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This work explores a novel approach to mitigating turbulence in fusion plasmas through spatially

modulated plasma pro�les. The fundamental idea of turbulent waves suppression proposed in this

work is based on the Floquet-Bloch theory, explaining the formation of the zone structure of the

electron energy in the crystal lattice or band-gap dispersion properties of photonic crystals. By

imposing a harmonic modulation on plasma parameters, we introduce conditions that alter the

propagation characteristics of turbulent and MHD waves, a primary source of transport and

instabilities in fusion devices. This modulation approach resembles band-gap formation in solid-

state and photonic crystals, where spatial periodicity suppresses wave propagation within speci�c

frequency bands. This work does not provide any mathematical novelty. The mathematical

framework shown here (based on the Mathieu equation) essentially resembles the well known

Floquet-Bloch theory. It reveals how a controlled spatial variation of turbulent wave phase velocity

can e�ectively attenuate turbulence and instabilities. Several methods for implementing this

modulation in plasma, including RF waves, static magnetic �eld perturbations, and modulated

density pro�les, are proposed as potential paths for achieving stable con�nement. This concept

could provide a versatile and potentially more controllable alternative to existing turbulence

suppression techniques, with the goal of improving stability and con�nement across a variety of

magnetized fusion con�gurations.
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The purpose of this work is to demonstrate the potential and new prospects that open up for fusion

research through the creation of a spatially modulated plasma pro�le. These emerging opportunities
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can be used for suppressing instabilities and plasma turbulence (and actually plasma heating). In this

work, we will focus primarily on using the proposed concept to suppress turbulence in plasma. This

work should not be regarded as a de�nitive solution to the problem of turbulence suppression. It is

also not intended as an original mathematical solution of the well-known Mathieu equation. This

work represents a proposal to develop fundamentally novel interdisciplinary approaches, based on

new physical principles derived from other areas of the general physics, namely solid-state physics,

photonics and mechanics. Rather than providing a ready solution, this work aims to identify potential

research directions and introduces a conceptual framework for mitigating plasma turbulence and

instabilities. This work also presents only a general concept grounded in fundamental �rst physical

principles and, therefore, does not include complex mathematical formalism or computer

simulations.

The general foundational principles outlined in this work imply a variety of speci�c technical

implementations, which fall outside the scope of this study. The development of detailed technical

methodologies is a subject for further, more in-depth research in this area.

The formation of turbulence and plasma instabilities is one of the fundamental problems of nuclear

fusion. Drift and interchange turbulence, electron-temperature and ion-temperature turbulence are

the main causes of transport in fusion devices. Along with turbulence, there are also MHD instabilities

that cause transport and loss of stability in toroidal devices. Methods for suppressing or reducing

turbulence already exist, such as

formation of transport barriers based on plasma rotation shear, leading to improved con�nement

modes

plasma shaping and magnetic �eld con�guration optimization

However, the formation of transport barriers is a self-organizing process, not always well-

controllable and manageable, and not implementable in all devices. Moreover, transport barriers are

fairly localized in the radial direction—they do not suppress turbulence over a broad radial range.

Plasma shape and magnetic topology optimization is the subject of another constraints, as improper

con�gurations could lead to new instability modes.

In other words, �nding alternative approaches of turbulence and instabilities mitigation that are more

universal, controllable, and comprehensive is very important. This is especially important considering

the variety of magnetic con�nement fusion devices that have emerged recently.
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Let’s consider various types of devices that utilize magnetic �elds to con�ne hot plasma, such as

tokamaks, stellarators, pinches, and linear machines.

The following sections will explore strategies for suppressing drift wave turbulence. While the speci�c

details may vary, the core principles of the proposed concept can be extended to other types of wave-

like turbulence, such as interchange turbulence or MHD instabilities.

Before delving into a more detailed discussion, it is essential to brie�y address a few key points that

will play a crucial role in the subsequent analysis.

The growth of strong nonlinear plasma phenomena originates from small linear plasma waves or

perturbations, which evolve with a �nite growth rate. In the initial stages, the �uctuation amplitudes

of these perturbations are signi�cantly smaller than the corresponding time-averaged plasma

parameters. These small-amplitude waves can be accurately described within the framework of linear

wave theory, with their phase velocity determined by the time-averaged plasma characteristics. The

mitigation strategies outlined in this work are speci�cally applicable within the regime of linear or

small-amplitude plasma waves. From this perspective, the proposed approach may initially appear

less relevant to nonlinear phenomena. However, the transition to a nonlinear regime is e�ectively

suppressed if the decay rates introduced by the mitigation strategy exceed the instability growth rates.

Thus, the onset of turbulence becomes a matter of competition between the imposed decay rates and

the natural growth rates of the instability.

The typical turbulent spectrum in magnetized plasma has a broadband structure, as shown

schematically in the Figure (1)(a). Within this broadband turbulence spectrum one can distinguish a

relatively localized and narrow injection range enclosed between two cascades of the energy transfer

towards the low and high wave numbers. It implies practically that the broad-band turbulence can be

e�ectively mitigated by suppressing the turbulent waves generation in this narrow injection range. In

technical terms, the proposed approach aims to develop a kind of a band-stop �lter for turbulent

waves, as shown in the Figure (1)(b).
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Figure 1. (a) The schematic representation of turbulence power spectra representing the localized

injection range enclosed between two cascades. (b) The location of the proposed band-stop range

suppressing the turbulent wave development in the injection range.

The time-averaged spatial scale of plasma parameters in fusion plasmas has typically the scale of the

con�nement device, i.e. on the spatial scale of plasma turbulence (which is typically   ) all

plasma parameters appear uniform. Consequently, parameters such as the phase velocity of waves,

pressure gradient, and other quantities that in�uence the development of turbulence also appear

uniform on these small turbulent scales.

Let us now consider a scenario where the turbulent wave phase velocity is spatially modulated along the

direction of turbulence propagation but constant in time. In other words, we superimpose a

harmonically varying pro�le with a wavelength comparable to the turbulence scale onto a smooth,

homogeneous plasma pro�le. The presence of such a modulation signi�cantly alters the nature of

wave propagation and turbulence development. For instance, taking the drift wave as an example, the

spatial modulation of the plasma density or magnetic �eld is equivalent to modulating the phase

velocity of drift waves, as their phase velocity is described by the electron diamagnetic drift velocity.

0.1. Analogies to other physical systems

Suppressing waves by spatial modulation of their phase velocity is not a new phenomenon in general

physics. In quantum mechanics and solid state physics it is referred to as the Floquet-Bloch theory[1].

This principle is similar to the existence of forbidden energy bands in the crystal lattice of a solid

state[2]. Forbidden electron energy bands are formed due to the spatial periodicity of the potential

≈ 1 − 2 cm
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energy �eld created by the crystal lattice. Solving the Schrödinger equation for the electron wave

function in a periodic potential �eld gives us the band structure of energy.

Another example is optical photonic crystals[3][4][5]. The propagation of light in a medium with a

spatially periodic refractive index leads to the formation of the so-called optical band structure, zones

of forbidden and allowed EM wave frequencies that either can or cannot propagate in the crystal. The

simple example is shown in the Figure (2). This is also easily reproduced analytically if we look at the

solution of the wave equation in a medium with a spatially varying refractive index.

In the �eld of mechanics, this phenomenon is commonly referred to as parametric instability[6][7][8][9]

[10][11]. Depending on speci�c resonant conditions, it can cause mechanical oscillations to either

amplify or diminish.

Figure 2. The dispersion relation for EM waves in 1D photonic crystal. There are allowed

modes and forbidden modes. Forbidden modes occur in a band frequency range called

photonic band gap.
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1. Mathematical formalism

Let us consider the mathematical formalism of this process. As a test-bed in our discussion we choose

drift waves, although on the place of drift waves can be any other type of plasma waves (interchange-

type turbulence or MHD waves). Without delving into details, we write the wave equation for drift

waves.

The phase velocity of these waves, as can be seen, is determined by the electron diamagnetic drift

velocity, i.e., it is inversely proportional to the magnetic �eld strength and plasma density. Thus, a

spatial periodic variation of these quantities is equivalent to a spatial variation of the phase velocity.

The equation descibing the propagation of the drift wave in the magnetized plasma can be written as

follows:

here   is the wave phase velocity scaling as an electron diamagnetic drift velocity:

where   is the plasma pressure.

First, we take the time Fourier transform of both sides of the Eq.1.

Combining both parts we rewrite the equation above in the Fourier space.

Let us rewrite this equation as a traditional equation for a harmonic oscillator.

The drift wave favorably develops in the conditions where   is constant on the wavelength scale.

Let’s now consider the opposite situation, the development in the plasma where   has a periodical

spatial dependence.
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Speci�cally, we will determine the conditions for wave development in a case where   slightly di�ers

from some constant value and is a simple spatially periodic function  .

where the constant   and   designates the wave number of the spatial modulation. The sign of   is

not that important since we can always change this sign by the corresponding choice of the reference

frame. Substituting this expression (6) in the Eq.5 gives

or, designating

We will see later that the e�ect of modulation is strongest if the wavenumber   is close to the doubled

wavenumber of drift wave  . Therefore we will assume

where   is a small deviation of   from  .

For the simpli�cation we introduce the new designation

and rewrite the equation 

The equations of this type are called in mathematics the Mathieu equation.

The Mathieu equation is one of the fundamental equations in nonlinear dynamics, and its analysis is

extensively covered in numerous studies. In this work, we will not provide a detailed solution of the

equation but will instead focus on its key results. The primary takeaway from the Mathieu equation is

that its solutions exhibit a band structure.
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Using the method of variation of parameters, the solution    to our transformed equation may be

written as

where the rapidly varying components,   and   have been factored out to

isolate the slowly varying amplitudes   and b(x).

We proceed by substituting this form of the solution (14) into the di�erential equation (13) and

considering that both the coe�cients in front of   and   must be zero to

satisfy the di�erential equation identically. We also omit the second derivatives of    and    on

the grounds that   and   are slowly varying functions.

A more detailed derivation of this system of equations is provided in the Appendix since it does not

present any analytical novelty.

Neglecting all terms above the �rst order in  , we get the system of two �rst-order linear di�erential

equations.

To �nd the general solution of a system, the system can be expressed in matrix form as:

where
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Figure 3. The chart of the parametric decay of a turbulent/instability waves.

The e�ective damping occurs in the range of   around the  -wavenumber 

.

 and   are corresponding eigenvectors, and   and   are some constants.

The eigenvalues are given by the expression

The condition for the occurrence of a wave attenuation is that   is real (i.e.,  ). The parameter 

 characterizes the spatial attenuation (or ampli�cation) of the wave. Thus, it occurs in the interval of
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The chart in Figure (3) presents the graphical illustration of the mathematical results above. The

e�ective damping of turbulent or instability waves occurs within a range de�ned by   around the

spatial modulation wavenumber  .

2. Practical Signi�cance

2.1. Modulation approach

The obtained result indicates that by creating a spatially modulated phase velocity pro�le, one

establishes conditions to suppress drift waves. The main issue lies in �nding a rational and feasible

method for a modulation of plasma parameters. Here are some technical ways to implement this

approach:

RF electromagnetic waves (Alfvén waves), which lead to perturbations in the plasma’s magnetic

�eld and, therefore, drift wave phase velocity  .

Amplitude modulation of the microwave electromagnetic waves, which lead to perturbations in the

plasma density due to ponderomotive force and, therefore, drift wave phase velocity  .

Externally driving an another plasma instability leading to the perturbation of the plasma magnetic

�eld or density.

A static magnetic �eld perturbation created by external currents.

A spatially-modulated neutral particle beam.

In this paper we are not aiming to discuss the technical details on the implementation of these

approach, this is the subject of separate works.

2.2. Ampli�cation vs. damping

As seen in the Equation 21, the parameter    can be either positive or negative. From a purely

mathematical perspective, this implies that the observed resonance can result in either ampli�cation

or decay of the propagating wave.

Whether the propagating wave instability is ampli�ed or damped is a complex question that depends

on numerous factors and the speci�c plasma modulation approach. The ampli�cation or damping of

the wave is determined by the speci�c physical mechanisms that facilitate or inhibit energy and

momentum exchange between the plasma instability wave and the imposed modulation.

ϵ k0

β = 2k0

up

up

λ
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For instance, the steady state static magnetic �eld    spatial modulation created by an external

currents (if this is feasible at all) will lead to the dumping since it is not the subject of the energy

exchange with plasma waves. The low-frequency plasma modulation created by an externally

launched wave have a more complex wave-wave interaction physics and can lead to both

ampli�cation and dumping, depending on the features of dispersion relations of both imposed

modulation (on the one hand) and plasma instability waves (on the other hand).

Summarizing the results obtained above, it can be said that waves propagating in such a medium will

experience attenuation. This result is well-known in many areas of physics that deal with oscillations

or waves, and is therefore quite predictable.

3. Conclusion

This work has demonstrated that introducing a spatially modulated phase velocity pro�le in plasma

holds promising potential for mitigating turbulence, speci�cally drift wave instabilities, in fusion

plasma environments. The framework established here illustrates that spatial modulation creates

conditions akin to bandgaps in solid-state physics, where speci�c frequencies are inhibited, thus

attenuating wave propagation. This principle could serve as an alternative approach to current

turbulence suppression methods, which frequently encounter practical limitations and challenges in

implementation.

The practical feasibility of applying spatial modulation was also explored, o�ering several methods

for implementing these pro�les in plasma, such as using RF waves, modulated microwave

electromagnetic waves, or static magnetic perturbations. These methods provide a foundation for

further investigation into the optimal means of achieving e�ective modulation in various fusion

device con�gurations. The study underscores the dual potential of modulation, highlighting that

careful tuning of the parameters can either amplify or dampen wave instabilities, depending on

speci�c interactions between imposed modulation and instability waves. Future work should focus on

feasibility study of these speci�c approaches, assessing their practicality, and testing their

e�ectiveness in experimental settings to advance toward stable, high-performance fusion plasmas.

Appendix

Substituting the solution of the form (14) into the di�erential equation (13) gives

B
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 We omit the second derivatives of   and   and rewrite the last equation.
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Combining similar terms together we get

Now, we turn to simplify the RHS of the equation (13).
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Here we neglect the high order oscillations with the wavenumber of    and consider that both the

coe�cients in front of    and    must be zero to satisfy the di�erential

equation identically.

We get the system of two di�erential equation with respect to   and  .
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