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We recently pointed out that, under suitably de�ned conditions, the Schrödinger equation

represents a limit case of the complex Ginzburg-Landau equation (CGLE). As generic prototype of

complex dynamics, CGLE is naturally tied to dimensional �uctuations conjectured to develop far above

the electroweak scale. The goal of this work is to uncover an unforeseen connection between CGLE

and the equation of geodesic deviation in General Relativity (GR). This connection is likely to come

into play in primordial cosmology, where strongly �uctuating gravitational �elds evolve in far-

from-equilibrium conditions. Our �ndings unveil the duality between primordial gravitation and

Kolmogorov entropy and suggest a potential gateway towards �eld uni�cation outside Lagrangian

theory.
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Cautionary remarks

We caution from the outset that the sole intent of this paper is to lay the groundwork for further analysis and

exploration. Independent work is needed to develop, validate, or reject the ideas presented here.

1. Introduction

This contribution is a sequel to[1], which argues that Schrödinger equation is a particular embodiment

of the complex Ginzburg-Landau equation (CGLE). It has been known for quite some time that CGLE is a

prototype model of far-from-equilibrium phase transitions and complex phenomena, particularly

helpful in describing systems exhibiting wave patterns, spatial structures, and solitons[2]. Following[1][3],

CGLE can be naturally tied to the onset of dimensional �uctuations far above the electroweak scale set
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by the vacuum expectation value of the Higgs sector, namely  . The goal of this work is to

uncover an unexpected connection between CGLE and the equation of geodesic deviation in General

Relativity (GR). This connection is likely to come into play in primordial cosmology, where strongly

�uctuating gravitational �elds evolve in far-from-equilibrium conditions. Here we highlight the dual

nature of primordial gravitation and Kolmogorov (K) entropy and suggest a potential gateway towards

�eld uni�cation outside Lagrangian theory.

The paper is organized as follows: elaborating from[1]  or[3], next section recalls the route from

dimensional �uctuations to CGLE; section 3 and 4 establish the link between CGLE, the Jacobi equation

of geodesic deviations and the K-entropy. As K-entropy naturally ties in with the regime of

dimensional �uctuations above the electroweak scale, the chain of connections discussed in sections 3

and 4 bridge the gap between dimensional �uctuations and primordial manifestations of classical gravity.

Concluding remarks are detailed in the last section, followed by a list of abbreviations and a couple of

Appendix sections.

2. CGLE from dimensional �uctuations above the electroweak scale

Reaction-Di�usion (RD) processes are a subset of complex phenomena de�ned within the framework

of Nonequilibrium Statistical Physics. These models are typically formulated in    dimensions,

where   is the dimension of the Euclidean manifold representing the physical space and   is the time

coordinate. Ref.[3] develops a toy RD model acting on a two-dimensional lattice  , whose local

variables are time-varying dimensional �uctuations  . The model includes a scattering

event at rate  , a clustering event at rate   and a decay (or percolation) event at rate  , with 

  being a control parameter nearing its critical value  . Up to a leading order approximation, the

macroscopic properties of RD processes may be encoded in a mean-�eld (MF) equation, which

quanti�es the competition between losses and gains in a generic density parameter  . In particular,

the decay/percolation process occurs with a rate proportional to   and leads to a gain in density.

By contrast, the clustering process drops the density with a rate proportional to  . Ignoring

di�usion, the resulting MF equation takes the form

In the context of[1][3]  the control parameter    represents the density of dimensional

�uctuations    while    denotes the density of active (or unstable) lattice sites. A

v = 246GeV

d + 1

d t

(d = 2)

δε(t) = δ[2 − d(t)]

D u κ = λ − λc

λ λc

ρ(t)

κρ(t)

u (t)ρ2

= κρ(t) − u (t)
∂ρ(t)

∂t
ρ2 (1)

λ(t) = λ[δε(t)]

δε(t) << 1 ρ(t)
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straightforward extrapolation of (1) is given by the system of coupled partial di�erential equations

According to[1] and references therein, an arbitrary solution of (2) lying near the bifurcation point at 

  can be expressed through a complex-valued function    obeying the

CGLE

Here, the set of new coordinates is given by[1][3]

where,

3. From CGLE to the Jacobi equation of geodesic deviation

In what follows, we use an alternative form of CGLE presented as[4]

The choice   real,  ,  leads to

As stated in the Introduction, since complex dynamics is expected to arise in the far-from-

equilibrium regime of GR (see e.g.,[5] or[6]), it is instructive to investigate the relationship between (7)

and the geometry of primordial spacetime. To this end and with reference to Appendix A, we introduce

the following assumptions:

A1) The space coordinate    is taken to represent the analogue of the metric parameter   and the time

coordinate the analogue of proper time, which means that

= Δ (x, t) + f( , ,κ)
∂ (x, t)ρ1

∂t
D1 ρ1 ρ1 ρ2 (2a)

= Δ (x, t) + g( , ,κ)
∂ (x, t)ρ2

∂t
D2 ρ2 ρ1 ρ2 (2b)

κ > κ0 W(r, τ) = U(r, τ) + iV (r, τ)

= W + (1 + i ) − (1 + i )W|W
∂W

∂τ
c1

W∂ 2

∂r2
c2 |2 (3)

r = ηx (4a)

τ = tη2 (4b)

η = (κ − ∝ (λ − << 1κ0)
1

2 λc)
1

2 (5)

= αW + β − γW|W
∂W

∂τ

W∂ 2

∂r2
|2s (6)

α,β β = 1 γ = 0

= + αW
∂W

∂τ

W∂ 2

∂r2
(7)

r s

dr ⇒ ds (8a)

ds = dτ (c = 1, = O(1))g00 (8b)
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A2) To further streamline the derivation, we assume that   is independent of  , i.e.,  .

A3) By analogy with (A5) and the study of two-dimensional surfaces in Riemannian geometry, we

write the geodesic deviation as complex-valued entity. In line with the conjectured onset of complex

dynamics far above the electroweak scale, geodesic deviation is interpreted here as a �uctuating vector

�eld.

The solution of (7) takes the form[7]

If  ,  are given by

Furthermore, if   is real and  ,   become complex-valued and the solution to (7) turns into[7]

in which the characteristic frequency is

and the constants   are �xed by the boundary conditions. If   is reasonable small, developing

the square root in (12) yields the approximation

A glance at (13) and (A8) shows that   may be interpreted as complex-valued analogue of geodesic

separation  , while   mirrors the role of Gaussian curvature  , i.e.

4. From the Jacobi equation to the K-entropy

 In nonlinear dynamics theory, K-entropy is a representative measure of chaotic behavior in phase

space. By[8]  and Appendix A, the unavoidable sensitivity to initial conditions in the evolution of

geodesics can be characterized by the divergence of the a�ne parameter   along  . Speci�cally, the

local Gaussian curvature takes on the role of a Lyapunov exponent

α s α ≠ α(s)

W(s) = exp( s) + exp( s)C1 p1 C2 p2 (9)

α ≠ 1
4
p1,2

=p1,2
1 ± 1 − 4α− −−−−−√

2
(10)

α α > 1
4

p1,2

W(s) = exp(s/2) [A cos( s) + B sin( s)]ωN ωN (11)

=ωN
1

2
4α − 1− −−−−−√ (12)

,A,BC1,2 α

W(s) ∝ exp(±iαs) (13)

W(s)

ζ(s) α K

W(s) ⇔ ζ(s) = (s) + i (s)ζ1 ζ2 (14a)

α ⇔ K (14b)

ζ(s) s

K(s) ⇔ λ(s) (15)
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In general, K-entropy relates to the spectrum of Lyapunov exponents   of a dynamical system and

quanti�es the amount of information lost or gained during its evolution. It is given by the sum of the

log of all Lyapunov exponents    averaged over a given region of the phase space  . The K-

entropy associated with the system of nearby geodesics   and   can be computed as

where 

and   stands for the di�erential measure of  .

Taken together, (14), (15) and (16) set the stage for a probabilistic interpretation of the metric    in

primordial gravity, matching the chaotic behavior of geodesics.

With reference to[9][10][11], K-entropy can be alternatively de�ned using the concept of information

dimension  , i.e.

 Here,   is the sliding observation scale associated with a “time-like” parameter as in

Relation (16) and (17) imply,

and

in which the beta-functions of dimensional deviation and phase-space measure are respectively given

by

It can be shown that the combined use of (20), (21) and (22) yields the following constraint[11]

λi

| | > 1λi Π

Γ0 Γ

= Φ (| |)dηSK ∫
Π

∑
| |>1λi

λi (16a)

Φ (| |) = log| |λi λi (16b)

dη Π

gij

(μ)D1

(μ) = −D1

(μ)SK

log ε(μ)
(17)

μ

dt = d(logμ) =
dμ

μ
(18)

Φ (| |) ∝∑
| |>1λi

λi
dSK

dη
(19)

= −
d (μ)SK

dη

(μ)D1

ε(μ)

(ε)βε

(η)βη
(20)

(ε) =βε
dε

dμ
(21)

(η) =βη
dη

dμ
(22)
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In summary and on account of (14) to (23), the Gaussian curvature of primordial gravity can be

interpreted as dual to dimensional deviations, i.e.,

Appendix B shows that the same conclusion can be arrived at by using the duality between fractional

dynamics on �at spacetime and classical gravitation.

5. Concluding remarks

5.1) Relations (14) to (24) indicate that dimensional deviation   represents the information content

of the K-entropy[11], a conclusion that supports Wheeler’s “it from bit” philosophy[12]

5.2) The evolving regime of dimensional deviations well above the electroweak scale is consistent with

chaotic behavior described by the K-entropy. This observation justi�es the analogy between the

curvature �uctuations of primordial gravity, K-entropy, and dimensional �uctuations having the

form  , as illustrated by the diagram below:

Moreover, combining these results with[1], suggests an intriguing gateway towards �eld uni�cation

outside the boundaries of Lagrangian �eld theory:

List of abbreviations

CGLE = complex Ginzburg-Landau equation

GR = General Relativity

RD = Reaction-Di�usion

K-entropy = Kolmogorov entropy.

(ε) ≈ − (η)βε
ε

3

2

D1
βη (23)

K[ (μ)] ⇔ ε(μ)gij (24)

ε(μ)

δε(μ) ∝ ε = 4 − D(μ)
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Appendix A: The Jacobi equation[8]

The Jacobi equation is a second-order ordinary di�erential equation that describes how geodesics

behave under variations in their initial conditions, particularly regarding nearby geodesics. This

Appendix is a brief account on the construction and geometric interpretation of the Jacobi equation.

As it is well-known, characterization of four-dimensional Riemannian spacetime is done in terms of

coordinates     and local metric   de�ned by the quadratic function

The Hamiltonian of a non-relativistic freely moving particle on Riemannian spacetime is

where,

The curved trajectory  in Riemannian spacetime spanned by solutions of (A2) is called a geodesic. Let 

  represent a �xed geodesic whose coordinates are function of the distance    measured along it.

Denote a nearby geodesic by  . Let the geodesic normal to    be called    and assume that 

 intersects   at point  . Let the distance between   and   measured along   at   be denoted as 

 (see �g. 1 below). It can be shown that   satis�es the Jacobi equation[8][13]

in which   is the Gaussian curvature at  .

The Jacobi equation re�ects the behavior of the Gaussian curvature at  . Speci�cally, the neighboring

geodesic   is pulled back towards   if  , or pushed away from   if  . It follows that the

Gaussian curvature represents a local measure of geodesic instability. On a spherical surface, 

 means stability whereas   on hyperbolic surfaces describes instability.

Using[7], the solution of (A5) is given by

where,

xi (i = 0, 1, 2, 3) ds

d = d ds2 gjk xj xk (A1)

H(p,x) =
1

2m
gjkpjpk (A2)

=pj gjlẋl (A3)

= 1gjlg
lk (A4)

Γ

Γ0 s

Γ Γ0 Γ1

Γ1 Γ P Γ0 Γ Γ1 P

ζ(s) ζ(s)

+ K(s)ζ(s) = 0
ζ(s)d2

ds2
(A5)

K(s) P

P

Γ Γ0 K > 0 Γ0 K < 0

K > 0 K < 0

ζ(s) = exp( s) + exp( s)C1 q1 C2 q2 (A6)

= ±iq1,2 K
−−√ (A7)
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and so,

which is formally identical to (13).

Figure 1. Generic geodesic deviation in a two-dimensional   plane

Appendix B: Duality of fractal spacetime and classical gravitation

Following[14], consider the fractional analog of a free particle Hamiltonian in �at spacetime (A2)

in which   denotes the order of fractional integration. If  , with   (B1) approximates the

classical non-relativistic Hamiltonian in the limit   namely,

Refer now to the action of a free non-relativistic particle in a weak gravitational �eld,

where   is the Minkowski metric,   and

ζ(s) ∝ exp(±i s)K
−−√ (A8)

(x, t)

H =
1

2m
p2κ (B1)

κ κ = 1 − ε ε << 1

ε = 0

H = ≈
1

2m
p2(1−ε) 1

2m
p2 (B2)

S = dx
1

2m
∫ −g

−−−
√ gijp2 (B3a)

η ij g = det( )gij

= + ;   << 1gij η ij hij ∣∣h
ij ∣∣ (B3b)
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Side-by-side comparison of (B2) and (B3a) suggests the following analogy between the dimensional

deviation   and gravitational metric,
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