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Abstract: The commonly quoted bistable Higgs potential is not a proper description of the Higgs 1

field because, among other technical reasons, one of its stable states acquires a negative expectation 2

value in vacuum. We rely on formal catastrophe theory to derive the form of the Higgs potential 3

that admits only one positive mean value in vacuum. No symmetry is broken during the ensuing 4

phase transition that assigns mass to the Higgs field; only gauge redundancy is “broken” by the 5

appearance of phase in the massive state, but this redundancy is not a true symmetry of the massless 6

field. Furthermore, a secondary, certainly amusing conclusion is that, in its high-energy state, the 7

field oscillates about its potential minimum between positive and negative masses; but it is doubtful 8

that such evanescent states can survive below the critical temperature of 159.5 GeV, where the known 9

particles were actually created. 10

Keywords: Cosmology; Critical Phenomena; Higgs Production; Non-Equilibrium Field Theory; 11

Particle astrophysics; First-Order and Second-Order Phase Transitions. 12

1. Introduction 13

Bistable potential wells possessing two minima separated by an energy barrier are 14

quite common in the natural sciences [1–6]. Despite their frequent use in descriptions of 15

discontinuous transitions occurring in physical, chemical, and biological systems and their 16

intimate connections to catastrophe theory, bifurcation theory, singularity theory, structural 17

stability, and phase transitions [4–9], the ensuing dynamical evolution is not understood 18

in virtually all cases, to the point that some famous accounts of transitions are not only 19

technically unphysical, but they are also visibly preposterous. The deeper reason for such 20

absurdities is the lack of temporal variables in Landau’s phase-transition theory and in 21

Thom’s catastrophe theory. These theories apply only to gradient systems [1,4–6], and the 22

notion of time-dependent phenomena is added ad hoc by describing arbitrarily drawn 23

paths in the control parameter space of the cusp and higher elementary catastrophes. 24

For instance, Landau’s phenomenological theory of second-order phase transitions 25

predicts the appearance of two minima of equal depth past the critical point, although we 26

know from experiments that only one stable state exists below the critical temperature Tc. 27

To work around this problem, the theory postulates, against the odds, that an evolving 28

system will arbitrarily choose to settle into one of these states. Even in this hypothetical 29

scenario, the model remains unphysical because these states continue to evolve and change 30

their mean values as the temperature T < Tc is lowered toward absolute zero. So, no 31

matter which minimum the system “chooses,” it finds itself out of equilibrium all the time; 32

thus, the system has to evolve again and again trying to catch up with the ever-changing 33

equilibrium state. In contemporary parlance, such a situation is described by the metaphor 34

“moving the goalposts” which has negative connotation. 35

Furthermore, it is well-known that an infinitesimal linear perturbation wipes out 36

entirely Landau’s second-order phase transition [6], which means that such transitions 37
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should not occur in nature, or that the theory is wrong. All these absurdities come to 38

life because of the assumption that the system finds itself at a local maximum of the 39

potential as T crosses to just below Tc, where it sees two new minima opening up as the 40

control parameter becomes nonzero (negative, to be specific [1,5–7]). This assumption 41

places the system in an unstable initial state, a practice that is heavily at odds with basic 42

physics and with the stable stationary states that we describe in Section 2 below. It is also 43

mathematically puzzling how the initial potential minimum at T ≥ Tc changes directly to 44

an isolated maximum without passing through a degenerate inflection point (this procedure 45

builds a priori a discontinuity in the second derivative of the potential [1]). 46

The stability of the Higgs potential in particle physics [9–13] is another case in point. 47

The descriptions of how the Higgs field acquires mass are cursory and nonsensical at their 48

roots: At high energies, the massless Higgs field is supposed to be stripped of any and 49

all features, yet it is hypothesized to have “some high symmetry” (zero weak isospin?)1
50

supporting an even potential function. This is the symmetry that will be broken in the final 51

stationary state, when the unstable field will conveniently ignore the negative-minimum 52

state and it will choose against the odds to settle into the other available state of positive 53

vacuum expectation value (VEV). But how can such a symmetry be broken when the 54

potential continues to be an even function, just as prior to the transition? And how can the 55

system ever settle into either one of the low-energy states, when these states are not really 56

stationary but continue to move the goalposts (dotted curves in Figure 1) to different VEVs 57

all the time? 58

All of the above descriptions should have been taken with a large grain of salt because, 59

after all, an infinitesimal linear perturbation at T = Tc eliminates the second-order phase 60

transition altogether. This occurs because Landau’s assumption of a “higher symmetry” in 61

the initial state [1] alters arbitrarily the perturbation2 (−m2ϕ2/2 + bϕ) attached to Thom’s 62

cusp catastrophe germ (ϕ4; [4]); as a result, one control parameter is eliminated (b = 0; 63

[6]) and the drawn ad hoc evolutionary path {m, b = 0} in the control parameter space 64

(m, b) becomes incorrect and irreparable—even if an infinitesimal b ̸= 0 perturbation is 65

brought back in. The reason for this structural instability is that m and b are related along 66

the transition path, thus, the value of b cannot be chosen independently. The proof is given 67

in Section 2.1 below using polynomial theory. 68

The resulting overconstrained (b = 0) potential with one remaining control parameter, 69

V(ϕ) = ϕ4 − m2ϕ2/2, is illustrated in Figure 1. The phase-transition path highlighted by 70

the dotted curves is unphysical for the reasons discussed above; thus, naturally occurring 71

phase transitions (of first and second order) require a different mathematical approach. We 72

undertake this task for the Higgs field in Section 2, and we discuss our results for the various 73

types of phase transitions in Section 3. For the sake of completeness of the methodology, 74

the two higher-order elementary catastrophes (the swallowtail and the butterfly) are also 75

analyzed in this work, and their results are collected in Appendix A. 76

2. Derivation of the Higgs Potential from Catastrophe Theory 77

In cosmology and particle physics, the scalar Higgs field is massless and featureless at 78

the very high energies occurring right after the big bang [9,10,14–17]. When the universe 79

cools down to a critical temperature of Tc = 159.5 ± 1.5 GeV [16,17], the electroweak 80

phase transition takes place [9–11,16–20]. Lattice monte-carlo simulations indicate that the 81

cross-over of the Higgs field is smooth but fast, lasting for only ∼ 5 GeV [16,17] during 82

1 In contrast, Landau [1] was not thinking about isospin or null quantities when he formulated his theory. To
him, symmetries were visible in the arrangement of atoms in a crystal or in the (mis)alignment of magnetic
moments in magnetic materials

2 In all fairness to Landau [1], Thom’s catastrophe theory [4] did not exist in Landau’s time, so he did not know
that his Taylor expansion of the potential was not formally correct near the degenerate critical point. In fact, he
was apparently lucky to get the rest of the perturbation (Aη2) right when he correctly eliminated the cubic
term (Cη3 ≡ 0), albeit based on an inconclusive argument (that, for C ̸= 0, the curve of phase transitions
degenerates to a single point in the (P, T) plane, where P is pressure); the counterargument is that functions
A(P, T) and C(P, T) may have the same zeroes [5] and/or that C ∝ A.
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Figure 1. Potential V(ϕ) = ϕ4 − m2ϕ2/2 for m = 0, 1, 2. For m ̸= 0, three unphysical features
are observed: (a) The system suddenly finds itself at a local maximum. (b) Two global minima
are available, the one at ϕ0 < 0 with negative VEV. (c) The stable minima continue to relocate to
ϕ0 = ±m/2 (along the dotted curves) as m increases, throwing the system out of equilibrium all
the time and preventing its settling to a specific VEV, irrespective of which side it chooses to evolve.
These features appear because the perturbation (−m2ϕ2/2 + bϕ) of the cusp catastrophe germ (ϕ4)
has been overconstrained by setting b ≡ 0.

which the field settles down to a nonzero (positive) VEV of v = 246.22 GeV, where it has 83

remained until the present time. This value of the Higgs VEV is a natural constant [20], 84

and it is responsible for the corresponding particle, the Higgs boson, acquiring its observed 85

mass (125.25 GeV; [21–24]). 86

There are two methods by which we can derive the scalar Higgs potential at all 87

temperatures and observe the phase transition to the massive Higgs boson. The first 88

derivation is more tedious and requires more steps, but it is also transparent in justifying 89

the various assumptions being made; it further shows that the Higgs potential obeys Thom’s 90

theorem [4] for the cusp catastrophe. The second derivation is an astute shortcut, but it is 91

opaque and reveals no details; this formulation hides the influence of catastrophe theory, 92

so it could have been carried out at the time that Landau [1] presented his phase-transition 93

theory. We summarize both methods below. 94

2.1. Method 1: Relying on Catastrophe Theory and Stable Isolated States 95

For the Higgs potential V(ϕ) to generally exhibit three isolated extrema, its derivative 96

V′ must have the form 97

V′(ϕ; a, b, c) = 4(ϕ + a)(ϕ + b)(ϕ + c) , (1)

where a, b, c are interrelated control parameters to be constrained below. Then V′(ϕ0) = 0 98

gives the extrema ϕ0 = −a,−b,−c. Integrating equation (1), we find that 99

V(ϕ; a, b, c) = ϕ4 +
4
3
(a + b + c)ϕ3 + 2(ab + bc + ca)ϕ2 + (4abc)ϕ , (2)

where the integration constant has been dropped. In the neighborhood of the critical point 100

of the germ V = ϕ4, the Taylor expansion does not have a cubic term or terms higher than 101

O(ϕ4). These terms are eliminated by Thom’s inhomogeneous linear transformation and 102

his nonlinear transformation, respectively [4–6]. Thus, we must set 103

a + b + c = 0 , (3)



Version November 2, 2023 submitted to Axioms 4 of 16

in which case we obtain the canonical form 104

V(ϕ; a, b) = ϕ4 − 2
(

a2 + ab + b2
)

ϕ2 − 4ab(a + b)ϕ , (4)

with the extrema located at ϕ0 = −a,−b, (a + b). Note that if we arbitrarily choose b = 0, 105

then we obtain Landau’s [1] potential with extrema at ϕ0 = 0,±a (see also Section 2.2.2 106

below). This choice is unjustifiable, and we are not going to adopt it. Instead, we shift V(ϕ) 107

by a to the right, in order to place the first listed extremum at ϕ0 = 0. The shift transforms 108

the cusp-catastrophe function (4) to 109

V(ϕ; a, b) = ϕ4 − 4aϕ3 + 2(a − b)(2a + b)ϕ2 , (5)

where an additive constant has been dropped (eliminated by a vertical shift). In this 110

function, the extrema have been shifted to ϕ0 = 0, (a − b), (2a + b). We shall see that 111

ϕ0 = 0 corresponds to a local minimum of V(ϕ; a, b) and we are prepared to assume that 112

the massless Higgs field occupies this minimum while waiting for a more stable state to 113

open up and become accessible. The subject of accessibility of a new global minimum is very 114

important in this regard; it is discussed further in Section 3 below. 115

Next, we fix the third listed extremum to always be located at ϕ0 = 1 by convention. 116

Then, we set 117

b = 1 − 2a , (6)

and equation (5) takes the form 118

V(ϕ; a) = ϕ4 − 4aϕ3 + 2(3a − 1)ϕ2 . (7)

The extrema are now located at ϕ0 = 0, (3a − 1), 1. When ϕ0 = 1 is a global minimum, it 119

represents the massive state of the Higgs field, and when this minimum becomes accessible 120

at a critical point in the control parameter plane (a, b), the field will make the transition to a 121

nonzero VEV (v = ϕ0 = 1). The phase-transition path is described by equation (6). Thus, 122

the path is an oblique line that does not cross the apex a = b = 0 of the separatrix. 123

In a final step, we redefine the location of the second listed extremum ϕ0 = 3a − 1 by 124

adopting 125

k ≡ 3a − 1 . (8)

This definition gives us a better handle on the location of this extremum. We want it to 126

correspond to a local maximum (the location of an energy barrier that obstructs the phase 127

transition for all k ∈ (0, 1]. As such, k should be located between the other two extrema, 128

viz. 129

0 ≤ k ≤ 1 , (9)

and then equation (7) is rewritten in the final form 130

V(ϕ; k) = ϕ4 − 4
3
(k + 1)ϕ3 + (2k)ϕ2 . (10)

Looking at this potential function, it is hard to imagine that it satisfies Thom’s cusp- 131

catastrophe theorem [4], but it does. Equation (10) is equivalent to the cusp-catastrophe 132

potential (4) shifted by a to the right, where a = (k + 1)/3 and b = (1 − 2k)/3. 133

The Higgs potential (10) is plotted across the transition path {k = 1 → 0} in Figure 2. 134

The critical points (ϕ0, V(ϕ0)) of the potential V(ϕ; k) are 135

ϕ0 = 0, V(0) = 0 ;
ϕ0 = k, V(k) = k3(2 − k)/3 ;
ϕ0 = 1, V(1) = (2k − 1)/3 .

(11)
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Figure 2. Cusp catastrophe in the potential V(ϕ; k) (equation (10)) with 0 ≤ k ≤ 1 placing the energy
barrier between the other two extrema. The phase transition path is described by {k = 1 → 0}.
A system initially located at (0, 0) may undergo a phase transition to ϕ0 = 1 only when this state
becomes the global minimum (for 0 < k < 1/2) and (quantum tunneling aside) only if a finite
perturbation provides the free energy required for climbing over the top of the intervening energy
barrier. The critical point of the phase transition occurs for k = 0, when the diminishing barrier
finally disappears, and the system moves spontaneously to ϕ0 = 1. For k < 0 (dashed curve), a
new local minimum opens up at ϕ < 0, but the system remains at the global minimum ϕ0 = 1 for
all kmin < k < 0, where kmin represents the state at absolute zero—here, as usual, we think of k as
proportional to the temperature difference (T − Tc).

Thus, the height of the energy barrier is ∆V = k3(2 − k)/3 and 0 ≤ ∆V ≤ 1/3. For 136

k ≤ 1/2, once at the top of the barrier, a system will dissipate an amount of energy equal to 137

∆E = (1 − k)3(1 + k)/3 during its settling to the global minimum on the right side. This 138

amount is maximized at the critical point k = 0 for which ∆Emax = 1/3. 139

For k = 1/2, where the two minima have equal depth, the barrier height is ∆V = 1/16, 140

and an equal amount of energy, if gained from external perturbations, will be dissipated 141

away (∆E = 1/16) during the transition from the top of the barrier to one of the two stable 142

states. The k = 1/2 stage is important because it is the first instance along the evolutionary 143

path {k = 1 → 0} where another stable state (ϕ0 = 1) becomes available to a system located 144

at ϕ0 = 0, although, barring a sufficiently strong nonlinear perturbation, the new state 145

is not dynamically accessible because of the intervening barrier [25–29]. In Section 3,we 146

discuss the types of viable phase transitions along the latter path segment {k = 1/2 → 0}, 147

where the energy barrier continues to diminish with decreasing k. 148

2.2. Method 2: Implementing a Shortcut 149

An alternative derivation of equation (10) that dispenses with details and formalities 150

is as follows. 151

We return to equation (1) for the derivative V′(ϕ), which we copy here for convenience: 152

V′(ϕ; a, b, c) = 4(ϕ + a)(ϕ + b)(ϕ + c) . (12)

Following Landau’s assumption (Cϕ3 ≡ 0; [1]), we eliminate the quadratic term from V′, 153

in which case the sum of the three zeros is set to zero and c = −a − b: 154

V′(ϕ; a, b) = 4(ϕ + a)(ϕ + b)(ϕ − a − b) . (13)
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We shift ϕ by a to the right to place one extremum always at ϕ0 = 0: 155

V′(ϕ; a, b) = 4ϕ(ϕ − a + b)(ϕ − 2a − b) . (14)

We constrain the control parameters by 2a + b = 1 (or by a − b = 1) to place another 156

extremum always at a fixed location ϕ0 = 1: 157

V′(ϕ; a) = 4ϕ(ϕ − 1)(ϕ − 3a + 1) . (15)

We redefine −3a + 1 by equation (8) to simplify the location of the the remaining extremum: 158

V′(ϕ; k) = 4ϕ(ϕ − 1)(ϕ − k) . (16)

Integrating with respect to ϕ, we obtain the form (10) for V(ϕ; k). 159

2.2.1. Utilizing a Familiarity Heuristic 160

Perhaps surprisingly, the steps taken in the shortcut above can all be avoided by 161

utilizing a familiarity heuristic [30]. 162

The final result can be written down in just two steps, without proof or investigation of 163

its validity, by simply recalling that we are interested in static potentials which we can use 164

to demonstrate phase transitions. Such potentials must generally exhibit three extrema, two 165

fixed minima (ϕ0 = 0, 1) representing the initial and final stationary states, and a maximum 166

representing an obstacle or barrier that separates the two states. Therefore, equation (16) 167

can be written down ab initio, and then it can be integrated to yield the potential V(ϕ; k) 168

shown in equation (10). 169

The problem with this extremely fast, albeit heuristic approach is, of course, that 170

we cannot then formally justify the potential obtained by intuition and familiarity with 171

nature’s phase transitions [1–3]. This problem is solved by the lengthy derivation given in 172

Section 2.1 above. 173

2.2.2. Looking Back to Landau’s Theory of Phase Transitions 174

By contrast, Landau’s phase-transition theory can be formulated in the same context 175

(equations (12)-(16)) as follows. 176

Control parameter c is replaced by −(a + b) in equation (12) to eliminate the ϕ2 term 177

(no cubic term in the potential). Then, b is set to zero in equation (13) (in disagreement with 178

catastrophe theory that was not known at that time), resulting in the overconstrained form 179

V′(ϕ; a) = 4ϕ(ϕ2 − a2) . (17)

Integrating with respect to ϕ, we obtain the final form 180

V(ϕ; a) = ϕ4 − 2a2ϕ2 , (18)

which is depicted in Figure 1 for a = 0, 0.5, 1 (corresponding to m = 0, 1, 2; here, a = m/2). 181

As was discussed in Section 1 and summarized in the caption of Figure 1, these potential 182

curves do not form an evolutionary path in the control parameter plane (a, b) with varying 183

values of the remaining control parameter {|a| = 0 → 0.5 → 1 → · · · }. 184

3. Discussion of Phase Transitions 185

3.1. The Higgs Phase Transition 186

For the purposes of our discussion, we rewrite the canonical potential function (4) of 187

the Higgs field in Thom’s equivalent form of a cusp catastrophe, viz. 188

V(ϕ) = ϕ4 + Aϕ2 + Bϕ , (19)
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where the control parameters (A, B) are functions of two of the roots (a, b) of V′(ϕ) = 0, 189

viz. A ≡ −2(a2 + ab + b2) and B ≡ −4ab(a + b). The third root c is not independent, i.e., 190

c = −(a+ b) (equation (3)). If we set any one of these three roots to zero, then B = 0 and the 191

perturbation of the germ ϕ4 takes a specialized even form that cannot describe quantitatively 192

any phase transition since the phenomenon occurs naturally for general perturbations of 193

no particular symmetry. Moreover, B = 0 fixes the maximum of the bistable potential V(ϕ) 194

to point (0, 0), where the system finds itself at the onset of the phase transition. Thus, the 195

system is unstable and has no choice but to evolve. This setup is clearly problematic.3 196

Physical reasoning [2–4,7–9,15–17,25–29] formally requires that the system be located at 197

a stable minimum of the potential at all times before the second-order critical point Tc is 198

reached, and that this minimum become degenerate for T = Tc (i.e., an inflection point) 199

and progressively a (no longer relevant) local maximum for T < Tc, as in Figure 2 (the case 200

T < Tc corresponds to the k = −0.25 curve). This figure also shows the physical reason 201

for the occurrence of the second-order phase transition for k = 0: the energy barrier that 202

separates the two stable states diminishes as T → T +
c (k → 0+) and disappears altogether 203

for T = Tc; in fact, it is the merging of this maximum with the minimum at ϕ0 = 0 that 204

makes the critical point T = Tc degenerate. This smooth process makes sense, as the 205

minimum that initially hosts the system switches gradually, first to an inflection point, and 206

then to a maximum. 207

The control parameters A and B do not vary independently along the evolutionary 208

path. Therefore, setting B = 0 for all values of A in equation (19) (as in Landau’s theory) 209

is prohibited. This can be proven as follows: Using equations (6) and (8), we express the 210

control parameters (A, B) of the canonical cusp catastrophe (19) as functions of k, viz. 211

A = −2
3

(
k2 − k + 1

)
, (20)

and 212

B = − 4
27

(2k − 1)(k + 1)(k − 2) ; (21)

we can see that B = 0 in k ∈ [0, 1] only for a single point, k = 1/2, for which A = −1/2.4 213

Now, eliminating k between these two equations, we find that the control parameters (A, B) 214

are related along the path {k = 1 → 0} by 215

4(A + 2)2(2A + 1) + 27B2 = 0 , (22)

where A ∈ [−2/3, −1/2] and B ∈ [−8/27, 8/27]. This curve effectively constrains the 216

evolutionary path in the (A, B) plane; the constraint reveals the presence of an integral of 217

motion (i.e., a conserved quantity) during the evolution, as was determined in astrophysical 218

first-order and second-order phase transitions [26–29]. 219

Figure 3 shows the (A, B) plane of the cusp potential (19) and the evolutionary path 220

{k = 1 → 0} that lies entirely within the separatrix (the fold curve 8A3 + 27B2 = 0) and 221

terminates at the critical point k = 0, where the phase transition occurs spontaneously. 222

(Note the degenerate inflection point at ϕ0 = 0 in the inset of the Higgs potential V(ϕ; 0).) 223

For k = 0, the coordinates are (A, B) = (−2/3, −8/27). Because this point also lies on the 224

separatrix, this is the first demonstration of the so-called “delay convention” [3–6,34] in 225

a second-order phase transition. Except that the delay down to k = 0 does not occur by 226

convention here, it is a calculated outcome in the evolution of V(ϕ; k) depicted in Figure 2. 227

3 Landau’s theory has also been criticized and found inadequate from several other perspectives by Huang ([31];
§§ 17.1, 17.4), Pippard ([32]; Chapter 9), and Stanley ([33]; § 10.4).

4 The point k = 1/2 or (A, B) = (−1/2, 0) is where the evolutionary path {k = 1 → 0} crosses the B-axis in the
control parameter plane (see Figure 3 below).
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Figure 3. The evolutionary path {k = 1 → 0} on the control parameter plane (A, B) of the cusp
catastrophe, where A and B are the coefficients seen in equations (4) and (19). The insets are borrowed
from the potential curves V(ϕ; k) of Figure 2. The separatrix 8A3 + 27B2 = 0 is shown in blue color.

This brings the discussion to the other convention5 commonly used in catastrophe theory, 228

the so-called “Maxwell convention” [3,6,25,34] used in first-order phase transitions. 229

3.2. The Maxwell Convention and Chemical Reactions 230

The Maxwell convention singles out the point with k = 1/2 in the middle of the 231

path shown in Figure 3 as a viable phase-transition point because the two minima seen in 232

the V(ϕ; 0.5) inset have the same depth [34,35]. This is utter speculation that came about 233

because a system was thought to already be at the top of the energy barrier. From the top, 234

both minima are accessible with equal probabilities of transition, and the two stable states 235

coexist. This setup and assumptions are basically the same as in the Higgs field which 236

can also transition to the two stable states (one with negative VEV) with equal probability, 237

according to Landau’s theory [1]. But, as we explained above, placing a system at a local 238

maximum at the transition point is unphysical; so, we proceed to describe and clarify the 239

evolution of nonspontaneous first-order phase transitions and Maxwell’s rule under the 240

action of external perturbations in the control parameter plane of Figure 3. 241

Maxwell’s rule [35] (the basis for the Maxwell convention) identifies the point (k = 1/2) 242

along the path {k = 1 → 0} in Figure 3 in which the two stable minima attain equal depths. 243

The system initially occupies the left minimum and, as the evolution proceeds along the 244

segment {k = 1/2 → 0}, it cannot generally access the other stable state because of 245

the intervening energy barrier. Thus, Maxwell’s rule simply captures the first instance 246

that another stable state becomes available, but not necessarily accessible. Only external 247

perturbations can induce such a nonspontaneous transition of system parts and sectors 248

for k ≤ 1/2, if they are sufficiently strong, and then the two phases will coexist. Thus, 249

chances are that such a discontinuous transition of sectors may occur at a value smaller than 250

k = 1/2 because the barrier height decreases along the segment (Figure 2). This is precisely 251

what takes place in the chemical reactions that use catalysts [36–40]; catalysts lower the 252

so-called activation energy barrier, thereby increasing the reaction rates (i.e., they induce 253

a first-order phase transition in parts of the reactants), without actually being consumed. 254

Lowering the energy barrier is a mechanism used in catalyzed chemical reactions. An 255

alternative mechanism is to perturb the reactants by supplying excess heat. In this pathway, 256

5 Recall that catastrophe theory is applicable only to gradient systems [6], so it does not account for time, and
qualitative conventions have been invented to describe actual time evolution before and after a phase transition
(or “catastrophe”).
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Figure 4. Bistable potential (equation (10) with k = 0.4) in which a system is displaced from
equilibrium and oscillates about the local minimum I under the action of external perturbations. If
the system gets displaced to P, it gains enough energy (∆E = ∆V) to roll over the top of barrier B and
down to the global minimum state S, as indicated by the arrows. Thus, the system at P is “preunstable”
[25] and undergoes a first-order phase transition [2,3,26–28]). If the system gets displaced to any
point of higher energy (e.g., at J), then it becomes dynamically (Jeans) unstable [41] (it no longer
recognizes the energy barrier at B) and collapses to the global minimum state S. If the system never
gains enough energy to overcome the barrier, then it will remain near point I until k = 0, where the
barrier disappears. Then, points I and B merge to an inflection point and the second-order phase
transition to S is spontaneous [5,26,42].

the barrier remains intact, but the reactants absorb the energy, and more constituents go 257

over the top of the barrier to the other state that hosts the products of the reaction. 258

3.3. Overcoming the Energy Barrier 259

The above chemical reaction mechanisms fit rigorously into our framework of first- 260

and second-order phase transitions (Figures 2 and 3). A spontaneous reaction occurs when 261

there is no barrier (k = 0); and a catalyzed reaction or a heat-driven barrier jump occurs for 262

k ≤ 1/2, but only under the action of perturbations supplying the necessary energy. An 263

example is shown in Figure 4 for k = 0.4. We consider a system oscillating initially about 264

minimum I under the action of external perturbations. Since k < 1/2, the second minimum 265

S that became competitive for k = 1/2 is now the global minimum and the energy barrier 266

∆V has decreased past the Maxwell point. If the Gibbs free energy ∆E gained by the parts of 267

the system is not sufficient to push any part up to at least point P (or B), then the perturbed 268

system remains in the neighborhood of point I. If, on the other hand, ∆E = ∆V in some 269

parts, then these parts displaced to point P can overcome barrier B and make the transition 270

to the new global stable state S [2,3,25–29]. Then, the two phases, I and S, coexist [31–33]. 271

Furthermore, if ∆E > ∆V in some perturbed parts (displaced, e.g., up to point J), then these 272

parts no longer recognize barrier B and collapse to the deep minimum S on a dynamical 273

time [3,41,42]. 274

3.4. Star-Forming Phase Transitions 275

Although the outcome of the above evolutionary scenarios is the same in Figure 4 276

(the settling of at least parts of a system into stable state S), the dynamics is quite different. 277

The difference was recognized long ago in the context of star formation in giant molecular 278

clouds, first by Whitworth [25] and subsequently by Tohline [2,3,26–28], although the ideas 279

had been previously explored in various related contexts [43–45]. Whitworth [25] described 280

a perturbed diffuse molecular cloud region (bound by external pressure), that reaches over 281
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time [3] point P in Figure 4, as “preunstable,” a condition that differentiates it from a region 282

strongly compressed and displaced to point J, where it becomes Jeans unstable [41] and 283

subject to dynamical collapse down to the compact stellar state (point S in Figure 4). Tohline 284

[27] recognized that the path PIBS in Figure 4 highlights a slower phase transition (distinct 285

from dynamical Jeans collapse) capable of producing stars of much lower masses (albeit 286

over much longer timescales [3]), as compared to the famous Jeans critical mass [41], the 287

hallmark of dynamical star formation since 1902 and for years to come [46]. 288

3.5. Peculiar λ-Transitions 289

To complete the discussion of the various types of phase transitions encountered 290

in nature, we should mention that some phase transitions do not fit into the modern 291

classification scheme [32,33]. Most puzzling among them are the so-called λ-transitions 292

[8,29,31–33,47,48] that may or may not [8,32] have infinite specific heat at the critical point 293

(e.g., at the λ-point Tc = 2.18 K of the superfluid liquid 4He [31–33] or at the order-disorder 294

critical point Tc = 739 K of the β-brass Cu-Zn alloy [31,49]). Bose-Einstein condensation 295

of an ideal Bose gas [31] and astrophysical binary fission and ring formation [29] are also 296

types of λ-transitions, and the various types are all linked together only by spontaneous 297

breaking of the topology [8,29] (the symmetry may break or not, and the specific heat may 298

diverge or not [8,32,47–49]). 299

From the viewpoint of the energetics of discontinuous λ-transitions, we know that 300

a total of five extrema (not all of them isolated) are involved in the Gibbs free-energy 301

function [29], which places these transitions along paths in the higher-order butterfly 302

catastrophe [48] if the free energy is a continuous function of the order parameter [29]. The main 303

characteristic of the underlying potential function is an energy barrier that progressively 304

becomes taller as T → T +
c , and then, it suddenly disappears just past the critical point 305

T = Tc (see, e.g., Figures 3-5 in Ref. [29]). This astonishing behavior of the free-energy 306

barrier in astrophysical systems exhibiting topology-breaking phase transitions [50–56] 307

remains under investigation to date (see Refs. [2,3,8,26–29] for more details). 308
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Appendix A. The Potentials of Higher-Order Catastrophes 318

We have carried out the derivation described in Section 2.2 for the swallowtail and 319

butterfly catastrophes as well. To dissociate these types of potentials from the Higgs field, 320

we use here x for the order parameter instead of ϕ. The resulting potential functions and 321

their phase-transition properties are summarized below. 322

Appendix A.1. Swallowtail Potentials 323

The swallowtail catastrophe V(x) has the germ x5 and a perturbation of O(x3). The 324

x4 term is missing, so the sum of the zeroes of the derivative V′(x) is zero. Then, one of the 325

zeroes −a,−b,−c,−d becomes −d = a + b + c and V′(x) takes the form 326

V′ = 5(x + a)(x + b)(x + c)(x − a − b − c) . (A1)
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Figure A1. Swallowtail potential functions for the phase-transition path {k = 1 → 0}. Parameter k
controls the location of the right barrier which disappears for k2 = 0. Parameter ℓ controls the left
barrier, which we have fixed at x0 = −1 for simplicity. The left barrier becomes shorter as ℓ → 0−. A
system that somehow is induced to overcome this barrier before it manages to settle to the x0 = 1
minimum will fall apart.

Shifting V′ by a to the right and setting one of its zeroes to x0 = 1 (i.e., 2a + b + c = 1), we 327

find that 328

V′ = 5x(x − 1)(x − k)(x − ℓ) , (A2)

where k ≡ a − b and ℓ ≡ 3a + b − 1. Integrating equation (A2) with respect to x, we find 329

the potential function 330

V(x) = x5 − 5
4
(k + ℓ+ 1)x4 +

5
3
(kℓ+ k + ℓ)x3 − 5

2
(kℓ)x2 . (A3)

We see now that the choice of x0 = 1 has limited the control space to only two independent 331

parameters (k, ℓ). This choice, which has been overlooked for generations, is necessary to 332

create and define another stable state, so that we can apply this potential to actual physical 333

systems. (The initial stable state created by the shift is also fixed at x0 = 0.) We must say 334

at this point that any arbitrary paths drawn in the deceiving general three-dimensional 335

swallowtail control space are meaningless, in the sense that physical systems do not evolve 336

unconstrained along such paths that move the goalposts (see Section 1). 337

We also choose the extremum x0 = k to be between 0 and 1, that is, to serve as an 338

energy barrier between the two stable states. Thus, 0 ≤ k ≤ 1, allowing for N = 3 possible 339

k locations in the interval k ∈ [0, 1] (0, 1, and in-between). Now, ℓ can be located anywhere 340

on the x-axis, so there are N = 17 possible locations for the pair (k, ℓ). Of those, the extrema 341

x0 = 0, 1 are local minima in only one case in which ℓ < 0 (N = 3 cases, if we also count the 342

degeneracies k = 0, 1). Therefore, only the case ℓ < 0 is of interest to phase transitions along 343

the path {k = 1 → 0}. Now, the isolated extremum x0 = ℓ < 0 is always a local maximum, 344

and it can vary just as k varies within its own interval. But variation of ℓ does not change the 345

qualitative properties of the transition, so we can assume here for demonstration purposes 346

that ℓ is a negative constant along the considered transition path. In a physical system, 347

however, the variation of ℓ will have to be determined from the physical parameters of the 348

system itself. 349

Phase Transitions.—An illustration with constant ℓ = −1 (fixed) is shown in Figure A1. 350

The transition proceeds on the right half of this diagram just as it does for the cusp potential 351

in the main text. The second-order critical point appears for k2 = 0 (the inflection point 352
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Figure A2. Butterfly potential functions for the phase-transition path {k = 1 → 0} with ℓ = m = −1.
Parameter k controls the location of the barrier, which disappears for k2 = 0. Parameters ℓ, m < 0
control extrema that develop in the x < 0 region. In the ℓ = m case shown here, the extrema
degenerate to an inflection point at x0 = −1. The height of this inflection point decreases as
ℓ = m → 0−.

at x0 = 0 on the magenta curve). The first-order critical point appears for k1 = 8/15 (two 353

equal-depth minima on the green curve), as determined from the equation 354

k1 =
5ℓ− 3

10ℓ− 5
, (A4)

for ℓ = −1 (note that k1 → 1/2 as ℓ → ±∞, and the cusp catastrophe is fully recovered). 355

Left Energy Barrier.—Point ℓ = −1 marks the location of another energy barrier on the 356

left side of the diagram, and this barrier may be important in some applications concerned 357

with systems falling apart: Assuming that a system (initially executing small-amplitude 358

oscillations about x0 = 0) can somehow be induced to climb over the top of this barrier 359

(before it settles to the stable minimum x0 = 1), then this system is doomed; it will certainly 360

be destroyed since there is no other minimum of the potential available in the region x < ℓ. 361

This path is however of no interest in customary applications of the swallowtail catastrophe, 362

in which researchers are studying phase transitions terminating at stable states [4–7,57–59], 363

such as x0 = 1 in Figure A1. 364

Appendix A.2. Butterfly and Triple-Point Potentials 365

The butterfly catastrophe V(x) has the germ x6 and a perturbation of O(x4). The x5
366

term is missing, so the sum of the zeroes of the derivative V′(x) is zero. Then, one of the 367

zeroes −a,−b,−c,−d,−e becomes −e = a + b + c + d and V′(x) takes the form 368

V′ = 6(x + a)(x + b)(x + c)(x + d)(x − a − b − c − d) . (A5)

Shifting V′ by a to the right and setting one of its zeroes to x0 = 1 (i.e., 2a + b + c + d = 1), 369

we find that 370

V′ = 6x(x − 1)(x − k)(x − ℓ)(x − m) , (A6)

where k ≡ a − b, ℓ = a − c, and m ≡ 3a + b + c − 1. Integrating equation (A6) with 371

respect to x, we find the potential function 372

V(x) = x6 − 6
5 (k + ℓ+ m + 1)x5 + 3

2
[
(k(ℓ+ m + 1) + ℓm + ℓ+ m

]
x4

− 2
[
(k(ℓm + ℓ+ m) + ℓm

]
x3 + 3(kℓm)x2 .

(A7)
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Figure A3. As in Figure A2, but for butterfly potentials with ℓ ̸= m and a second barrier at x < 0
which we have fixed at ℓ = −1 for simplicity. The two extrema in the region x < 0 are now isolated,
and a new local minimum opens up at x0 = m = −3/2 (again, fixed for simplicity). The height of the
left barrier decreases as ℓ → 0−.

We see now that the choice of x0 = 1 has limited the control space to only three independent 373

parameters (k, ℓ, m). Once again, this choice, which has been overlooked for generations, is 374

necessary to create and define the second stable state, so that we can apply this potential 375

to actual physical systems. (The initial stable state created by the shift is also fixed at 376

x0 = 0.) We reiterate that arbitrary paths drawn in the deceiving general four-dimensional 377

swallowtail space are meaningless because physical systems do not evolve unconstrained 378

along such paths that move the goalposts (see Section 1). 379

We choose again k ∈ [0, 1] to provide an energy barrier between the minima x0 = 0, 1. 380

Based on the analysis in Section A.1, we also limit this investigation to ℓ < 0.6 Then, there 381

are N = 23 possible locations of the new extremum m, of which only N = 3 are worthy 382

of further consideration (because x0 = 0, 1 are local minima), all of them having m < 0. 383

Now, equation (A7) shows that ℓ and m are interchangeable parameters. If we choose 384

ℓ = m, then the two extrema merge into a degenerate inflection point (at x < 0) of no 385

particular interest. But if ℓ ̸= m, then another barrier appears at x0 = max(ℓ, m) and a new 386

local minimum opens up at x0 = min(ℓ, m). These two cases are illustrated in Figures A2 387

and A3, respectively, where the locations of ℓ, m < 0 were fixed without loss of generality. 388

We note that the left barrier at x0 = ℓ < 0 in Figure A3 becomes shorter as ℓ → 0−. 389

Phase Transitions.—In Figures A2 and A3, the phase transitions proceed on the right 390

halves of these diagrams, just as they do for the cusp potential in the main text. The 391

second-order critical point appears for k2 = 0 in both figures. The first-order critical points 392

appear for k = k1, as determined from the equation 393

k1 =
5ℓm − 3(ℓ+ m) + 2

10ℓm − 5(ℓ+ m) + 3
. (A8)

Triple point.—In the diagram of Figure A3, the two minima do not have the same depth 394

for any value of k ∈ [0, 1] because of the arbitrary choices for ℓ and m. So, there is no 395

triple point along this phase-transition path. Then, it is easy to recognize that the control 396

parameters (k, ℓ, m) must be related for a triple point to appear in the potential (A7). Their 397

relationships are expressed by the conditions that 398

V(ℓ) = V(1) ≡ 0 . (A9)

6 So, not all butterfly phase-transition paths are covered in the present investigation.
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Figure A4. Triple point of a butterfly potential with ℓ ̸= m. The potential is now an even function
(equation (A11)) with no independent control parameter (equation (A10)). With x0 = k chosen to lie
in (0, 1) to provide a barrier, then interchangeable parameters ℓ, m < 0 provide the locations of the
two isolated extrema on the left side (i.e., x0 = ℓ and x0 = m).
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Figure A5. As in Figure A3, but for an evolutionary path {k = 1 → 0} (equivalently, {ℓ = −3 → 0})
in the butterfly catastrophe that exhibits a triple point for ℓ = −1 and k = −m = 1/

√
3 (green curve).
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Here, ℓ and m are interchangeable parameters, so we chose the third minimum to be located 399

at x0 = ℓ. The V ≡ 0 equal-depth conditions (A9) then require that 400

ℓ = −1 and m = −k = −1/
√

3 , (A10)

where now k and m are interchangeable (but we break the symmetry by choosing 0 < k < 1, 401

as usual). It is easy to prove then that V(x) at the triple point is an even function of x, 402

and this is why the third minimum (x0 = ℓ or m) must be located at x0 = −1. In fact, the 403

potential V(x) at the triple point takes the simple form 404

V(x) = x6 − 2x4 + x2

= x2(x2 − 1)2 .
(A11)

This reduced butterfly potential that exhibits a triple point (i.e., three minima of equal 405

depth) is illustrated in Figure A4, where we chose k > 0 and ℓ = −1. The choice m = −1 is 406

of course an alternative, and then the labels ℓ and m switch places in Figure A4. With the 407

equal-depth minima set at x0 = 0,±1, then the extrema x0 = k, m represent energy barriers 408

of equal height. 409

Finally, for an evolutionary path {k = 1 → 0} that exhibits a triple point, the following 410

general relations hold along the path: 411

ℓ = 3km and m = −k ; (A12)

so, only one of the control parameters (k, ℓ, m) of the butterfly turns out to be independent. 412

The triple point occurs for ℓ = −1 along this path which, in terms of ℓ, is described by 413

{ℓ = −3 → 0} and terminates at the second-order critical point ℓ = 0. Figure A5 provides 414

an illustration of this phase transition. The control parameters of the potential function (A7) 415

have been reduced to functions of k by using the relations (A12), viz. ℓ = −3k2 and m = −k, 416

and then k is the only independent parameter along the evolutionary path. 417
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