
 

Possibility of increasing the completeness of oil and gas recovery by taking into account 
natural phenomena in reservoirs. 

L.B. Berman, V.M. Ryzhik, D.M. Trofimov. 

Abstract. 

The low completeness of oil and gas recovery when using modern development systems is due to 
the fact that all development systems are based on the following postulates [1]: 

1. There is a hydrodynamic connection within the entire reservoir; the fluid flow in it can be 
described in terms of Darcy's law.  

2. During the reservoir development its filtration parameters are practically unchanged. 

3. Hydrodynamic connection is absent between reservoirs in different tectonic blocks. 

4. Productive deposits in conventional oil and gas reservoirs are mainly hydrophilic.  

5. The properties of fluids in different parts of the reservoir are the same. The properties of 
residual oil when using water flooding are identical to the properties of the produced oil.  

Development experience and the results of special studies have shown that these postulates are 
erroneous. In practice, after establishing the absence of hydrodynamic connection within the entire 
reservoir, the first priority is to compact well spacing of development wells. In oil reservoirs, 
additional development wells are drilled predominantly evenly over the reservoir area, that is, 
almost blindly, without taking into account the large-scale heterogeneity of the reservoirs. In gas 
reservoirs, additional producing wells are drilled in stagnant zones, which are characterized by 
increased current formation pressures relative to gas recovery zones.  

As a result of field and laboratory work, we have identified natural phenomena that determine 
the fallacy of the above postulates, and it has been practically proven that the internal structure of 
reservoirs can be identified during their exploration and clarified during development. At the same 
time, a greater completeness of hydrocarbon recovery and a reduction in the costs of their 
production are achieved. 

Keywords: Completeness of HC recovery; Initial pressure gradient; Fractionation of oil and 
condensate; Reliability of estimates of HC reserves. 

 Accumulations of oil and gas are confined to natural traps, which are characterized by a complex 
internal structure, the fluid flow in which cannot be described within the framework of Darcy's law. 
When hydrocarbons penetrate into permeable sediments, heavy hydrocarbon fractions interact with 
porous media. The exploration and development systems used do not take these natural phenomena 
into account. Each industrially significant hydrocarbon accumulation, in which tectonic dislocations 
have not been identified, is considered as a reservoir with a connected hydrodynamic system. This 
approach is simplified and causes a low completeness of oil and gas recovery, since it does not take 
into account the features of the internal structure of reservoirs, which determine the fluid flow in 
them, as well as the features of the interaction of hydrocarbons with various productive sediments. 
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The conducted research made it possible to identify the following natural phenomena in oil and 
gas reservoirs, taking into account which can significantly increase the completeness of oil and gas 
recovery, accelerate the development of reservoirs, as well as increase the reliability of the 
assessment of their reserves and reduce development costs [2]. 

1. Reservoirs are the complex of Multi-scale blocks – MSBs, which were formed as a result of 
tectonic and neo-tectonic movements. Within the reservoirs there are sub-vertical channels – SVCs, 
impermeable and low-permeable barriers – LPBs. The fluid flow through LPBs occurs only at 
pressure gradients above the value of a certain initial pressure gradient - IPG. The presence of 
impermeable barriers and LPBs in reservoirs causes reservoir compartmentalization. SVCs in some 
parts of the reservoirs have abnormally high permeability. When developing oil and gas condensate 
reservoirs while maintaining formation pressure, most part of the injected fluids move through SVCs 
and only a portion of these fluids displace oil or gas from the productive sediments. When formation 
pressure in gas and oil reservoirs decreases according to SVCs, production wells are water 
encroachment with bottom water. SVCs, impermeable barriers and LPBs are formed mainly in 
destruction zones of neo-tectonic dislocations. Localization of the destruction zones can be carried 
out using complex aero-space observations, 3D seismic data and hydrodynamic studies.   

2. The IPG values for fluid flow through LPBs and permeability of SVCs are determined by: the 
рetro-physical properties of composing rocks; physicochemical properties of the fluids that are 
contained in them and move through them; the changes in the stress state. The values of IPG for gas 
flow through a single LPB in gas reservoirs are in most cases no more than a few MPA/m. The value 
of IPG during oil or water flow under the same conditions exceeds several tens of MPA/m. In oil 
reservoirs, each MSB, limited by impermeable barriers or LPBs, is a separate reservoir. In gas 
reservoirs, gas is recovered from MSBs, which, at least on one side, are separated from the gas 
production zone by a LPB. The gas flow from the MSB into the production zone begins at pressure 
gradients greater than the IPG value for gas flow in the corresponding LPB.  

3. With a decrease in formation pressure in the developed reservoir, unconsolidated rocks, mainly 
clayey ones, become compacted in LPBs and SVCs, which causes an increase in IPG values, the 
emergence of new LPBs and a decrease in the filtration properties of SVCs. This phenomenon 
causes an increase in the filtration resistance of the reservoir.  

4. Fractionation of oil and retrograde condensate occurs differently in productive sediments with 
different productive properties. This cause: 

•  Large pores become hydrophobic;  

•  Oil and condensate with different physicochemical properties are produced from different 
wells within the same reservoir, depending on the reservoir properties of the exposed productive 
deposits; 

• Differences in the physicochemical properties of residual oil in productive sediments with 
different productive properties, in particular when oil is displaced by water.  

5. In hydrophobic pores, the flow of gassy oil and condensate occurs only at pressure gradients 
that exceed a certain critical value. This causes a significant decrease in the productivity of 
producing wells in oil and gas-condensate reservoirs [3]. 



 

Evidence of the presence of these natural phenomena in oil and gas reservoirs, as well as the 
possibility of taking them into account during development, is given in [2]. If you have any 
questions or comments, please contact Lev Berman at lsberman@bezeqint.net  

Based on the identified natural phenomena in oil and gas reservoirs, it is proposed for practical 
use: 

1. Additions to the complex of geological exploration works and to the methodology for 
estimating oil and gas reserves by the volumetric method.  

2. Additions to increase the efficiency of oil and gas reservoir development systems. The 
following is recommended: 

• Design a development system for each MSB with industrially significant hydrocarbon 
reserves; 

• Locate development wells taking into account the likely position of barriers and sub-
vertical channels;  

• When developing the first MSB in oil reservoirs, it is advisable to provide for testing 
promising methods for increasing oil recovery.  

3. The block filtration model - BFM of the gas reservoir was justified and developed, which 
takes into account identified natural phenomena in and the fluid flow in it. Within the framework of 
this model, it is possible to estimate drainable gas reserves and the maximum value of recoverable 
residual gas reserves for the development system used. The model was tested during the 
development of gas reservoirs, which allowed us to obtain positive results. The rationale for BFM 
and some results of its application are given in the appendix. 

Taking into account identified natural phenomena in oil and gas reservoirs makes it possible to 
increase the information content of geological exploration results for assessing hydrocarbon  
reserves using the volumetric method and for designing reservoir development systems. This 
allows: 

• In terrigenous sediments of conventional and unconventional pools enhance the 
completeness of oil and gas recovery minimum by 10-15% of the initial reservoir reserves, and 
practically double the recovery of condensate reserves from reservoirs the development of which is 
expedient using a pressure maintenance system;  

• Reducing the likelihood of water encroachment of producing wells with injected and 
bottom waters through SVCs; 

• Increase the reliability of estimates of residual recoverable hydrocarbon reserves;  

• Increase the efficiency and scope of the use of EOR methods;  

• Effectively put into production parts of oil-gas and gas-oil reservoirs those were not 
developed due to a low forecast for oil and gas recovery;  
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• Speed up the process of reservoir development and reduce the cost of developing HC 
fields.  

• Reduce the likelihood of large irreversible losses of hydrocarbons, especially during 
development of gas-oil, as well as hydrocarbon reservoirs on the shelf and in unconventional 
reservoirs. 

Appendix  

Block filtration model for the development of gas reservoirs. 

The pressure-drop method of estimating gas reserves is widely used in gas reservoir 
development; but the method does not allow obtaining representative estimates of reserves in the 
reservoir with Multi-scale block structure. This is due to the lack of information about the 
boundaries of stagnant zones and Pfi in these zones; accordingly, the average current formation 
pressure in such a pool cannot be reliably determined [2, 4]. Almost the same situation occurs when 
developing unconventional gas reservoirs in shale, dense and other low-permeable sediments. In 
these cases, by the method of pressure drop, it is advisable to estimate only the drainage volume of 
the reservoir and the corresponding gas reserves in it in relation to the development system used ⁅1, 
2⁆. When developing gas reservoirs, it is of paramount importance to have low-permeabel barriers 
through which gas flow occurs only at pressure gradients above a certain value of the initial 
pressure gradient - IPG. It is practically impossible to recovery all the gas reserves from any real 
reservoir.  

Below is a model for developing a gas reservoir, which is a system of Multi-scale blocks 
separated by low-permeable barriers - LPBs. The model makes it possible to estimate drained and 
residual gas reserves for the development system used; in combination with the volumetric 
method, it allows one to estimate the volume of undrained reserves in stagnant zones, which 
determines the feasibility of drilling additional producing wells in large stagnant zones. 

1.1. Schematic mathematical model of a gas reservoir with Multi-scale blocks structure. 
 
This model takes into account changes in the IPG values during the gas flow through these 

barriers with a decrease in formation pressure in the reservoir [2]. The model does not take into 
account the presence of sub-vertical channels - SVCs in the reservoir, through which, in some cases, 
producing wells are water encroachment. In most cases, the volume of incoming water is small and it 
practically does not affect the results below (see Fig. 5).  

1.2. General considerations.  

A natural gas reservoir comprised of a system of gas saturated porous blocks, divided by low-
permeable barriers - LPBs. Next, we will consider the gas reservoir, which is divided by LPBs into 
blocks (see Figures 1, 2).  



 

 

Figure 1: Reservoir model diagram with low-permeable barriers. 

The thickness of LPBs is assumed to be small as compared to the size of separate Multi-scale 
blocks, and their total volume is small in comparison with the total reservoir volume. The volume of 
each MSB is also assumed to be much greater than the volume of surrounding LPBs. This 
assumption holds for most of the examined gas reservoirs ⁅1, 3]. In modeling the gas production, the 
formation pressure is assumed to be uniform in the each MSB area. It means the neglecting volume 
of the block near producing well bores where most of the formation pressure drop takes place. Such 
assumption is justified, if we consider gas flow in a moderately permeable reservoir. The most of the 
reservoir flow resistance is assumed to be concentrated in the low-permeable barriers between the 
blocks. In mass conservation equations with such assumptions the reservoir flow resistance effects to 
only cross-flow between the blocks and not the flow inside the blocks. The mass conservation 
equation of gas in each block may be written as follows:  

                     (1); 

where:  Mi is gas mass in the block number i; pi – formation pressure in the i-th block; Qi – total 
production of wells in the block; µ - gas viscosity; kij - the permeability of the LPB between the i-th 
and the j-th blocks;   hij – thickness of the LPB; Sij - the LPB area (that part of the LPB area through 
which fluid flows between the i-th and the j-th blocks).  

The mass of gas in the i-th block is equal to: 

                                                        (2); 
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where Vi is the gas volume in the block; is gas density, which may be presented in the form 

                                                                                    (3);                

where Zi is compressibility factor, the function of temperature and formation pressure in the 
block.    

The equations (1)-(3) may be considered as a system of ordinary differential equations - ODE for 
pressures in blocks pi. It can be solved for the given initial formation pressures values. In the system 
(1) ÷ (3) the validity of Darcy’s law was assumed. But in many cases the gas cross-flow through the 
LPBs occurs only if the pressure gradient exceeds some initial value, IPG. Then gas cross-flow 
through a LPB may be described by generalized Darcy’s law with IPG equal to some value G ⁅5⁆: 

   At      ;           (4); 

At │pj - pi│≤ Ghij      ;                                                       (5). 

The value of IPG can be obtained from field observations. 

1.3. Two-blocks model.  

 The simplest model of considered gas pool comprises of two blocks separated by one LPB (see 
Figure 2).  
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Figure 2: The scheme of the reservoir of two blocks. 

Gas is produced only from one (“active”) block denoted as the block 1. The cross-flow between 
the blocks takes place in accordance with Darcy’s law. The gas production rate is equal to Q(t) and is 
considered as a function of time t. The gas from the “passive” block 2 first flows to the block 1 and 
then is produced through producing wells of the block 1. Let the volumes of each block to be V1 and 
V2 correspondingly and masses of gas in the blocks are defined as M1 and M2: 

;                                  (6). 

To calculate the gas density in the LPB, we assume that the formation pressure difference in the 
part of LPB is not very large and the average formation pressure  is equal to: 

;    ;                                                  (7). 

The examples are presented here as illustration only, and we can put Z=1 into eq. 7. With these 
assumptions we obtain from equations 1, 6 and 7: 

                                              (8); 

                                                                                  (9); 
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pi – formation pressure in the i-th block (z = 1);
V1 and V2 - gas-saturated volumes of each block;
Qi - is the total gas withdrawal rate from block 1; 
q - is the volumetric gas withdrawal rate; 
µ - is the gas viscosity; 
Kij - is the permeability of the barrier between the 

blocks; 
hij and Sij - are the thickness and area of ​​the barrier;
w - is the flow rate through barrier; 

W - is the ratio of the rate of flow of gas through the 
barrier to the rate of gas recovery in units of 
block volume.
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where: ;   

q(t)   - is the gas production rate. 

In dimensionless form we obtain the system of equations:  

                                                                     (10); 

                                                                           (11); 

where:     

The parameter W is the ratio of the speed of gas flow through the LPB1 between blocks to the 
relative rate of gas production, which is expressed in units of block volume; q - is the volumetric rate 
of production; the overflow rate w is proportional to the permeability of the LPB1 and inversely 
proportional to its thickness. 

The system of equations (10) and (11) has been solved numerically for several examples using the 
MATLAB software package. Some results of the calculations are shown in Fig. 3 as a function of 
time of the formation pressure values P1 and P2. The formation pressures P1(t) and P2(t) are 
expressed in units of initial formation pressure.  
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                                                        b)      

Figure 3 The functions P1(t) in active block and P2(t) in passive block at W=0.1 (a) and W=1 (b) 
for Q: 0.025; 0.05 and 0.1.  

The Pi(t) curves show the ratio of the residual gas content in each block to its initial mass as a 
function of time. Completeness of gas recovery from the passive block at each moment of time is 
equal to │1- P2(t)│. For examples, the values of W are 0.1 and 1;  values of the 
parameter a are equal 0.025, 0.05 and 0.1.  

In the Figure 3 it is seen that, at chosen production rates, the formation pressure difference 
between blocks grows very significantly. The formation pressure difference is essentially 
dependent on the gas production rate. Decrease in the LPB permeability (W=0.1) results in 
considerable growth of formation pressure difference in the LPB. At each value of q, at some instant 
of time t*, the formation pressure in the active block P1 becomes zero and the gas production 
stops. The early depletion of the active block is less pronounced for large values of the conductivity 
of the LPB - W (see Fig. 3 at W=1).  

Thus, at low values of the conductivity of the LPB -W, the completeness of the gas recovery 
from the passive block is much lower than that of the active block and depends significantly on 
the rate of gas production. To increase the completeness of gas recovery from the passive block, 
it requires the input of producing wells in the passive block.  

The parameter A* is used to evaluate the filtration resistance of large pool elements [6]: 

                                                                 (12), 

 Qi is the total gas production at the time t.        
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Based on the results of model calculations, we can estimate the dependence of the parameter A* 
on time. If this dependence is weak, the parameter A* can be used as a constant characteristic of the 
filtration resistance to the flow of gas for a given element of the pool. In Figure 4 the calculated time 
dependence curves of the quantity A*(t) are shown:       

                           

      Figure 4: The curves A*(t) for the same examples as in Figure 3 (a) and 3 (b). The curves for 
examples B1, B2 and B3 almost merge and are marked only by letter B.  

The dependencies A*(t) in Fig. 4 are calculated for the same examples as in Fig. 2 (respectively, 
curves A (W=0.1) and B (W=1)). The data presented in Figure 3 and the results of other calculations 
show the following: 

 
• The values of the parameter A* significantly depend on the permeability of the LPB.  
• The type of dependences A*(t) depends on the rate of gas recovery mainly at low 

permeability of the LPB.  
• In the first approximation, and at low values of W, the parameter A* can be used as a LPB 

characteristic of the filtration resistance.  
• After the total production reaches about 10-20% of initial reserves, the value of A*(t) almost 

does not change with time for the given LPB properties.  
• In pools of Multi-scale block structure, the filtering properties of the LPBs have a much 

greater effect on the value of the parameter A* than the rate of gas production.  
 
These conclusions are consistent with the results of analysis of the field data [1]. This implies that 

the value of A* may be used as a parameter describing LPB flow properties.  
From the results of calculations it is evident that the parameter A* may characterize the flow 

properties of LPBs, dividing the producing part of the pool from parts lacking producing wells. The 
parameter A* is less informative, if the annual production is more than 5% of total reserves in the 
producing block, and when the total production is more than 50% of reserves. The capability of 
using the value A* as a characteristic of LPB properties is also confirmed by the estimates of A* at the 
gas pools of the Gazli and the Yamburgskoye fields, as it is seen in [2].  

   
The pressure distribution in pool is more complicated if the gas flow is governed by the seepage 

law with IPG described by equalizations 4 and 5. In this case the exact solution of flow equations is 



 

rather complicated. As a first approximation we may add the value Ggh to the formation pressure 
difference calculated using system of equalizations 10 and 11. The value of IPG, Gg, as a constant or 
usually the function of pef must be estimated using field data [7].   

 
To take into account the existence of IPG for gas flow, the following modification of eq. 11 may 

be used:  
 

(Pi1/zi1)2 - (Pi2/zi2)2=A*Qi + B(pef)/(zi2)2 ;                           (13); 

     where: Qi=0;     if   │pi2 – pi1│h-1 ≤Gg  

The eq. (13) is valid to describe gas production in the pool, when the flow through the LPB takes 
place with IPG for gas flow. For the constant B the following equation may be used:   

;                                                                 (14). 

The value of В(pef) characterizes the LPB filtration properties, if they are not taken into account in 
estimating the value of the parameter A*, or the properties of the LPB have changed, in particular, 
due to an increase in pef as the formation pressure in the reservoir drops. Here h is the thickness of 
LPB with IPG for gas filtration. The value of the parameter A* in eq. 12, in the first approximation, 
can be assumed constant, while the formation pressure during the gas production is decreased. This 
follows from an analysis of the estimates of the values of the parameter Ř (productivity Ř=ǀPfi2 - 
Pbi2ǀ=const) for the producing wells of the gas reservoir IX of the horizon of the Gazli and 
Cenomanian gas reservoir of the Yamburgskoye fields, as well as the estimates of the parameter A* 
for the elements of the gas reservoirs within the limits results of the model calculations (see below). 
Estimates of the LPB parameters according to formulas 13 and 14 characterize the minimum of 
LPB filtration resistance at the current value of pef.  

1.4. Estimations of the reservoir drainable volume and residual gas reserves. 

Assuming that the reservoir may be described by a model consisting of N MSBs, the ensured gas 
reserves in the reservoir may be estimated by the value of a drainable volume Vdr, calculated (not 
taking into account the temperature correction) as:  

                                                 (15); 

where:  is the total gas production from the well number i, while the formation pressure is 
decreased from pi1 to pi2; Zi1 and Zi2 are the values of Z, corresponding to Pi1 to and Pi2; N – 
quantity of producing wells at the production .  

The value of Vdr, calculated by eq. 15, gives a minimum ensured estimate of gas resources 
(provided that great mass of edge and bottom water did not invade into the pool) whereas maximum 
residual recoverable gas reserves -  (with the assumption that the current value of drainable 
volume remains invariable) are equal to: 
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                                   (16); 

where: P* is the minimum current formation pressure in the production zones; Pc - its designed 
final value of formation pressure.  

The value of the residual recoverable gas reserves, which is calculated according to eq. 16, is the 
maximum value under the assumption that the used reservoir development system will be 
preserved and in the future; because when calculating it, it is assumed that the IPG values will not 
increase between the existing gas recovery zones and the MSBs in which there are no producing 
wells. Accordingly, it is necessary to locate the probable position of LPB1s and to drill additional 
producing wells in stagnant zones, if the probable gas reserves in these zones are significant 
(estimated gas reserves by the volumetric method) for increasing the completeness of gas recovery 
from the reservoir.  

1.5. Examples of assessing drainage volumes of gas reservoirs. 

If the reservoir is hydro dynamically uniform and interconnected the value of Vdri must be time 
constant. If the reservoir is divided by LPBs, the value of Vdri will vary, depending on the pressure 
drop in the production zones, the location of the producing wells and the rate at which gas is 
produced from the reservoir. The main changes in the value of Vdri should be determined by the 
intensity of the gas cross-flow through the LPBs into the production zones from those parts of the 
reservoir in which there are no producing wells. At the initial stage of development for all studied 
reservoirs maximum estimates of Vdri were obtained in the time of GRF ≥0.1÷0.3 ⁅1⁆. In most cases 
these maximum estimates of Vdri were less than the gas-saturated volumes of these reservoirs, 
according to his estimates by the volumetric method. At the early stage of gas production the 
estimated value of Vdri was increasing, i.e. the part of gas reserves, from which the gas was taken, 
increased. After a significant drop in formation pressure, and when GRF>~0.3, the values of Vdri 
decreased, and cones of depressions around producing wells increased, even when the gas production 
rate decreased. Producing wells placement systems and the timing of their putting into operation have 
significant impact on the form of the dependences Vdri/Vdrо=f(Pf0-Pfi ).  

The results of assessing changes in the drained volumes of gas reservoirs in the 1X horizon of 
the Gazli field and in the Cenomanian gas reservoir of the Yamburgskoye field are presented in Fig. 
5.  
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Figure 5: Variations of drainage reservoir volume with decrease of the formation pressure in gas 
reservoir IX horizon of the Gazli and the Cenomanian gas reservoir of Yamburgskoye fields. 

The reservoirs are composed of highly porous and highly permeable terrigenous deposits, but 
differ in area, initial location of producing wells and intensity of neotectonic movements. The 
Cenomanian reservoir has an area of  ⁓8500 km2, within its boundaries, the Yamburg anticline high 
(area ~45x75 km, amplitude ~200 m) and adjoining to it the Kharvutinskoye anticline high (area 
~20x35 km, amplitude ~60 m) were identified. The initial producing wells were concentrated in the 
roof of the Yamburg high. The results of aerospace observations were recorded there are numerous 
lineaments’ in the area of the reservoir, recording the results of neo-tectonic movements [2]. 

The gas reservoir in the 1X horizon has an area of ⁓560 km2 and an amplitude of ⁓250 m. The 
gas reservoir by the beginning of development was drilled with producing wells, the distance 
between the wells was ⁓1 km, mainly in the zone of the absence of bottom water, in which 
contained ⁓70% of the initial gas reserves. In the area where the producing wells were located, 4 
blocks were identified, which at the beginning of reservoir development were separated by low-
permeabeil barriers with initial pressure gradient values within 0.1 MPa/m, the difference in 
reservoir pressures in these blocks was within 0.16 MPa [2]. The presence of LPBs in the reservoir 
was clearly demonstrated by the results Vdri assessments at different stages of its development. At 
the beginning of gas production of the reservoir in horizon IX, when the formation pressure 
decreased by ~1 MPa, the drainable volume values were at a maximum, approximately equal to the 
estimate of initial gas volume in the reservoir by the volumetric method. By this time, the reservoir 
developed in a depletion drive under the gas regime. The decrease of Vdri value by ~10% was noted 
at GRF≈0.3 and the Рf0 decreased by about 2 МPа. When the formation pressure decreased by ~4.5 
MPa, the distinct decreasing of Vdri by ~30% was noted (see Figure 5). At these Pfi values, the 
growth of parameter A* also took place ⁅2⁆. Consequently, at GRF≈0.3 in the reservoir decreased 
the intensity of gas cross-flow to the production activity zones from the reservoir parts in which 
there are no producing wells, that is, new LPBs have arisen inside the reservoir and the IPG values 
increased as the gas flowed through the initially existing LPBs. The pressure differences at the 
LPBs grew gradually up to ~1.5 MPa. This means that while the total gas production was <60% of 
initial reserves, the IPG values sufficient to enable flow through LPBs grow from approximately 
zero to ~2 MPa/m (this value correspond to the barrier thickness conditionally equal to ~1 m). The 
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appearance of additional meaningful barriers in the reservoir and the growth of the reservoir 
resistance to the gas flow are responsible for the decrease of Vdri of the reservoir.  

At the beginning of the Cenomanian gas reservoir gas production, a slow increase Vdri value and 
a significant reduction in the formation pressure in the gas production zones took place. This 
occurred with the active introduction of new producing wells in parts of the reservoir that are 
remote from the reservoir roof. The maximum Vdri value (hereinafter Vdrimax) was determined during 
the period of the maximum rate of gas production after putting into operation of practically all 
designed producing wells. At this time, more than 500 producing wells were located in the zones of 
maximum thickness of productive deposits. The Vdrmax value was at least 20% less than the initial 
gas reserves were calculated by volumetric method with ~10% accuracy ⁅2⁆. In year 11 of reservoir 
development, a small decrease in the Vdri value was noted, along with a decrease in the Pf0 value in 
the gas production activity zones by ~4.5 MPa. With a decrease in Pf0 by ~8 MPa, an additional 
decrease in the Vdri value was noted. In the year 13 of the reservoir development, the number of 
producing wells in the peripheral parts of the reservoir increased with respect to the development 
project on the basis of observations of formation pressure dynamics in the reservoir and due to the 
forced reduction in the rate of gas production. After 17 years of production at GRF≈0.5, the 
formation pressure drop in some observation wells was much greater than its predicted value. At the 
same time in some marginal parts of the pool the Рf0 value was preserved [2]. This is due to the fact 
that at each LPB there is a spasmodic change in formation pressure in the developed reservoir. The 
position of all barriers in this case was not established, since no special observations were carried 
out for a more complete study of modern geodynamics within the area of the Yamburgskoye field. 
As a result, in this time the Vdri value was at least 30% less than predicted based on the initial gas 
reserves. Badly drainable parts of the reservoir separated from producing wells by neo-tectonic 
faults, the growth of formation pressure differences between wells was distinctly noted, 
independently of production rate. The results confirm the correctness of the above conclusions and 
illustrate the possibility of their practical use. Additional drilling of more than 100 producinп wells 
in stagnant zones made it possible to increase the drainable gas reserves in the reservoir by ⁓1 
trillion.m3; initial annual additional gas production from newly drilled wells exceeded 35 billion m3. 

It should be noted that Equations 15 and 16 are applicable when reservoir development occurs 
in substantially gas drive. If there is active penetration of edge water into the reservoir, these 
equations do not allow obtaining reliable information. In Fig. 6 shows the results of observations of 
the dynamics of the drained volume of the gas reservoir of the Leningradskoye field. The gas 
reservoir is confined to an anticlinal structure with 5 domes in terrigenous deposits of the Lower 
Cretaceous, the thickness of productive deposits varies from ~100 m to ~185 m, the depth of the 
roof is ~2000÷2180 m, Pf0~22.7 MPa [8]. Prior to development, the reservoir was evenly drilled by 
producing wells in areas with a gas-saturated thickness of ≥40 m, within which most of the initial 
gas reserves were contained. After ~1 year of development, with a slight decrease in the Pf0 value, 
almost the entire volume of the reservoir was drained according to its estimates by the volumetric 
method. After 5 years of development of the reservoir, with the value of GRF~0.2, the active water 
drive has appeared. After 10 years of the reservoir development, a sharp decrease in Vdr was noted, 
which necessitated a reduction, and then almost cessation of industrial gas production at GRF<0.5 
(see Fig. 6).  



 

  
Figure 6: Dependences of Vdri/Vdr0 and the rate of annual gas recovery Qi/Qmax on the duration of 

the development of the gas reservoir (t, production years) of the Leningradskoye field.  

Intensive water encroachment of almost all producing wells, in which productive deposits were 
penetrated, significantly removed from the initial GWC, is probably due to water breakthroughs 
through sub-vertical channels after the formation pressure in the pool has decreased by a value of 
ΔP, which is higher than the IPG values for water movement through the SVCs. Estimates of the 
drainage volume with the active water drive are not representative and allow only fixing the 
uneven rate of water introduction over time, as well as a sharp decrease in the drainage volume 
during periods when production rates are reduced and the bottom and edge water introduction. Local 
water breakthroughs led to the stopping of industrial gas production from a number of fields in the 
Krasnodar Territory of the USSR.  

Conclusion 

The completeness of oil and gas recovery can be significantly increased by taking into account 
the identified natural phenomena in the process of exploration and development of hydrocarbon 
fields and expanding the complex of studies to identify zones of neotectonic dislocations based on 
the results of interpretation of aerospace images, 3D seismic exploration and hydrodynamic studies. 
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