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Document retrieval techniques form the foundation for the development of large-scale information

systems. The prevailing methodology is to construct a bi-encoder and compute the semantic

similarity. However, such scalar similarity is di�cult to re�ect enough information and impedes our

comprehension of the retrieval results. In addition, this computational process mainly emphasizes

the global semantics and ignores the �ne-grained semantic relationship between the query and the

complex text in the document. In this paper, we propose a new method called Generation Augmented

Retrieval (GeAR) that incorporates well-designed fusion and decoding modules. This enables

GeAR to generate the relevant text from documents based on the fused representation of the query

and the document, thus learning to "focus on" the �ne-grained information. Also when used as a

retriever, GeAR does not add any computational burden over bi-encoders. To support the training of

the new framework, we have introduced a pipeline to e�ciently synthesize high-quality data by

utilizing large language models. GeAR exhibits competitive retrieval and localization performance

across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated

by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and

models will be released after completing technical review to facilitate future research.

1. Introduction

Document retrieval serve as the foundational technology behind large-scale information systems,

playing a crucial role in applications such as web search, open-domain question answering (QA) [1][2],

and retrieval-augmented generation (RAG) [3][4][5]. The predominant approach in passage retrieval is

to construct a bi-encoder model. In this architecture, queries and documents are encoded separately,

transforming each into vector representations that enable computation of their semantic similarity in

a high-dimensional space.
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However, this similarity calculation process faces several challenges. First, the complex semantic

relationship between query and document is mapped to a scalar similarity, which cannot re�ect

enough information and is di�cult to understand  [6]. Second, when dealing with long documents,

such as those with 256, 512, or even more tokens, identifying the section most relevant to the query

and contributing most to the similarity is highly desirable but challenging to achieve [7][8]. Moreover,

many NLP tasks, such as sentence selection, search result highlighting, needle in a haystack [9][10][11],

and �ne-grained citations [12][13], require a deep and �ne-grained understanding of the text.

Given this need for �ne-grained understanding, the bi-encoder that simply aligns the entire

document to the query seems insu�cient, as its conventional contrastive loss mainly emphasizes

global semantics  [14]. To complement this core localization capability of the retriever, we propose a

novel and challenging fundamental question: Can we enhance and integrate the information

localization capability of existing retrievers without sacri�cing their inherent retrieval capabilities?

To address these challenges, we proposed a novel approach GeAR (Generation-Augmented Retrieval).

Speci�cally, we construct the data into (query-document-information) triples, still using contrastive

learning to optimize the similarity between the query and the document. At the same time, we design a

text decoder to generate the relevant �ne-grained information in the document given the query and

document to enhance the retrieval and localization capabilities. Although the concept is simple, there

are many challenges. First, it is di�cult to �nd su�cient data to support our solution to this problem

in previous research work. Second, the training objectives of retrieval and generation tasks, model

architectures, and more design details, as well as how to e�ectively train the models, have not been

fully explored. To this end, we explored a complete pipeline from data synthesis, structure design, to

model training. Overall, our contributions are summarized as follows:

We proposed GeAR, which enhances the model’s ability to understand and locate text in a �ne-

grained manner by jointly modeling natural language understanding and natural language

generation. At the same time, the inference process is very �exible to handle di�erent tasks.

We abstract a new retrieval task that takes into account the problems present in the current

retrieval scenario. To solve this task and to support model training, we built a pipeline to

synthesize a large amount of high quality data using LLM.

Through extensive experiments, GeAR has shown competitive performance in retrieval tasks and

�ne-grained information localization tasks. At the same time, GeAR  can also generate relevant
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information based on the query and document to help us understand the retrieval results, bringing

a new perspective to the traditional retrieval process.

2. Related Work

2.1. Embedding-based Retrieval

Embedding-based retrieval has emerged as a cornerstone of modern information retrieval systems,

enabling e�cient semantic search through dense vector representations. Early approaches like

Word2Vec[15] and GloVe[16] demonstrated the potential of learning distributed word representations,

while more recent transformer-based models such as BERT[17]  have pushed the boundaries of

contextual embeddings. Bi-encoder architectures[18]  have become particularly popular for retrieval

tasks[19]. Recent advances include contrastive learning objectives[2][20][21][22], hard negative mining

strategies[23], and knowledge distillation techniques[24]  to improve embedding quality while

maintaining computational e�ciency.[25]  explored how to generate text and provide excellent

semantic representation by distinguishing task instructions.

Multimodal information retrieval also relies on high-quality semantic representations, where the

embedding space serves to bridge di�erent modalities, including text, images, and video. Vision

language models such as CLIP[26], ALBEF[27], and BLIP[28] have demonstrated remarkable zero-shot

capabilities by learning joint embeddings derived from large scale image-text pairs. These advances

made cross-modal retrieval tasks such as text-to-image search and image-to-text retrieval possible.

2.2. Information Localization

Information localization in massive corpora and contents has become a key research direction for

improving response accuracy and factual basis. The classic methods used RNN or BERT to compute

token representations and trained a classi�er for information extraction[29][30][1][31]. The heuristic

hierarchical approach involves further chunking the document and then calculating the semantic

similarity with the query on the chunked sentences or units for localization. However, �ner chunking

also results in increased computational complexity and semantic incoherence[32][33][34]. With the

development of generative models, there have been many recent e�orts to enhance the model’s ability

to �nd a needle in a haystack[9][10][11], that is, to locate key information such as sentences in long

texts. Another type of similar task is to have the model add reference information to the original text
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when generating responses[12][13]. Coincidentally, there have been some recent works focusing on

improving the regional level understanding ability of multimodal large language models (MLLMs)[35].

Despite these advances, we have found that there is currently little focus on �ne-grained information

localization during the retrieval stage.

3. Generation Augmented Retrieval

3.1. Preliminaries

In this work, we formalize the retrieval task with localization as follows: Let a document corpus as  ,

which contains   documents  . Each of these documents   contains a number of

�ne-grained information units  , such as sentences, where   is the units number of  . Our

goal is to �nd a retrieval method  , which can retrieve the relevant document   from  , as well as

the �ne-grained unit   from   given query  :

In this work, we explicitly de�ne the process as two tasks, (1) the document retrieval task and (2) the

�ne-grained unit localization task, as Figure  1 showing. It can be seen that the triples of query,

document, and unit, represented by the symbols  , are fundamental to the de�nition and

resolution of this task.

D

N { , … , , … , }d1 di dN di

{ , … , }u1 uli li di

f(⋅) d D

u d q

f(q,D) → {d} (1)

f(q,d) → {u} (2)

(q,d,u)
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Figure 1. Comparison of functionality between classical retriever and GeAR. GeAR is designed to handle

both document retrieval and �ne-grained unit localization simultaneously, while also generating auxiliary

information for reference.

3.2. Data construction

In this work, we focus on two common retrieval scenarios: (1) Question Answer Retrieval (QAR) and

(2) Relevant Information Retrieval (RIR). In the following sections, we will introduce how the data are

constructed and how they correspond to the triples   mentioned above.

Question Answer Retrieval

In this scenario, the query    is in the form of a question, and the goal is to retrieve reference

documents    that support answering the question and �ne-grained sentences    that contain the

answer.

Relevant Information Retrieval

In this scenario, the query   is in the form of a few phrases or keywords, the objective is to retrieve the

documents   that correspond to the query and the �ne-grained sentences   in the documents that are

most relevant to the query. The scenario is very close to what users normally do when they search for

information on the web. The challenge is that we have di�culty in �nding suitable data in the current

(q,d,u)

q

d u

q

d u

qeios.com doi.org/10.32388/GWQ6LR 5

https://www.qeios.com/
https://doi.org/10.32388/GWQ6LR


public dataset to drive our problem solving. Therefore, we constructed a pipeline to synthesize high

quality data using a large language model. Speci�cally, we selected high quality Wikipedia

documents[36], from which we will sample sentences of appropriate length and whose subject is not a

pronoun as  . Then we will leverage LLM to rewrite them as queries  . After de-duplication and

relevance �ltering, we get promising 5.8M triples. Kindly refer to Appendix A for details on complete

data processing procedure.

3.3. Model Structure

This section presents the architecture of GeAR. It is our intention that the model not only has powerful

retrieval capability, but also has the ability to locate key information in documents. Inspired by

advances in multimodal representation learning[27][28][37], we revisit the task from a modal

alignment perspective. Documents and queries can be considered as two modalities. We facilitate

semantic alignment between documents and queries via a bi-encoder, and enable the model to learn

to attend to �ne-grained query-related information in the document via a fusion encoder and a

generation task. The overview of the GeAR structure is illustrated in Figure 2.

Figure 2. GeAR. It consists of a bi-encoder, a fusion encoder, and a text decoder. It contains two training

objectives, CL represents contrastive learning loss, which aims to optimize the similarity between

documents and queries. LM represents the language modeling loss for generating relevant information

given documents and queries.

u q
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Bi-Encoder

In the same setup as the classical retrieval approach, we initialize two encoders   for documents

and   for queries. We use mean pooling to obtain the text embedding.

Fusion Encoder

The fusion encoder share most of the parameters with query encoder, but have an extra learnable

cross attention module. In this part, the document embeddings from   are fused with the query

embeddings through cross attention at each layer of the fusion encoder.

Text Decoder

The text decoder receives the fusion embeddings and generates �ne-grained information1 in the

document based on the given query and document. It uses a unidirectional causal attention instead of

a bidirectional self-attention. A speci�c [Decode] token is added to identify the beginning of the

sequence. The subsequent auto-regressive decoding process will interact with the generated tokens

and fusion embeddings to generate text.

3.4. Training Objectives

In this section, we present the training objectives of GeAR. We make the model capable of both

retrieval as well as �ne-grained semantic understanding and localization through joint natural

language understanding and natural language generation modeling.

Contrastive Learning Loss (CL)

We use bi-encoder to encode the queries and documents, and optimize the semantic similarity

between them through contrastive learning loss  (CL). In addition, we followed the practice in

MoCo[37]  and BLIP[28], where a momentum Bi-Encoder is introduced to encode momentum

embeddings and provide richer supervised signals as soft labels.

Language Modeling Loss (LM)

The introduction of LM loss is key to enhancing the information localization capability of GeAR. LM

activates the text decoder, which enables the model to generate relevant information using the fusion

embeddings of document and query. It guides the model to learn the �ne-grained semantic fusion of

(⋅)Ed

(⋅)Eq

(⋅)Ed
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query and document. LM optimizes the cross entropy loss over the entire vocabulary, maximizing the

likelihood of the ground truth text. The overall loss of GeAR is the sum of   and  :

3.5. Inference

GeAR’s inference process is diverse and �exible. In this section, we introduce various usages of

GeAR to accomplish di�erent tasks.

Documents Retrieval

For this task, we can use the bi-encoder part of GeAR  to compute the similarity between query and

document like the previous classic retrieval method, without introducing any additional parameters

and computation cost.

Fine-Grained Units Localization

The fusion encoder in GeAR  calculates the fusion embedding of query and document through cross

attention. We use the cross attention weights of the query on the tokens in the document to locate the

units that the query pays the most attention to in the document.

Information Generation

For this task, we feed the fusion embedding to the text decoder and enable autoregressive decoding. In

GeAR, information generation is actually an auxiliary task, and we will present the generative

performance of the model in experiments, both in terms of quantitative metrics and qualitative

analysis.

4. Experiments

In this section, we �rst introduce the experimental setup, and then we show the overall performance

of each task and more detailed analysis experiments.

LCL LLM

= +LGeAR LCL LLM (3)
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4.1. Setup

Datasets

For Question Answer Retrieval, we sampled 30M data from PAQ[38]  datasets to train GeAR, and

sampled 1M documents and 20k queries as test set. We also evaluate the performance on another 3 QA

datasets: SQuAD[39], NQ[40], and TriviaQA[41]. These test datasets are all held out to observe the

generalizability of compared methods. For Relevant Information Retrieval, we leverage the

synthesized 5.8M data, of which 95% is used for training and 5% is reserved for the test set. Speci�c

dataset statistics are in Appendix B.

Training Details

To better observe the e�ectiveness of GeAR, we use "BERT-base-uncased"[17]  to initialize the

encoders in GeAR. We trained the model for 10 epochs using a batch size of 48 (QAR) / 16 (RIR) on 16

AMD MI200 GPUs with 64GB memory. We use the AdamW[42] optimizer with a weight decay of 0.05.

The full hyperparameters and training settings are detailed in Appendix C.

Baselines

We compare our approach to two classes of baseline methods, one class of text representation models

that have been adequately trained on a large corpus, including SBERT[18], speci�cally "all-mpnet-

base"[43], E5[20], BGE[44], and GTE[21]. We use both base-level models for this comparison. The other

category consists di�erent training pipelines that unify the training data and starting points,

including SBERT[18]  and BGE[44]. We retrained them all using the "bert-base-uncased" to initialize

and aligned the training data, referred to as SBERTRT and BGERT in the following.

SQuAD NQ TriviaQA PAQ RIR

EM F1 EM F1 EM F1 EM F1 Rouge-1 Rouge-L

61.2 65.3 66.1 61.0 47.4 60.0 88.1 92.4 87.4 87.1

Table 3. Generation performance of GeAR on di�erent tasks.
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4.2. Overall performance

In this section, we present the overall performance on Documents Retrieval, Units Localization, and

Information Generation.

Documents Retrieval

Firstly, we report the comparison with existing methods on documents retrieval task in Table 1. The

results demonstrate that GeAR delivers competitive performance across multiple datasets, even with

limited training data. As a reference, the pre-trained SBERT model used 1.17B sentence pairs, with

partial overlap between its training data and our evaluation data. To ensure a fair comparison, we

retrained SBERT2 and BGE3 using their open source training pipelines, aligned training data and

initialization settings. As shown in the retrained model section in Table 1, GeAR achieves superior

performance, underscoring the e�ectiveness of our training approach.

Units Localization

Next, we evaluate the performance of each method on the units localization task. In the evaluation

process, we provide the query and the document   to the model and observe whether it is able to

�nd the corresponding �ne-grained unit  . For the retrieval model, we split the documents into

sentences and compute their similarity to the query independently, selecting the top-k sentences. In

contrast, GeARlocates units based on the cross attention weights for each sentence given the

document and the query, as described in Section 3.5. The results are reported in Table 2. We found that

GeAR came out ahead on all metrics, and that GeAR did not require further chunking and encoding of

the document. It is observed that SBERTRT and BGERT exhibit suboptimal performance, as their

training objective focus solely on optimizing the overall semantic similarity between the document

and the query, neglecting the �ne-grained semantic relationships. In contrast, GeAR bene�ts from the

joint end-to-end training of retrieval and generation tasks, enabling it not only to retrieve documents

closely aligned with the query but also to e�ectively attend to �ne-grained information within the

document.

(q,d)

u
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SQuAD NQ TriviaQA PAQ RIR

R@1 M@1 R@1 M@1 R@1 M@1 R@1 M@1 R@3 M@3

Pre-trained retrieval model

SBERT 0.739 0.800 0.558 0.652 0.359 0.583 0.498 0.561 0.891 0.874

E5 0.783 0.847 0.590 0.683 0.379 0.613 0.573 0.640 0.891 0.878

BGE 0.768 0.830 0.570 0.663 0.362 0.589 0.565 0.630 0.894 0.881

GTE 0.758 0.820 0.548 0.639 0.352 0.572 0.525 0.590 0.895 0.886

Retrained retrieval model

SBERTRT 0.516 0.568 0.445 0.523 0.281 0.472 0.363 0.418 0.899 0.991

BGERT 0.455 0.538 0.601 0.656 0.288 0.475 0.409 0.466 0.897 0.888

GeAR 0.810 0.874 0.765 0.871 0.515 0.808 0.885 0.965 0.954 0.897

Table 2. Comparison of units localization performance on di�erent datasets, where R@k stands for

Recall@k, M@k stands for MAP@k.

Information Generation

Although generation serves only as an auxiliary task in GeAR, we are nonetheless interested in

evaluating its generation performance. Table 3 reports the Exact Match (EM) and F1 scores on the QA

datasets, and the Rouge[45] scores on the RIR dataset. Notably, GeAR achieves strong performance on

test sets with distributions similar to the training data, such as PAQ and RIR, and performs reasonably

well on other test sets. Additionally, Figure 3 illustrates examples of GeAR’s ability to generate correct

answers and relevant information, demonstrating its satisfactory generation capabilities.
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SQuAD NQ TriviaQA PAQ RIR

R@5 M@5 R@5 M@5 R@5 M@5 R@5 M@5 R@5 M@5

Pre-trained retrieval model

SBERT 0.812 0.667 0.754 0.576 0.677 0.413 0.808 0.701 0.376 0.297

E5 0.803 0.674 0.760 0.581 0.645 0.390 0.816 0.716 0.484 0.396

BGE 0.829 0.701 0.674 0.502 0.690 0.422 0.752 0.647 0.451 0.367

GTE 0.866 0.744 0.767 0.587 0.726 0.443 0.836 0.736 0.528 0.435

Retrained retrieval model

SBERTRT 0.742 0.585 0.739 0.550 0.577 0.342 0.859 0.742 0.739 0.631

BGERT 0.841 0.701 0.751 0.553 0.640 0.384 0.901 0.802 0.953 0.881

GeAR 0.883 0.762 0.747 0.567 0.660 0.398 0.940 0.855 0.961 0.903

GeAR 0.889 0.776 0.755 0.565 0.660 0.399 0.955 0.877 0.963 0.907

Table 1. Comparison of documents retrieval performance on di�erent datasets, where R@k stands for

Recall@k, M@k stands for MAP@k.

w/oLLM
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Figure 3. Visualization of information localization of GeAR. In the two scenarios of Question Answer

retrieval and Related Information Retrieval, we propose two di�erent queries for one document and

highlight the top 10 tokens with the highest cross attention weights for the corresponding queries. The

tokens with orange background are for query1, and the tokens with purple background are for query2. We

also show the generated results of GeAR.

4.3. Analysis

Visualization of Information Localization

Figure  3 illustrates the information localization and generation results of GeAR  across di�erent

scenarios. We provide two distinct queries for one document and highlight the top 10 tokens with the

highest cross attnetion weights corresponding to each queries. In Figure 3(a), the two queries focus on

time and location, respectively. GeAR  not only gave the correct answers to both queries but also

dynamically adjusts its query-speci�c focus: it assigns higher attention weights to time-related
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tokens in response to the �rst query and prioritizes tokens related to countries and regions in

response to the second query. In Figure 3(b), GeAR will focus on the de�nition of the AVL tree itself,

and the insertion, deletion, rotation and rebalancing of the AVL tree, and generate corresponding

sentences. It can be seen that the added generation task has brought improvements to the model in

terms of performance and qualitative e�ects, making it accurate in localization and generation.

Correlation of Generation and Localization

In this section, we analyze the relationship between the generation and localization tasks. As

illustrated in Figure 4(a) and 4(b), we plot the performance coordinates from epoch 1 to epoch 10

during training, where the horizontal axis represents the generation performance and the vertical axis

represents the localization performance. The results reveal a strong correlation between the two tasks.

This observation demonstrates that the generation task, designed as a proxy, e�ectively enhances the

model’s ability to extract �ne-grained information from documents. These �ndings highlight the

synergistic relationship between generation and localization.

Figure 4. Plots of generation and localization performance on (a) QAR tasks and (b) RIR tasks as training

progresses. (c) shown the localization performance at di�erent layers.

Localization performance of di�erent layers

In GeAR, the fusion encoder and decoder interact through the cross attention module at each layer. To

investigate the relationship between localization performance and model depth, we plot the

localization performance using cross attention weights across di�erent layers in Figure  4(c). The

results indicate that high-level token embeddings perform well, as they capture rich semantic

information through deeper layers of the network. Interestingly, we observe that the highest layer
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does not yield the best localization performance. Instead, peak performance is achieved in the last 3 to

4 layers4. This phenomenon may arise because the representations in the highest layer are optimized

to serve the �nal task rather than intermediate localization. Similar �ndings have been reported in

prior studies involving encoder-only and decoder-only models[46][47].

The A�ect of Language Modeling Objectives

In this work, we utilize only the information corresponding to the query as supervision and

incorporate a language modeling objective. It enables the model to achieve stronger capabilities in

both information localization and generation, without requiring additional loss functions or complex

module designs. However, as a trade-o�, we observe a slight decrease in retrieval performance when

compared to using only the contrastive learning objective for the retrieval task, as shown in the last

two rows of Table 1. How to further design the balance between the two training objectives from the

perspective of multi-task learning so that they bene�t from each other is a point that can still be

explored in the future.

5. Conclusion

In this work, to address the challenges of unexplainable and coarse-grained results inherent in

current bi-encoder retrieval methods, we propose a direct and e�ective modeling method: Generation

Augmented Retrieval  (GeAR). GeAR  enhances �ne-grained information localization and generation

capabilities by incorporating a decoder and a lightweight cross-attention layer, while maintaining the

e�ciency of a bi-encoder. Experimental results across multiple retrieval tasks and two di�erent

scenarios demonstrate that GeAR  achieves competitive performance. Furthermore, its ability to

accurately and reasonably localize information makes it particularly promising for downstream tasks

such as web search, semantic understanding, and retrieval-augmented generation (RAG). We hope

this work o�ers valuable insights into the gradual uni�cation of natural language understanding and

generation paradigms, paving the way for more versatile and explainable retrieval systems in the

future.

Limitations

Due to constraints in computational resources and associated costs, the synthesized data used in our

experiments is not as comprehensive as that found in traditional retrieval scenarios. While the results
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demonstrate the e�cacy of GeAR, applying it to more diverse and semantically rich retrieval scenarios

remains an important direction for future exploration.

Additionally, the context length of GeAR  is limited to 512 tokens, consistent with the chunk lengths

commonly used in retrieval tasks. However, recent advancements in extending the context length of

retrieval models, such as those proposed in  [48], suggest exciting opportunities to overcome this

limitation. Extending GeAR’s context length could further enhance its capabilities in handling long-

form retrieval tasks, which we plan to investigate in future work.

We hope that the above discussions can inspire further investigation within the research community,

encouraging advancements that address these limitations and contribute to the broader progress of

NLP research.

Appendix A. Data Construction

We present here the practice of synthesizing data for Relevant Information Retrieval scenarios.

Pre-processing

Firstly, we choose high-quality documents from Wikipedia[36]. We process the documents sentence by

sentence, removing sentences with repetitive line breaks and phrases, until the document processing

is complete or the token count reaches 500 (<512). We remove the documents that are too short, with a

sentence count less than 3 or a token count of less than 200. Second, we �lter the candidate sentences

in the document that can be rewritten: we �lter all the sentences that have a token count between 8

and 20 and whose �rst word and subject are not pronouns (the set of pronouns includes "this",

"these", "it", "that", "those", "they", "he", "she", "we", "you", "I"). If the number of sentences

�ltered is less than 3, we discard the document.

LLM Rewriting

We randomly select 3 sentences in the document and use vLLM[49]  and "Llama-3.1-70B-Instruct"

[50]  to rewrite them into queries, the prompt is: "You are a helpful assistant, please help the user to

complete the following tasks directly, and answer brie�y and �uently. This is a sentence from

Wikipedia. Assuming that users want to search for this sentence on a search engine, write a phrase

that users might use to search (including some keywords), separated by commas. Retain the key
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information of the subject, object, and noun. Unimportant words can be modi�ed, but do not add

other information.".

Post-processing

We de-duplicate the keywords in the rewritten query and then reorder them. To ensure the relevance

of the query to the document, we perform a round of �ltering using BGE[44] to retain the data with a

similarity of 0.5 or more between the rewritten query and the document. In this way we obtain a

reasonable triad of queries, documents, and units (sentences).

For the construction of Relevant Information Retrieval data, we have also tried to collect paired

sentences and make LLM expand one of them into a document. However, we found that other

sentences in the LLM expansion were less informative than the original sentence, for example, being

some descriptive statements were generated around the original sentence. This pattern tends to cause

the model to learn to locate the central sentence, or the most informative sentence, in the expanded

document, leading model to ignore the query. So please be aware of this if you plan to try this way of

constructing your data.

Appendix B. Overview of datasets

We describe here in detail the datasets used for training and evaluation.

B.1. Training

For Question Answer Retrieval, we sampled 30M data from PAQ[38]  datasets to train GeAR. For

Relevant Information Retrieval, we used the 95% of the synthetic data for training. The speci�c

statistics are shown in Table 5.
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Hyperparameter Assignment

Computing Infrastructure 16 MI200-64GB GPUs

Number of epochs 10

Batch size per GPU 48 / 16

Maximum sequence length 512

Optimizer AdamW

AdamW epsilon 1e-8

AdamW beta weights 0.9, 0.999

Learning rate scheduler Cosine lr schedule

Initialization learning rate 1e-5

Minimum learning rate 1e-6

Weight decay 0.05

Warmup steps 1000

Warmup learning rate 1e-6

Table 4. Hyperparameter settings

Scenario Data Number

QAR 30,000,000

RIR 5,676,877

Table 5. Training data statistics.
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Scenario Dataset Documents Number Queries Number

QA

Squad 20,239 5,928

NQ 64,501 2,889

TriviaQA 104,160 14,000

PAQ 932,601 20,000

RIR RIR 2,315,413 145,562

Table 6. The evaluation data statistics for the document retrieval task.

Scenario Dataset Data Number

QA

Squad 5,928

NQ 2,889

TriviaQA 14,000

PAQ 20,000

RIR RIR 10,000

Table 7. The evaluation data statistics for the units localization and information generation tasks.

B.2. Evaluation

In the evaluation stage, we introduce the speci�c information of the evaluation data by task.

Documents Retrieval

First, for the document retrieval task, the queries come from the test set in the respective dataset, and

the candidate documents are all documents within the entirety of the dataset, including the

SQuAD[39], NQ[40], TriviaQA[41], and RIR datasets. It is di�cult to encode all the documents of the PAQ

dataset because the dataset is too large. So for the PAQ dataset, we sampled 1M documents and 20k
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queries, all of which have no intersection with the training data. The evaluation data statistics for the

document retrieval task are shown in Table 6.

Units Localization and Information Generation

For these two tasks, we directly use the test set data corresponding to the respective datasets.

Therefore, their number is consistent with the number of queries in Table 6. For the RIR dataset, we

sample 10k records as the test set. The evaluation data statistics for the units localization and

information generation tasks are shown in Table 7.

Appendix C. HyperParameters and Implementation Details

We run model training on 16 AMD MI200 GPUs with 64GB memory and evaluation on 8 NVIDIA Tesla

V100 GPUs with 32GB memory. The learning rate is warmed-up from 1 -6 to 1 -5 in the �rst 1000

steps, and then following a cosine scheduler, where the mininum learning rate is 1 -6. The

momentum parameter for updating momentum encoder is set as 0.995, the queue size is set as 57600.

We linearly ramp-up the soft labels weight from 0 to 0.4 within the �rst 2 epoch. The overall

hyperparameters are detailed in Table 4. We use FAISS[51][52]  to store and search for vectors. The 2

encoders and 1 decoders in GeAR are the same size as "bert-base"[17], the total number of parameters

of GeAR is about 330M. The training time for QAR scenario is about 5 days, for RIR scenario is about 3

days.

Appendix D. More Visualization

To present the e�ect of GeAR intuitively, we show more visualisation results of GeAR in Figure 5. Each

example contains two di�erent queries for a document to observe whether GeAR can respond

di�erently to di�erent queries, including locating key information and generating answers. We also

highlight the top 10 tokens with the highest cross attention weights for the corresponding queries.

The tokens with orange background are for query1, and the tokens with purple background are for

query2.

e e

e
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Figure 5. More Visulization results.

Footnotes

1 Note that in the generation task of the QAR scenario, the ground truth is the answer itself, not the

sentence  . But in the RIR scenario and the localization task, we all used the sentence  .

2 https://huggingface.co/sentence-transformers/all-mpnet-base-v2

3 https://github.com/FlagOpen/FlagEmbedding

4 In this work, we utilized the 10th layer for evaluation.
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