
NP on Logarithmic Space

Frank Vega ⇤1

Abstract

P versus NP is considered as one of the most important open prob-

lems in computer science. This consists in knowing the answer of the

following question: Is P equal to NP? It was essentially mentioned in

1955 from a letter written by John Nash to the United States National

Security Agency. However, a precise statement of the P versus NP

problem was introduced independently by Stephen Cook and Leonid

Levin. Since that date, all e↵orts to find a proof for this problem have

failed. Another major complexity classes are L and NL. Whether

L = NL is another fundamental question that it is as important as

it is unresolved. We prove that NP ✓ NSPACE(log
2
n) just using

logarithmic space reductions.

2020 MSC: MSC 68Q15, MSC 68Q17

Keywords: Computational Algorithm, Complexity Classes, Complete-

ness, Polynomial Time, Reduction, Logarithmic Space

1 Introduction

In 1936, Turing developed his theoretical computational model [10]. The

deterministic and nondeterministic Turing machines have become in two of

the most important definitions related to this theoretical model for compu-

tation [10]. A deterministic Turing machine has only one next action for

each step defined in its program or transition function [10]. A nondetermin-

istic Turing machine could contain more than one action defined for each

step of its program, where this one is no longer a function, but a relation

[10].

Let ⌃ be a finite alphabet with at least two elements, and let ⌃
⇤
be the

set of finite strings over ⌃ [2]. A Turing machine M has an associated input

alphabet ⌃ [2]. For each string w in ⌃
⇤
there is a computation associated

with M on input w [2]. We say that M accepts w if this computation

terminates in the accepting state, that is M(w) = “yes” [2]. Note that, M

fails to accept w either if this computation ends in the rejecting state, that is

M(w) = “no”, or if the computation fails to terminate, or the computation

1

https://doi.org/10.32388/GE8X3P.8

ends in the halting state with some output, that is M(w) = y (when M

outputs the string y on the input w) [2].

Another relevant advance in the last century has been the definition

of a complexity class. A language over an alphabet is any set of strings

made up of symbols from that alphabet [4]. A complexity class is a set of

problems, which are represented as a language, grouped by measures such

as the running time, memory, etc [4]. The language accepted by a Turing

machine M , denoted L(M), has an associated alphabet ⌃ and is defined by:

L(M) = {w 2 ⌃
⇤
: M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /2 L(M) if and only if M(w) =

“no” [4]. We denote by tM (w) the number of steps in the computation of

M on input w [2]. For n 2 N we denote by TM (n) the worst case run time

of M ; that is:

TM (n) = max{tM (w) : w 2 ⌃
n}

where ⌃
n
is the set of all strings over ⌃ of length n [2]. We say that M runs

in polynomial time if there is a constant k such that for all n, TM (n)  n
k
+k

[2]. In other words, this means the language L(M) can be decided by the

Turing machine M in polynomial time. Therefore, P is the complexity

class of languages that can be decided by deterministic Turing machines in

polynomial time [4]. A verifier for a language L1 is a deterministic Turing

machine M , where:

L1 = {w : M(w, u) = “yes” for some string u}.

We measure the time of a verifier only in terms of the length of w, so a

polynomial time verifier runs in polynomial time in the length of w [2]. A

verifier uses additional information, represented by the string u, to verify

that a string w is a member of L1. This information is called certificate.

NP is the complexity class of languages defined by polynomial time verifiers

[8].

It is fully expected that P 6= NP [8]. Indeed, if P = NP then there are

stunning practical consequences [8]. For that reason, P = NP is considered

as a very unlikely event [8]. Certainly, P versus NP is one of the greatest

open problems in science and a correct solution for this incognita will have a

great impact not only in computer science, but for many other fields as well

[3]. Whether P = NP or not is still a controversial and unsolved problem

[1]. We provide an important step forward for this outstanding problem

using the logarithmic space complexity.

1.1 The Hypothesis

A function f : ⌃
⇤ ! ⌃

⇤
is a polynomial time computable function if some

deterministic Turing machine M , on every input w, halts in polynomial

2

time with just f(w) on its tape [10]. Let {0, 1}⇤ be the infinite set of binary

strings, we say that a language L1 ✓ {0, 1}⇤ is polynomial time reducible

to a language L2 ✓ {0, 1}⇤, written L1 p L2, if there is a polynomial time

computable function f : {0, 1}⇤ ! {0, 1}⇤ such that for all x 2 {0, 1}⇤:

x 2 L1 if and only if f(x) 2 L2.

An important complexity class is NP–complete [5]. If L1 is a language such

that L
0 p L1 for some L

0 2 NP–complete, then L1 is NP–hard [4]. Moreover,

if L1 2 NP , then L1 2 NP–complete [4]. A principal NP–complete problem

is SAT [5].

A logarithmic space Turing machine has a read-only input tape, a write-

only output tape, and read/write work tapes [10]. The work tapes may

contain at most O(log n) symbols [10]. In computational complexity theory,

L is the complexity class containing those decision problems that can be

decided by a deterministic logarithmic space Turing machine [8]. NL is the

complexity class containing the decision problems that can be decided by a

nondeterministic logarithmic space Turing machine [8].

In general,DSPACE(S(n)) andNSPACE(S(n)) are complexity classes

that are used to measure the amount of space used by a Turing machine

to decide a language, where S(n) is a space-constructible function that

maps the input size n to a non-negative integer [7]. The complexity class

DSPACE(S(n)) is the set of languages that can be decided by a deter-

ministic Turing machine that uses O(S(n)) space [7]. The complexity class

NSPACE(S(n)) is the set of languages that can be decided by a nondeter-

ministic Turing machine that uses O(S(n)) space [7].

A function f : ⌃
⇤ ! ⌃

⇤
is a logarithmic space computable function

if some deterministic Turing machine M , on every input w, halts using

logarithmic space in its work tapes with just f(w) on its output tape [10].

Let {0, 1}⇤ be the infinite set of binary strings, we say that a language

L1 ✓ {0, 1}⇤ is logarithmic space reducible to a language L2 ✓ {0, 1}⇤,
written L1 l L2, if there is a logarithmic space computable function f :

{0, 1}⇤ ! {0, 1}⇤ such that for all x 2 {0, 1}⇤:

x 2 L1 if and only if f(x) 2 L2.

The logarithmic space reduction is used for the completeness of the com-

plexity classes L, NL and P among others.

We can give a certificate-based definition for NL [2]. The certificate-

based definition of NL assumes that a logarithmic space Turing machine

has another separated read-only tape, that is called “read-once”, where the

head never moves to the left on that special tape [2].

Definition 1.1. A language L1 is in NL if there exists a deterministic
logarithmic space Turing machine M with an additional special read-once

3

input tape polynomial p : N ! N such that for every x 2 {0, 1}⇤:

x 2 L1 , 9u 2 {0, 1}p(|x|) then M(x, u) = “yes”

where by M(x, u) we denote the computation of M , x is placed on its in-
put tape, the certificate string u is placed on its special read-once tape, and
M uses at most O(log |x|) space on its read/write tapes for every input x

where | . . . | is the bit-length function. The Turing machine M is called a
logarithmic space verifier.

We state the following Hypothesis:

Hypothesis 1.2. There is an NP–complete language L1 2 NSPACE(log
2
n)

which is closed under logarithmic space reductions in NP–complete.

We show the principal consequence of this Hypothesis:

Theorem 1.3. If the Hypothesis 1.2 is true, then NP ✓ NSPACE(log
2
n).

Proof. Due to L1 is closed under logarithmic space reductions in NP–complete,
then every NP problem is logarithmic space reduced to L1. This implies

that NP ✓ NSPACE(log
2
n) since NSPACE(log

2
n) is closed under log-

arithmic space reductions as well.

1.2 The Problems

Now, we define the problems that we are going to use.

Definition 1.4. SUBSET PRODUCT (SP)

INSTANCE: A list of natural numbers B and a positive integer N .
QUESTION: Is there collection contained in B such that the product of

all its elements is equal to N?
REMARKS: We assume that every element of the list divides N . Be-

sides, the prime factorization of every element in B and N is given as an
additional data. SP 2 NP–complete [5].

Definition 1.5. Unary 0–1 Knapsack (UK)

INSTANCE: A positive integer 0y and a sequence 0y1 , 0y1 , . . . , 0yn of pos-
itive integers represented in unary.

QUESTION: Is there a sequence of 0–1 valued variables x1, x2, . . . , xn

such that

y =

nX

i=1

xi · yi?

REMARKS: We assume that the positive integer zero is represented by
the fixed symbol 00. UK 2 NL [6].

4

2 Results

In number theory, the p-adic order of an integer n is the exponent of the

highest power of the prime number p that divides n. It is denoted ⌫p(n).

Equivalently, ⌫p(n) is the exponent to which p appears in the prime factor-

ization of n.

Theorem 2.1. SP 2 NSPACE(log
2
n).

Proof. Given an instance (B,N) of SP , then for every prime factor p of N

we could create the instance

0
y
, 0

y1 , 0
y1 , . . . , 0

yn

for UK such that B = [B1, B2, . . . , Bn] is a list of n natural numbers and

⌫p(N) = y, ⌫p(B1) = y1, ⌫p(B2) = y2, . . . , ⌫p(Bn) = yn (Do not confuse n

with N). Under the assumption that N has k prime factors, then we can

output in logarithmic space each instance for UK such that these instances

of UK appears in ascending order according to the ascending natural sort

of the respective k prime factors. That means that the first UK instance in

the output corresponds to the smallest prime factor of N and the last UK

instance in the output would be defined by the greatest prime factor of N .

Besides, in this logarithmic reduction we respect the order of the exponents

according to the appearances of the n elements of B = [B1, B2, . . . , Bn] from

left to right: i.e. every instance is written to the output tape as

0
z
, 0

z1 , 0
z1 , . . . , 0

zn

where ⌫q(N) = z, ⌫q(B1) = z1, ⌫q(B2) = z2, . . . , ⌫q(Bn) = zn for every prime

factor q of N . Finally, we generate a certificate that is a sequence of 0–1
valued variables x1, x2, . . . , xn using square logarithmic space such that

for the first instance of UK we have

y =

nX

i=1

xi · yi,

for the second one

z =

nX

i=1

xi · zi,

and so on...

We can simulate simultaneously k logarithmic space verifiers Mj for each

j
th

instance of UK. We can done this since the sequence certificate would

be exactly the same for the k logarithmic space verifiers. Every logarithmic

space verifiers Mj uses O(log | (B,N) |) space where | . . . | is the bit length

function. So, we finally consume O(k · log | (B,N) |) space exactly in the

5

whole computation that would be square logarithmic because of k =

O(logN) and thus, the whole computation can be made O(log
2 | (B,N) |)

space.

When we read one 0–1 valued variable xi that is equal to 1 in the first

instance of UK, then we store the current sum that includes adding the

unary length of the element in the position i inside of the list. Next, we do

the same for the remaining k�1 instances of UK for the elements in the same

position i. We store each current sum in the contiguous k instances of UK

while we simultaneously copy these instances to the output tape from left to

right. After that, we place the input head again in the first instance of UK

and check whether the next 0–1 valued variable xi+1 is equal to 1 or not on

the special read-once tape (We do not do nothing if the current 0–1 valued

variable is equal to 0). We repeat over and over again this process without

moving the output tape to the left during this composition of logarithmic

reduction [8]. In fact, we copy to the output tape the consecutive k instances

of UK during this composition of logarithmic reduction exactly the same

number of times that the 0–1 valued variables in the certificate are equal to

1.

To sum up, we can create this verifier that only uses a square logarith-

mic space in the work tapes such that the sequence of variables is placed on

the special read-once tape due to we can read at once every valued variable

xi. Hence, we only need to iterate from the variables of the sequence from

left to right to verify whether is an appropriated certificate according to the

described constraints of the problem UK to finally accept the verification

of all the k instances otherwise we can reject.

In addition, we can simulate the reading of one symbol from the string

sequence of 0–1 valued variables into the read-once tape just nondeterminis-

tically generating the same symbol in the work tapes using a square loga-

rithmic space [2]. We could remove each symbol or a square logarithmic

amount of symbols generated in the work tapes, when we try to generate

the next symbol contiguous to the right on the string sequence of 0–1 valued

variables. We could generate the certificate from the inner Turing machine

in the composition of logarithmic reduction and so, the outer Turing ma-

chine would be deterministic during this composition of computations. In

this way, the generation will always be in square logarithmic space. This

proves that SP is in NSPACE(log
2
n).

Theorem 2.2. NP ✓ NSPACE(log
2
n).

Proof. This is a directed consequence of Theorems 1.3 and 2.1 because of

the Hypothesis 1.2 is true. Certainly, SP is closed under logarithmic space

reductions in NP–complete. Indeed, we can reduced SAT to SP in loga-

rithmic space and every NP problem could be logarithmic space reduced to

SAT by the Cook’s Theorem Algorithm [5].

6

3 Conclusions

Savitch’s theorem states that for any space-constructible function S(n) �
log n, we obtain that NSPACE(S(n)) ✓ DSPACE(S(n)

2
) and therefore,

NSPACE(log
2
n) ✓ DSPACE(log

4
n) [9]. Since DSPACE(S(n)) can be

solved by a deterministic Turing machine in O(2
O(S(n))

) time for any space-

constructible function S(n) � log n, then this would mean that NP ✓ QP

(quasi-polynomial time class). We “believe” there must exist an evident

proof of NSPACE(log
2
n) ✓ P and thus, we would obtain that P = NP .

References

[1] Scott Aaronson. P
?
NP. Electronic Colloquium on Computational

Complexity, Report No. 4, 2017.

[2] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach. Cambridge University Press, USA, 2009.

[3] Stephen Arthur Cook. The P versus NP Problem. https://

www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf, June

2022. Clay Mathematics Institute. Accessed 9 January 2023.

[4] Thomas Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and Clif-

ford Stein. Introduction to Algorithms. The MIT Press, USA, 3rd edi-

tion, 2009.

[5] Michael Randolph Garey and David Stifler Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness. San Fran-

cisco: W. H. Freeman and Company, USA, 1 edition, 1979.

[6] Birgit Jenner. Knapsack problems for NL. Information Processing
Letters, 54(3):169–174, 1995. doi:10.1016/0020-0190(95)00017-7.

[7] Pascal Michel. A survey of space complexity. Theoretical computer
science, 101(1):99–132, 1992. doi:10.1016/0304-3975(92)90151-5.

[8] Christos Harilaos Papadimitriou. Computational complexity. Addison-
Wesley, USA, 1994.

[9] Walter John Savitch. Relationships between nondeterministic and de-

terministic tape complexities. Journal of computer and system sciences,
4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.

[10] Michael Sipser. Introduction to the Theory of Computation, volume 2.

Thomson Course Technology Boston, USA, 2006.

NataSquad, 10 rue de la Paix 75002 Paris, France ⇤1

Email(s): vega.frank@gmail.com
⇤1

(corresponding author)

7

https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://doi.org/10.1016/0020-0190(95)00017-7
https://doi.org/10.1016/0304-3975(92)90151-5
https://doi.org/10.1016/S0022-0000(70)80006-X

	Introduction
	The Hypothesis
	The Problems

	Results
	Conclusions

