). The species composition data used for the study comprised single census tree-by-tree samples

collected between 2002 and 2019 from five plots established in Nigeria (Asuk et al., 2022, 2023) and 61 plots established

in Nigeria and Cameroon, accessed from the ForestPlots.net database (Lopez-Gonzalez et al., 2009; ForestPlots.net et

al., 2021). The selected plots in Cameroon all measured 100m x 100m except for one plot that measured 40m x 100m

(see Appendix S1, Table S1). The plots in Nigeria were smaller than those in Cameroon, measuring 40m x 120m (see

Appendix S1, Table S1).

The plots were grouped into four spatial clusters based on their spatial proximity (Fig. 1). The associated plot metadata

also included information on elevation, average plot slope, longitude, and latitude, stem density, forest status and forest

composition. Elevation was recorded as the elevation of plots in metres above mean sea level during field inventories. The

average slope of the plots was measured at 20m distance, and the slope was scaled into intervals: flat (0 – 2 degrees),

almost flat (2 to 5 degrees), slightly sloping (5 to 10 degrees), moderately sloping (10 to 20 degrees) and steep (greater

than 20 degrees) slope. Geographical data consisted of information on longitude and latitude in metres (UTM) at the

centre of the plot collected during forest inventories (used to measure geographical distance between plots). Stem

density, which refers to the number of living individual tree stems per unit area, was generated by counting the total

number of stems in each plot. To produce forest composition data, the composition of each plot was classified as either

mixed forest, monodominant, or savanna following ForestPlots.net (see Appendix S1, Tables S2 and S3). Forest status

data contained information about the status of the forest within the plots in relation to past or present anthropogenic

disturbance as described by ForestPlots.net, including old-growth, secondary forest, logged, burned and other mixed

classifications (Lopez-Gonzalez et al., 2011). 

Figure 1. Map of Nigeria and Cameroon showing the location of the 66 plots used for the study. The plots were grouped

into four spatial clusters (blue broken lined circles), numbered 1 to 4.

2.1.1.   Plot selection criteria

To reduce any area effect on tree composition and thus ensure a justifiable pairwise comparison of the plot data,
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differences in plot dimension/area (i.e., plots that were much larger/smaller compared to other plots) were reduced. Data

from the last tree censuses collected between 2002 and 2019 were filtered from the multiple census tree data for the

study. Only plots that fell between the size range of 40 by 100 m and 100 by 100 m with mixed and monodominant

species composition in old-growth and secondary forest ecotones were selected for the study. Specifically, for the

Nigerian plots, five groups of three adjacent plots that were below 100 m by 100 m in size were merged into plots of size

40 m by 120 m. GPS coordinates for the centre plot amongst the three adjacent plots was used as the centre point for the

new plot. Filtering and joining the plots resulted in a dataset consisting of 66 plots across the study region (i.e., Cameroon

and Nigeria), with an average size of 94.6 m (std. 17.4 m) by 101.5 m (std 5.3 m) and containing a total of 28,299

individual trees. All other plots that did not meet the above criteria were discarded leaving a total of 66 plots. As outlined

above, due to the geographic distances between plots, the 66 plots were further grouped into four clusters based on the

geographical proximity of the plots. Cluster one had three plots, cluster two had 25 plots, cluster three had seven plots

and cluster four had 31 plots. 

2.2.      Species categorization

Tree species were categorized into those with fruits, nuts and seeds that are edible by humans and all other species were

classified as inedible. The categorization was based on a combination of structured questionnaires (see Appendix S2)

administered to four forest-dependent / support zone communities within Oban Forest in Nigeria (Asuk et al., 2023), and

secondary data on the utilization of tree species collected from online databases between December 2021 and February

2022. These online databases included Useful Tropical Plants database (https://tropical.theferns.info/), the PlantUse

database (https://uses.plantnet-project.org/en/), the Royal Botanical Gardens Kew/Plants of the World Online database

(https://powo.science.kew.org/), PlantZAfrica (http://pza.sanbi.org/), World Agroforestry

(https://apps.worldagroforestry.org/usefultrees/), and ebooks and journal publications. 

2.3.      Human influence/presence

Two variables were used as proxies to assess the impact of humans on the tree species composition in the region (see

Appendix 3):

1. Distance to the nearest anthropogenic edge (DNAE), calculated as the straight-line distance from the plot centre to the

nearest anthropogenic edge of the forest at the time of the census. Information on the nearest anthropogenic edge

was available for the plots in the Oban Division dataset, but few other plots in the forestplots.net dataset. For plots

without this information, open street map and Google Earth were used to measure a straight-line distance from the

GPS location of the centre of each plot to the nearest sign of anthropogenic edge (e.g., farm, settlement, construction

but excluding footpaths). DNAE was used as an indicator to measure the possible presence of relatively high-impact

human activity in the region.

2. Distance to the closest human presence (DCHP) – calculated as the straight-line distance from the GPS centre point of
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the plot to the closest identified footpaths, often used to forage for food and hunting; thus, it was used as an indicator

for relatively low-impact human activities. Human presence measurement was generated from Open Street Map and

validated on Google Earth. Because of a combination of data from censuses carried out in different years, Google

timelines on Google Earth was used to select an available aerial image closest to the years the census measurement

was taken (see Fig. S1 and S2 in Appendix S3). DCHP generally had shorter distances than DNAE and is arguably a

more accurate measure of low-impact human presence in the forest region.

2.4.      Data analysis

Data analysis involved three main steps: the generation of a tree species presence-absence matrix for each plot,

calculation of Sørensen’s pairwise beta-diversity between plots (partitioned into nestedness and turnover components),

and the use of Generalized Dissimilarity Models (GDMs) to identify variables that drive spatial beta-diversity. The data

were analysed using R (R Core Team, 2022). 

2.4.1    Presence-absence matrix and beta-diversity calculation

For each plot, a presence-absence matrix was constructed separately for all species (a combination of edible and inedible

species), edible species, and inedible species. Then the pairwise dissimilarity (beta-diversity; Sørensen index) was

computed between each plot and every other plot within the dataset for each presence-absence matrix. The pairwise

dissimilarity was partitioned into the turnover (which is independent of richness differences) and nestedness components

(Baselga, 2012). All beta-diversity components were calculated using the “betapart” package in R (Baselga et al., 2018; R

Core Team, 2022). 

2.4.2    Generalized Dissimilarity Models (GDM)

GDMs and variance partitioning are valuable tools for disentangling what proportion of variation in dissimilarity between

communities is due purely to the effect of distance between the communities, what proportion is explained uniquely by

environmental (including anthropogenic) gradients, and what proportion of variance is shared between the two (Buzatti et

al., 2019; Guerin et al., 2013; He et al., 2020; Wayman et al., 2021).

The “gdm” R package (Ferrier et al., 2007; Mokany et al., 2022) was used to fit the GDMs, which involved modelling a

measure of compositional difference between sites (here, the total pairwise beta-diversity and separately the turnover and

nestedness components) against the selected environmental variables and geographic distance to assess which predictor

variables drive spatial taxonomic dissimilarity between plots. GDMs utilize the pairwise dissimilarity from beta-diversity

matrices as the response variable and transform this dissimilarity to allow for meaningful comparison with combinations of

predictor variables on different scales in the form of site pairwise distances (Mokany et al., 2022). A linear combination of

I-spline basis functions fit using non-negative least squares regression was used to transform each predictor variable in

the GDM (Mokany et al., 2022). The spline functionof each predictor variable is relatively flexible in shape. However,
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because GDMs assume that dissimilarity can only increase between two sites that become more different in their predictor

variables, I-splines are constrained to increase monotonically (Mokany et al., 2022). 

Separate GDM models were fitted for total beta-diversity, turnover, and nestedness calculated from each of the three

presence-absence matrices (all species, edible species only, and inedible species only) (Mokany et al., 2022). These

models included all the environmental variables (elevation, average plot slope), plot-level variables (stem density, forest

status and forest composition), and a measure of distance between each plot. The direct impact of each variable along

the dissimilarity gradient was assessed by applying a permutation and backwards selection approach, allowing the

calculation of variable significance and variable importance (applied using the function ‘gdm.varImp’ within the ‘gdm’

package (Mokany et al., 2022; Ferrier et al., 2007)). This approach fits a model using all the unpermuted predictor

variables. The rows containing the variables are then permuted 100 times between the plots (columns), and a separate

GDM is fitted to each. Deviance between the unpermuted and permuted models is then calculated. The process is then

repeated for each individual predictor, whilst holding the others constant, to calculate importance scores and significance

for each one. The least significant predictor is then dropped, and the permutation is repeated with the remaining

predictors until a model is found where all those remaining are significant (p < 0.05; model 1). The predictor importance

for each variable was calculated from the percent change in deviance explained between the unpermuted and permuted

models for that variable (Mokany et al., 2022; Ferrier et al., 2007).

Geographical distance (the Euclidean distance between sites based on the x and y coordinates) was included as a

predictor to account for the direct or indirect likelihood of distance-induced dissimilarity between site-pairs through

dispersal limitations (Mokany et al., 2022). However, the dissimilarity driven by environmental gradients could be

suppressed or wrapped up in the dissimilarity from the distance between sites, leading to the variance explained by each

to be shared. Therefore, two more models were fitted for each response: one containing only geographical distance

(model 2) and one with only environmental predictors that were significant in the model selection process (model 3). The

shared variance between the environmental predictors and geographical distance was generated using the formula (Ray-

Mukherjee et al., 2014) below.

Equation (1)                

                         

where Vs is the shared variance explained between the environmental and geographical variables, Vfull is the total

variance explained by the model (model 1), Vg is the variance explained by the model containing only geographical

variables (model 2), and Ve is the variance explained by the environmental model only (model 3). 

The distinct cluster groups were coded from 1 to 4 (Fig. 1) and included as a variable (cluster identity) in the Generalized

dissimilarity models (GDMs) to check the effect of cross-cluster variation. The GDMs were then run with data from each of

the four cluster groups individually to compare within-cluster variation and drivers. In addition to this, GDM models were

run with and without cluster identity as a variable.
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3.         RESULTS 

3.1.      Regional, taxonomic beta-diversity, turnover and nestedness

Among the 66 plots, there were a total of 28,299 individual sampled trees with a gamma diversity of 708 species within

316 genera. From a view of human consumption, 236 species were classified as edible, and 472 species were classified

as inedible with 11,097 and 17,202 stems, respectively (Table S4 in Appendix S4). The mean total pairwise beta-diversity

between sites was similar (Figure 2) for all species (0.74 ± 0.13), edible species (0.73 ± 0.14) and inedible species (0.75 ±

0.13). The turnover component of beta-diversity was the main determinant of the overall beta-diversity, while nestedness

contributed a very small proportion in the region and in the clusters. For all species, turnover (0.67 ± 0.15) accounted for

90.5% of total beta-diversity, while nestedness resultant dissimilarity (0.07 ± 0.08) was responsible for 9.5%. For inedible

species, turnover (0.67 ± 0.16) was responsible for 90.1% of total beta-diversity while nestedness (0.07 ± 0.09) described

9.9% of total beta-diversity. Similarly, 89% of total beta-diversity for edible species was due to turnover (0.65 ± 0.17), and

11% was due to nestedness resultant dissimilarity (0.08 ± 0.08). For the nestedness GDMs, no explanatory variables

explained any variation and, therefore, they are excluded from further discussion. 

Figure 2. Boxplots of pairwise spatial dissimilarity of all (a), edible (b) and inedible (c) tree species found in the region.

Plots display total beta-diversity (Total) as well as the turnover (Turn) and nestedness (Nest) components. 

3.2.       GDM results  

As expected, Model 1 (a combination of geographical distance and environmental variables) had the highest variance

explained with 40.9%, 36.8% and 31.8% explained for total beta-diversity, for the models containing all, inedible-only and

edible-only species groups, respectively. Similarly, Model 1 also recorded the highest percentage of variance explained in

turnover (species replacement) for the inedible, all and edible species groups with 43.5%, 41.6% and 27.7% (Table 1).

Model 3 (models run with environmental variables only) recorded the second highest variance explained for total beta-

diversity with 30.9%, 23.1%, and 24.8% (all, edible, inedible species groups, respectively), while Model 2 (models run

with only geographical distance) had the least variance explained in total beta-diversity, between 18.3%, 13.2%, and

17.4% for all, edible, and inedible species groups respectively (see Table 1). A low shared explained variance between

geographical distance and environmental predictors was observed, with percentages ranging from 8.3%, 5.4% and 4.6%

for dissimilarity due to total beta-diversity and 5.9%, 4.2%, and 5.8% in dissimilarity due to turnover in all, edible, and

inedible species group respectively (see Table 1). 

Table 1. Results from the generalized dissimilarity models analysing the spatial dissimilarity between forest plots. “Total”

refers to total Sørensen’s beta-diversity while “Turn” refers to the Simpson’s turnover partition of beta-diversity. Dashed

lines indicate where variables were non-significant within models. Shared variance (%) was calculated from the variance

explained by the full model, the geographical distance only model, and the environment only model. Model 1 (all
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significant predictor variables), Model 2 (only geographical distance) and Model 3 (only significant environmental

predictors from model 1) rows show the percentage deviance explained for the models. Variable importance is percent

change in deviance explained between the unpermuted and permuted models for that variable. DNAE is the ground

distance of plots to nearest anthropogenic edge. DCHP is the ground distance to closest human presence to each plot.

“m” is ground distance measured in metres.

 Groups All Edible Inedible

 Total Turn Total Turn Total Turn

GDM Deviance 104.19 127.37 157.09 208.10 120.16 142.20

Null Deviance 176.20 218.03 230.25 287.99 190.19 251.47

Intercept 0.66 0.50 0.66 0.42 0.71 0.48

Model 1 40.87 41.58 31.77 27.74 36.82 43.45

Model 2 18.26 17.30 13.22 13.19 17.38 15.54

Model 3 30.89 30.13 23.12 18.75 24.83 33.70

Shared Variance (%) 8.28 5.85 4.57 4.20 5.39 5.79

Variable importance – Model 1

Geographical distance (m) 24.38 27.51 27.18 32.36 32.54 22.42

Elevation 19.83 25.23 - - 19.99 26.98

Stem density (stems/ha) - - 19.31 15.04 - -

DNAE (m) - - - 15.24 - -

DCHP (m) 18.35 24.34 14.07 24.01 21.54 26.65

Forest composition 18.25 NA 26.86 - - -

3.2.1. Drivers of spatial taxonomic beta-diversity across all, edible and inedible species 

A total of six variables (geographical distance, elevation, stem density, DNAE, DCHP, forest composition) out of the eight

variables imputed in model 1 significantly affected beta-diversity at varying levels of importance across all groups (all,

edible and inedible) (Table 1).

All species models

In the all-species model (all; Table 1), geographical distance, elevation, DCHP, and forest composition were significant

predictors of total beta-diversity. Geographical distance, the variable with highest importance in most models (except in

the model for turnover of inedible species), showed a rising trend up to 200-300 km before levelling off (Figure 3a).

Elevation, the second most important, increased gently up to 500-700 m, then sharply increased after that point (Figure

3a). DCHP, the third key predictor, had a slight initial rise followed by a steady increase (Figure 3a). Forest composition

had a minor yet significant linear relationship with beta-diversity (Figure 3a). The turnover model identified geographical

distance, elevation, and DCHP as significant, with trends similar to those in the total beta-diversity model (see Figure 4a¸

Tables 1 and S5 in Appendix S5), but interpretations should be made with caution as the data spread shown on the x-axis

was skewed with only a few forest plots having high values of DCHP or DNAE (see rug plot on the x-axis in Fig. 3). 
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Figure 3. Plotted I-splines of the three variables with highest importance scores from the GDMs analysing the spatial

relationship between geographical gradients, environmental variables, and tree species composition. Plots are the Total

Sørensen’s beta-diversity for all the species in the region (a), for the edible species category (b), and for the inedible

species (c). Plots are organized from left to right in order of decreasing importance. 

 

Figure 4. Plotted I-splines of the three variables with highest importance scores from the GDM analysing the spatial

relationship between the turnover component of Sørensen’s beta-diversity and geographical gradients, environmental

variables, and tree species composition. Plots on row (a) are for all species, (b) are for the edible species category, and

(c) for the inedible species. Plots are organized from left to right in order of increasing importance. 

Edible species models

For edible species model, total dissimilarity in the community assemblage was significantly influenced by geographical

distance, forest composition, stem density and DCHP, in order of decreasing variable importance (Table 1). The I-splines

indicated that the relationship between geographical distance and total beta-diversity had an initial steep linear trend that

then plateaued. Forest composition exhibited a slight linear trend, while stem density had a steeper linear trend (Figure

3b). DCHP exhibited a very steep initial increase, followed by a continuous linear increase (Figure 4b). The turnover

resultant beta-diversity of edible species was driven by four significant variables: geographical distance (most important

variable), DCHP, DNAE, and stem density (least important variable) (Table 1), although DNAE and stem density had

similar importance scores. The I-splines indicated that the relationship between geographical distance and total beta-

diversity had an initial steep linear trend that then remained constant at the peak, just as seen in total beta-diversity. Both

DCHP and DNAE exhibited positive roughly linear relations with beta-diversity. However, caution should be taken when

interpreting this relationship as most of the trend in DCHP was driven by four points with higher values while other plots

were skewed (Figure 4b). 

Inedible species models

The models for total and turnover resultant beta-diversity using the inedible species data produced the same three

significant predictors of dissimilarity but with varied importance values (Table 1). Significant predictors with the highest

variable importance for the total beta-diversity of inedible species were geographical distance, DCHP and elevation, in

order of decreasing importance. The effects of geographical distance on total beta-diversity increased (based on the I-

splines) with a steep linear trend and then remained constant at its peak. DCHP exhibited a very steep initial increase

followed by a continuous linear increase, while elevation showed a gentle trend that levelled off at about 600m followed by

a sharp continuous increase (Figure 3c). Inedible turnover resultant beta-diversity models showed that elevation had the

highest variable importance, followed by DCHP and geographical distance. However, the variable importance values for

DCHP (26.65) and elevation (26.98) were similar.  
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The total beta-diversity models for edible and inedible species had two common variables that were significant

(geographical distance and DCHP). While there were differences in the variable importance hierarchy, the maximum I-

spline values for these variables were higher when using the inedible species data than when using the edible data. 

3.2.2. Effects of spatial clusters on the model outcome 

When the plot cluster (Table S6 to S7 and Figure S3 to S4 in Appendix S5) was included as a predictor in the models,

there was an increase in the overall GDM deviance and a slight decrease in the variance explained for total beta-diversity

in each model group (all, edible and inedible species). When attempting to run the GDMs for individual clusters, the

models for cluster one, two, and three did not run due to too few data points. In cluster four, there was an increase in

variable importance of human influence variables (DCHP and DNAE) as predictors of the total beta-diversity of inedible

species, while they were less important for edible species (Figure S5 to S6 in Appendix S5).

4.         DISCUSSION

4.1.      Drivers of West African tropical forest tree beta-diversity

The finding that geographic distance had the largest variable importance score, combined with the low shared explanatory

power between distance and environment (for all models except for the inedible turnover model), shows that dispersal

limitation likely plays a strong role in the spatial beta-diversity patterns observed in the region. There was also a large

proportion of variance explained by environmental filtering (due to site-specific driver), as also reported in other studies in

the Ebinur Lake National Wetland Nature Reserve in China, montane forest in North America and tropical island in South

China (Jiang et al., 2021; Verrico et al., 2020; He et al., 2020). Impact of environmental filtering on the tree species

community composition of the Nigeria-Cameroon region was reflected as higher variance explained in the models with

environmental variables alone (Model 3) compared to that explained by geographical distance solely (Model 2). A similar

study in the Cuitzeo basin, Mexico, revealed that environmental heterogeneity has a greater impact on spatial beta-

diversity due to niche-based processes than geographical distance (Vega et al., 2020). Although the current study did not

account for regional climate variables like He et al. (2020), difference in regional species composition can be driven by

spatial changes in climate variables between plots. 

The variable importance values observed for DCHP across the group (All, Edible and Inedible) suggests possible

modification of the forest due to a historical shift from a nomadic lifestyle to a stable settlement near forests (Asuk et al.,

2023; Adnan et al., 2015). This has changed forest resource utilisation by indigenous human communities whose

medicinal, land management, foraging for food, wildcrafting, and conservation customs are tied to cultural and spiritual

forest connections (FAO, 1999; Falconer, 1993). In addition, there has also been historical shift from sustainable, small-

scale agricultural and logging practices to large-scale plantation farming (like cocoa plantations) and extensive commercial

logging, which has profoundly impacted forest ecosystems (Fongnzossie et al., 2020; FAO, 1999). These practices could
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have differed impact of the tree species assemblage translating to the observed result for human impacts indicators.

4.2.      The impact of human influence on regional beta-diversity

The combination and intensity of variables driving species composition in edible and inedible species groups in the

regional forest differed between the two species groups. Such a difference may have been observable due to the history

and frequency of forest disturbance, successional processes, varying distances of plots from high-intensity and low-

intensity human activities, and differences in topography, climate, and soil conditions (Williams et al., 2020; Fotang et al.,

2021c; Yuan et al., 2022; Asuk et al., 2023). Low-intensity human influence (DCHP - distance to closest human presence)

was a significant predictor of dissimilarity in tree species composition across all species groups (all, edible and inedible) in

the forest. While low-intensity human influence (DCHP) had a higher impact on inedible species than edible species, high-

intensity human activities (DNAE - distance to nearest anthropogenic edge) such as logging, agricultural expansion and

other large-scale disturbance drove the turnover of edible species only. This was different from the finding in a previous

local study within one of the locations in the same region, which suggested that high-impact human activities could

increase the turnover of all species while low-impact activities reduced the turnover of edible species (Asuk et al., 2023).

Other studies have shown that human activities, including logging, agricultural expansion, and harvesting for livelihood

(like firewood and other non-timber forest products), significantly alter habitats and species composition in African tropical

forests (Auliz-Ortiz et al., 2024; Assede et al., 2023; Hussein, 2023; Asuk et al., 2023). The results from this study

corroborate this but also show that human influence, whether low-intensity or high-intensity, impacts species dissimilarity

between areas within the Nigeria-Cameroon region. 

In addition, forest composition (mixed or monodominant) and stem density significantly predicted total beta diversity of

edible species, while DNAE significantly predicted their turnover. These variables were not significant for inedible species.

Monodominant forests are characterized by one single species making up more than 60% of the tree canopy resulting

from coppicing (sprout or regrowth formed at the tree base or root) and edaphic factors (ter Steege et al., 2019). Edible

species have cultural and agroforestry values beneficial to different communities in the Nigeria-Cameroon

region (Falconer, 1993; Fongnzossie et al., 2020). Thus, the predominance of one species category (edible or inedible) in

one location could contribute to the beta-diversity patterns observed (Shiembo et al., 1996; FAO, 1999; Hundera, 2007;

Klein et al., 2003). Some species favoured by local communities for their food and trade value could be dominant is

certain area (due to hitorical settlements), and thus contribute to forest composition being a significant driver of

dissimilarity between plots (Asuk et al., 2023; Adnan et al., 2015). These species include African Walnut (Coula edulis),

Bush Mango (Irvingia spp.), Kola Nut (Cola spp.), Baobab (Adansonia digitata), African Bush Mango (Irvingia

gabonensis), Safou (Dacryodes edulis), African Breadfruit (Treculia africana), Bitter Kola (Garcinia kola), African Star

Apple (Chrysophyllum albidum), and Monkey Kola (Cola lepidota and Cola pachycarpa) (Shiembo et al., 1996; FAO, 1999;

Hundera, 2007; Klein et al., 2003; Fongnzossie et al., 2020).  

High stem density and heterogeneous microhabitats resulting from disturbances in tropical forests can create unique

environmental requirement to support different tree species. The effect of stem density on total beta diversity and turnover
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of edible species might translate to high spatial migration of species either naturally through propagation or through the

management and cultivation influence of humans (Abbasi et al., 2023; Godlee et al., 2021; Yano et al., 2021).  Stem

density being non-significant for inedible species may be due to the influence of other ecological factors influencing their

presence and community composition such as greater adaptability to survive in smaller, isolated habitats or possibly other

species use such as medicine and gum (Bailey et al., 2010; Fahrig, 2003; de Lima Filho et al., 2021). Comparing results of

this study with those of Asuk et al. (2023) indicates that the factors driving beta-diversity are apparent for inedible species

at both local and regional scales in West African tropical forests but differ for edible species. This supports findings from

other studies, for example those undertaken in the Amazon, that have suggested that the selection and stewardship of

desired tree species by indigenous populations over time could leave strong imprints on patterns of forest composition

(Roberts et al., 2021; Levis et al., 2017; Scerri et al., 2022). 

4.3.      Effects of spatial distance and elevation on the beta-diversity of tree species in the

region

Although the combined effect of environmental variables (see model 3 in Table 1) was greater than the geographical

distance (see model 2 in Table 1), in the overall model (model 1), the geographical distance between sites had the highest

variable importance score (except for the turnover of inedible species, where elevation had the highest variable

importance). The role of geographic distance in the models points to dispersal limitation, along with the possible impact of

geographical barriers such as water bodies, fragmentation by large road and human settlements, driving turnover in

species composition (Abiem et al., 2022; He et al., 2020; Wayman et al., 2021; Yang et al., 2015; Zahawi et al., 2021).

Elevation plays a crucial role in the composition and spatial distribution of tree species exerting varying niche-based

effects on species due to changes in climate, wind, soil, the identity of seed dispersers, and the activities of humans along

the elevational gradient, all of which could result in strong environmental filtering and the replacement of species (Adnan

et al., 2015; Asuk et al., 2023; Malizia et al., 2020; Verrico et al., 2020; Yano et al., 2021). Elevation was a significant

variable in all species and inedible species models however, not a significant predictor of total beta-diversity and turnover

of edible species. The interaction between elevation and human activities (Asuk et al., 2023; Yano et al., 2021; Malizia et

al., 2020) may result in an uneven distribution of activities along elevational gradients which could potentially affect the

pairwise turnover between plots (Asuk et al., 2023; Verrico et al., 2020; Adnan et al., 2015; Aigbe and Omokhua, 2015).

However, low-intensity activities (e.g., foraging for food) may occur across the elevational gradient, leading to more

similar species composition across the gradient due to humans spreading the seeds of edible species; (Jansen et al.,

2020; Williams et al., 2020; Guo et al., 2022; Scerri et al., 2022; Asuk et al., 2023) and may explain why elevation was not

a significant predictor in the edible species models. Although these forests were not actively logged at the time of the

census, any past timber harvesting would likely have been restricted to lower elevations (Adnan et al., 2015; Asuk et al.,

2023; Socolar et al., 2016; Verrico et al., 2020). This will have increased the effect of elevation on dissimilarity (especially

in regard to inedible species), while selective pressure due to species preferences could reduce populations of certain

species, causing a marked turnover in species composition (Asuk et al., 2023; Ellis et al., 2010).
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4.4.      Limitations associated with the study

Understanding the impact of human influence on tree species dissimilarity in the Nigeria-Cameroon forest region using

this dataset presents significant challenges. The lack of historical data on how long-term human impacts have shaped

current forest structure and species composition, limited the conclusion from the study to spatial impacts.

The proxies for human activities, combined with the omission of potentially crucial environmental gradients such as

temperature, precipitation, and evapotranspiration, could result in an incomplete understanding of the drivers of species

dissimilarity. The dataset lacked systematic sampling in space, particularly across key variables such as DCHP (Distance

to Closest Human Population) and DNAE (Distance to Nearest Agricultural Expansion), making relatively small numbers

of plots responsible for the strong gradients observed in the I-splines. This means that the attribution of a large role of

DCHP must be considered with some caution, however it should be note that even without these few data points above

(Figure 3 and 4) the response shape was also positive across the narrower DCHP range.

The available data from plots that fit the selection criteria were constrained by spatial and temporal scope, with single

census data collected from a limited number of plots between 2002 and 2019. This limitation hindered the observation of

long-term trends and changes in species composition and human influence, potentially not fully representing broader

regional patterns.

While the study provides valuable insights, these limitations could impact the precision of inferences regarding past

human impacts on tree species composition, as well as the spatial and temporal dynamics of tree species dissimilarity.

Addressing these limitations in future research is essential for a more accurate and comprehensive understanding of

human impacts on forest ecosystems.

A study conducted in Hainan, China, highlighted factors such as temperature, precipitation, and evapotranspiration as

significantly influencing tree species composition more than geographical distance alone (He et al., 2020). This

underscores the importance of niche-based processes over dispersal limitation. The current study did not account for

these environmental gradients, which could be crucial in shaping dissimilarity patterns in the region and should be

considered in future research.

5.         CONCLUSION

This study evaluated the drivers of beta-diversity in tree species, while emphasizing the impact of human activities in the

Nigeria-Cameroon forest region. The primary driver of tree species dissimilarity was found to be turnover across all

species groups analysed (all, edible, inedible). Key factors driving beta-diversity included geographical distance, plot

elevation, stem density, human proximity, and forest species composition, with environmental variables as a group

explaining more variance across all of the models than geographic distance alone. However, there was shared variance

explained between the environmental variables and distance, and a proportion of variance was explained uniquely by

distance alone. 
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The variables observed to predict beta-diversity differed between edible and inedible tree species. While forest

composition (mixed or monodominant forest) significantly influenced beta-diversity in edible species, this pattern was not

observed in inedible species. Geographical distance was a more dominant factor in plot dissimilarity than any single

environmental factor, and elevation was particularly influential in the diversity of inedible species, suggesting the

importance of niche-filtering and human activities along elevational gradients (Asuk et al., 2023).

Despite the limitations on what is possible with the currently available data, the findings suggest that human influence is

an important driver of beta-diversity in the Nigeria-Cameroon forest region. As discussed, the type of intensity and

duration of different human activities can exert a different response on the beta-diversity of different species. The study

highlights the role of environmental filtering, spatial factors, and human influence in shaping tree species dissimilarity

between plots within the region. However, further research is necessary to understand the links between species

dissimilarities and tree traits, and the effects of both past and present anthropogenic disturbance. Any future analysis

exploring the link between species traits and community dissimilarity would be aided by incorporating a combination of

socio-economic such as historical resource use and tree stand data to develop sustainable conservation and

management strategies, particularly focusing on sustainable resource use to support forest-dependent communities.

Considering the significant impact of human activities on tree species assemblages, understanding human impact of

forest ecosystems is vital for guiding conservation efforts in Afrotropical forests and supporting forest-dependent

communities.

 

Data Accessibility Statement

The data used for the study are available on request from the Forest Plots Database at https://forestplots.net/. 
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