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Abstract 

When observed from a natural vector space viewpoint, Fermat’s last theorem 
appears not as a unique property of natural numbers, but as the bottom line 
of extended possible issues involving larger dimensions and powers. The 
fabric of this general Fermat’s theorem structure consists of a well-defined 
set of vectors associated with dimensional vector spaces and the 
Minkowski norms one can define there. Here, this special vector set is 
studied and named a Fermat surface. The connection between Fermat 
surfaces and hypercubes is unveiled. 
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1. Introduction 

Fermat’s last theorem demonstration by Wiles [1] in 1995 was a step toward 
unlocking a centuries-unsolved demonstration. But it might be accepted, 
besides a great mathematical step, as the starting path of many related 
subjects with the original Fermat’s idea. In references, one can consult 
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several recent studies about Fermat’s last theorem [2-6]. Also, in our 
laboratory, several papers dealing with the extension of the theorem in larger 
dimensions have been published; for instance, references [7-10]. Even more 
recent publications deal with a simple demonstration of the theorem [11] and 
discuss the nature of empirical proofs of extending the theorem in larger 
dimensional spaces [12]. In this last reference, the possibility to study the 
structure of possible Fermat surfaces has been issued. The present paper tries 
to deal with this task. 

 

2. Whole Vectors 

Given any dimensional vector space  constructed over a field , 
one could define a whole vector3  as one with non-null 
components. The whole vectors form a vector set , which one can 
structure in turn as: 

.       (1) 

The set  is the most relevant structure of a vector set within the vector 
space . Because the vectors possessing some null components 
correspond to elements of lesser dimension subspaces of , as will be 
commented on next. 

 

2.1. Un-whole vectors. 

The possible classes and structure of un-whole vectors in a vector space 
, that is, vectors possessing from 1 to  zeros as components, are 

given by the number and nature of the vertices of a Boolean hypercube of 
the same dimension as , and bearing the same number of zeros, see 
for more information reference [12-15].  

Adopting this kind of vector pattern, the unit components of the Boolean 
hypercube vertices become connected with the non-zero un-whole vector 
components.  

 
3 Along this paper, the bra symbol will describe row vectors. It must be noted that all the equations 
where row vectors are present can be considered and also be changed in a column or ket vector frame. The 
practical use of bra vectors to avoid waste of print space has been chosen here. 
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Admitting the null vector: , as a zero-pattern class 
by itself, the number of possible un-whole vector patterns in the vectors of a 

 space is .  

It is also interesting to realize that this number of un-whole vector classes in 
a dimensional vector space coincides with the N-th Mersenne number.  

In a vector space with a class pattern made by whole and un-whole vectors, 
the whole vectors can lie in the class associated with the unity Boolean 
hypercube vertex: , the vertex of the corresponding Boolean 
hypercube, which is the bit representation of the Mersenne number, 
connected with the associated hypercube and vector space dimensions. 

 

3. Perfect Vectors 

When considering the whole vectors of some vector space , in general, 
one might name as perfect vectors  the ones that have their component 
modules ordered in a canonical increasing sequence, that is: 

.      (2) 

 

3.1. Perfect vectors in vector semispaces 

Then, perfect vectors defined according to the equation (2) can be considered 
a subset of the whole vectors. Moreover, perfect vectors are defined even 
simply in a vector semispace4 environment.  

In vector semispaces, only the non-negative definite part: of the involved 
field is relevant; then one can write: . In semispaces, the vector 

addition acquires the structure of a semigroup, which furnishes the name 
semispace. This property also applies when the natural number set 
substitutes the field:  as occurs in natural spaces5.  

In both of these more restricted cases, semispaces and natural spaces, one 
can define perfect vectors simply than in the previous equation (2), that is: 

 
4 Semispaces are also known as orthants.  
5 The name natural space corresponds to some vector space defined over the natural numbers set. Under 
some conditions, they are also called a lattice. 
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.       (3) 

 

3.2. Perfect vectors as generators of vector spaces 

Perfect vectors correspond to vectors that can generate a set of related whole 
vectors, which can be associated with the permutations of all the components 
of a given perfect vector.  

Thus, one can attach a collection of  vectors to every perfect vector by 
permuting its original components.  

More than this, the N circular permutations of the components of a perfect 
vector allow the construction of a set of N linearly independent vectors, a 
basis set of the vector space or semispace. 

 

4. Fermat Surfaces 

Knowing the preliminary definitions of whole and perfect vectors and 
semispaces also makes it possible to find the structure of the vector sets, 
which one might call Fermat surfaces. 

Given a -dimensional vector space  constructed over a field 

, one can define a Fermat surface: , of dimension N, order p, and 

radius r as a set of perfect -dimensional vectors, where the last and 
larger component  is a common positive definite real, rational, or natural 
number, called the radius of the Fermat surface, that is:  

,        (4) 

this equation above determines the dimension and radius of the surface. 

 

4.1. Minkowski and Euclidean norms in Fermat Surfaces 

To account for the order p of a Fermat surface, every vector element  of  
the surface, as constructed in the equation (4), has to be associated with a 
zero p-th order Minkowski norm, that is: , defined by the 
algorithm: 
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.      (5) 

Alternatively, one can consider such a Fermat surface  definition as 
a set of -dimensional vectors bearing a common p-th order Euclidean 
norm: , defined now as: 

.       (6) 

 

5. Fermat surfaces and Fermat natural vectors 

One might define a Fermat natural vector as an element of a Fermat surface 
with components made by natural numbers. Therefore, a Fermat vector 
possesses a dimension N, order p, and a natural number acting as radius: r, 
which fulfills a corresponding Minkowski zero norm. According to this, one 
can write for Fermat’s vectors the equivalent expression connected with the 
equations (4) and (5): 

         (7) 

Thus, Fermat vectors belonging to a natural vector space are also elements 
of a Fermat surface. Fermat vectors correspond to natural vectors with a null 
Minkowski norm. Then, one can consider them as sets of vectors submitted 
to Fermat’s last theorem in the case of a vector space of dimension (2+1) 
[11]. For higher dimensions, they are subject to the empirical properties 
already described in previous research, for example, in references [7-10,12]. 

In a recent study [12], several computational exhaustive tests have been 
performed, showing the existence of different natural Fermat vectors but 
bearing the same radius, order, and dimension, indicating that Fermat 
surfaces might contain several natural Fermat vectors as points. 

 

5.1. Some remarks on natural Fermat vectors  
a. Within the set of Fermat surfaces with orders greater than 2, that is, 

the set that one can describe as: , natural Fermat vectors do 
not exist as elements of such a surface. Natural vectors associated with 
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powers greater than 2 in these 2-dimensional surfaces cannot exist 
because of the Fermat last theorem. One might describe this situation 
as: . 

b. Calling as  any - dimensional sphere of radius r, one can 

easily realize that: . Thus,  so it 

corresponds with a circle. Also,  and it belongs to a 
3-dimensional sphere. 

c. Even bearing simple structures, though, the Fermat surfaces  

and  pose challenging problems. 
 
 

6. Shells in vector spaces 

The concept of a shell in a vector space has been useful in rationalizing the 
vector structures and allowing the construction of sets and subsets of vectors 
with some add-on property [17].  

Essentially, shells were employed to study quantum mechanical density 
functions developed in references [18-21]. 

The previous definition of Fermat surfaces in the present paper corresponds 
to a similar construct obtained from another perspective. The main idea is to 
elaborate some mathematical tools to build all the vectors of a given vector 
space from a subset of them only. Such a procedure uses homothecies of the 
vector elements belonging to a shell, constituting a well-defined vector set, 
which one shall associate to some Euclidian norm in the same way one 
constructs Fermat surfaces. 

In this sense, Fermat surfaces constitute a general point of view as the 
involved norms in their definition hold the use of possible larger powers and 
the associated Minkowski norms. 

 

6.1. Fermat’s surface vectors and probability distributions 

The vectors of a Fermat surface possess the modules of their components 

such that their powers:  belong to the non-negative part 

of the field elements.  
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In this manner, one could consider the Fermat surface vectors as able to 
generate a -dimensional discrete probability distribution by forming the 
homothecy: 

              (8) 

The equation (8) above shows that one can transform a vector lying on a 
Fermat surface into a unit shell element, which is also closely related to 
discrete probability distributions. 

 

6.2. The shape of Fermat’s surfaces 

It is instructive to glimpse the shape of Fermat’s surfaces. In the first step, 
one can remember the discussion about the connection of Fermat’s surfaces 
of second-order and N-dimensional spheres, or in short: .  

Such an equivalence includes second-order natural Fermat vectors in these 
surfaces of any dimension, as it has been obtained empirically on several 
occasions [8,10].  

The equivalence between second-order Fermat surfaces and spheres seems 
to preclude one might imagine the Fermat surfaces of superior order as 
spheroids, distorted spheres. However, simple tests seem to predict a 
completely different landscape. Fermat’s surfaces of higher orders and 
dimensions, that is: , which can be straightforwardly defined via 
the attached Minkowski norm: 

            (9) 

provide drawings, which become in the limit of infinite order to N-
dimensional hypercubes. In the third order, drawings look like smooth or 
blunt-like hypercubes, which tend to structure corners with right angles as 
the power order grows.  

Figure 1 corresponds to the plots of two-dimensional Fermat’s surfaces 
starting at the third order (Fig. 1A), followed by orders 4, 7, 9, and 11 (Figs. 
1B, 1C, 1D, 1E).  
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Of course, second-order surfaces are a circumference, and the 3-dimensional 
ones are a sphere. Therefore, they are not shown in the following figures.  

Figure 1 shows a trend of the surfaces when the order grows: the smooth 
two-dimensional surface square tends to transform into a sharp square. 

 

                 
             A                                       B                                  C 
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Figure 1.  Shapes of the Fermat 2-dimensional surfaces of different 

orders:  A)  p=3    B)   p=4    C)  p=7     D)  p=9     E)  p=11 

 

 

However, a third-order 3-dimensional Fermat’s surface corresponds to a 
completely different object, resembling an edge and vertex smoothed or 
blunt-like 3-dimensional cube, as Figure 2 shows. This time, to evidence the 
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surface trend with increasing order, Figure 2 shows orders 3, 7, 9, 47, 127 
(Figure 1A, 2B, 2C, 2D, 2E).  

In this sequence, the transformation from a sphere to a 3-dimensional 
smoothed cube is clear for order 3, and at the same time, the transformation 
of the smoothed  cube towards a sharp structure appears evident as 
large order  and  surfaces show. 

 

 

                                                      
                  A                                          B                                         C 

 

 

                                                         
                               D                                                     E               

 

Figure 2. Shapes of three-dimensional Fermat’s surfaces for diverse 
orders:  A) p=3   B) p=7   C) p=11   D) p=47   E) p=127 

 

Perhaps, in the light of the results, Figures 1 and 2, one is allowed to write, 
being  an N-dimensional hypercube, that: 

.           (10) 
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This final result is easy to accept when realizing that the structure of 
hypercubes is such that the construction of the hypercube  can be done 
with the concatenation of two hypercubes of one lesser dimension, so 
formally, one can write in general:  

,           (11) 

a feature indicating that the structure of a higher-dimension hypercube will 
be like the one of a lesser dimension.  

So, the edge and vertex smoothness one can observe, say, in Figure 2A, 
which one can consider as a 3-dimensional cube but generated as a 3-
dimensional Fermat surface of order 3, can be imagined it will be the same 
in the 4-dimensional surface of order 3, which one can construct via 
concatenation of two 3-dimensional surfaces of order 3. Unit radius Fermat’s 
surfaces can follow a similar concatenation as hypercubes permit. 

 

7. Conclusions 

This paper discusses the nature of the surfaces generated when developing 
mathematical and computational tools to study the extension of Fermat’s last 
theorem in vector spaces of arbitrary dimension.  

The main trait that one can notice about Fermat’s surfaces is the association 
of these surfaces with Minkowski spaces and vectors with zero Minkowski 
norms. 

One of the deduced characteristics is the connection of Fermat’s surfaces of 
unit radius, first with discrete probability distributions and second with a 
general unit shell structure. 

Finally, the shapes of Fermat’s surfaces have been observed as a 
transformation of N-dimensional hyperspheres into smoothed hypercubes, 
which tend to become N-dimensional hypercubes as the surface orders 
increase. 

One must admit that extending Fermat’s theorem to arbitrary dimensions is 
highly connected with transforming hyperspheres into smoothed hypercubes 
and finally to hypercubes of (in)finite dimensions. 

 

 

 

NH

1N N NH H H+ = Å



 

11 
 

Acknowledgments 

The authors want to mention that Prof. Andreas Savin has performed the calculations 
leading to the construction of Figure 2. They also want to warmly thank him for his 
time and friendly readiness to permit these drawings to illustrate the present work.  

One of us (R. C.-D.) wants to thank his wife, Blanca Cercas MP, for her dedication to 
making this paper’s writing possible. 

 

Bibliography 

 

1. A. Wiles “Modular Elliptic-Curves and Fermat's Last Theorem”. Ann Math 141 
(1995) 443-551. 

 
2. A. Ossicini; “On the Nature of Some Eulerʼs Double Equations Equivalent to 

Fermatʼs Last Theorem”.  Mathematics 10 (2022) 4471-4483. 
 

3. S. P. Klykov; “Elementary Proofs for the Fermat Last Theorem in  Using One 
Trick for a Restriction in ” J. of Science and Arts 23 (2023) 603-608. 
 

4. S. P. Klykov, M. Klykova; “An Elementary Proof of Fermat’s Last Theorem” 
Research Gate Preprint November (2023) DOI: 10.13140/RG.2.2.19455.59044. 
 

5.   J. B. Gilbert; “A Proof of Fermat’s Last Theorem” Research Gate Preprint. 
Revision July 16th, 2023. DOI: 10.13140/RG.2.2.27051.82722.  
 

6. C. Castro; “Finding Rational Points of Circles, Spheres, Hyper-Spheres via 
Stereographic Projection and Quantum Mechanics” Research Gate Preprint 
November (2023) DOI: 10.13140/RG.2.2.12030.36164. 

 
7. R. Carbó-Dorca; “Natural Vector Spaces, (Inward Power and Minkowski Norm 

of a Natural Vector, Natural Boolean Hypercubes) and Fermat’s Last Theorem”. 
J. Math. Chem. 55 (2017) 914-940.  

 
8. R. Carbó-Dorca, C. Muñoz-Caro, A. Niño, S. Reyes; “Refinement of a 

generalized Fermat’s Last Theorem Conjecture in Natural Vector Spaces”. J. 
Math. Chem. 55 (2017) 1869-1877. 

 
9. A. Niño, S. Reyes, R. Carbó-Dorca; “An HPC hybrid parallel approach to the 

experimental analysis of Fermat’s theorem extension to arbitrary dimensions on 
heterogeneous computer systems”. The Journal of Supercomputing 77 (2021) 
11328-11352.  

                     
10. R. Carbó-Dorca, S. Reyes, A. Niño; “Extension of Fermat’s Last Theorem in 

Minkowski Natural Spaces”. J. Math. Chem. 59 (2021) 1851-1863. 
 

Z
Z p

http://dx.doi.org/10.13140/RG.2.2.19455.59044
http://dx.doi.org/10.13140/RG.2.2.27051.82722
http://dx.doi.org/10.13140/RG.2.2.12030.36164


 

12 
 

11. R. Carbó-Dorca; “Whole Perfect Vectors and Fermat’s Last Theorem” Research 
Gate Preprint October (2023) DOI: 10.32388/HFXUL0. 
 

12. R. Carbó-Dorca; “Rational Points on Fermat's Surfaces in Minkowski's (N+1) -
Dimensional Spaces and Extended Fermat's Last Theorem: Mathematical 
Framework and Computational Results” Research Gate Preprint November 
(2023) DOI: 10.13140/RG.2.2.34181.52967. 
 

13. R. Carbó-Dorca; “Boolean Hypercubes and the Structure of Vector Spaces”. J. 
Math. Sci. Mod. 1 (2018) 1-14. 
 

14. R. Carbó-Dorca; “Fuzzy sets and Boolean tagged sets, vector semispaces and 
convex sets, QSM and ASA density functions, diagonal vector spaces and 
quantum Chemistry”. Adv. Molec. Simil. Vol. 2 pg. 43-72. JAI Press, (1998).  
 

15. R. Carbó-Dorca; “Role of the Structure of Boolean Hypercubes when Used as   
Vectors in Natural (Boolean) Vector Semispaces”. J. Math. Chem. 57 (2019) 697-
700. 
 

16. R. Carbó-Dorca; “Shadows’ Hypercube, Vector Spaces, and Non-Linear 
Optimization of QSPR Procedures”. J. Math. Chem. 60 (2022) 283–310. 

 
17.  R. Carbó-Dorca; “Shell partition and metric semispaces: Minkowski norms, 

root scalar products, distances and cosines of arbitrary order”. J. Math. Chem. 
32 (2002) 201-223. 
 

18.    P. Bultinck, R. Carbó-Dorca; “A mathematical discussion on density and 
shape functions, vector semispaces and related questions”. J. Math. Chem. 36 
(2004) 191-200.  
 

19.   R. Carbó-Dorca; “Molecular Quantum Similarity Measures in Minkowski 
Metric Vector Semispaces”. J. Math. Chem. 44 (2008) 628-636. 

 
20. R. Carbó-Dorca, T. Chakraborty; “Extended Minkowski spaces, Zero norms, and 

Minkowski Hypersurfaces”. J. Math. Chem. 59 (2021) 1875-1879. 
 

21. R. Carbó-Dorca; “Generalized Scalar Products in Minkowski Metric Spaces”. J. 
Math. Chem. 59 (2021) 1029-1045. 

  

https://www.researchgate.net/publication/374860132_Whole_Perfect_Vectors_and_Fermat's_Last_Theorem?_sg%5B0%5D=pC8fSvu2zeVK2ubINwY8JHvXVVnUuh4v6_ZUS-1tDqC2-5mEbxqOEk3r4mYSAdGYgsxamYHbRWLbSQGwc6Kwz-clTpOD9ga-YO4IsGqE.8-6BD6PutLaRishC4kJanixTJoGz1smsjlYBihbGptqAUu8DGidPuQTgDajG6JKNvUQHP4M_Q2YPcYC9ALJr9g&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInBvc2l0aW9uIjoicGFnZUNvbnRlbnQifX0
http://dx.doi.org/10.32388/HFXUL0
https://www.researchgate.net/publication/375737504_Rational_Points_on_Fermat's_Surfaces_in_Minkowski's_N1_-Dimensional_Spaces_and_Extended_Fermat's_Last_Theorem_Mathematical_Framework_and_Computational_Results?_sg%5B0%5D=II3tjzqTaJdZe3iptx3p5ScoJaVmnpUgQXnh8X1xRAU6INuIJzBTJr6mfszw7578atpyODOvobuIJQtqXSwZupF9HYbZEraj3QTeBjAZ.jKJvA-jA9U4WMAg8xi1orsN-hV5mVdiZJDTVo6LXfXsYyJHSIekWGS5aSF2YaG63tDfnR7Rk9Idihpr6TQwVng&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI6InBhZ2VDb250ZW50In19
https://www.researchgate.net/publication/375737504_Rational_Points_on_Fermat's_Surfaces_in_Minkowski's_N1_-Dimensional_Spaces_and_Extended_Fermat's_Last_Theorem_Mathematical_Framework_and_Computational_Results?_sg%5B0%5D=II3tjzqTaJdZe3iptx3p5ScoJaVmnpUgQXnh8X1xRAU6INuIJzBTJr6mfszw7578atpyODOvobuIJQtqXSwZupF9HYbZEraj3QTeBjAZ.jKJvA-jA9U4WMAg8xi1orsN-hV5mVdiZJDTVo6LXfXsYyJHSIekWGS5aSF2YaG63tDfnR7Rk9Idihpr6TQwVng&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI6InBhZ2VDb250ZW50In19
https://www.researchgate.net/publication/375737504_Rational_Points_on_Fermat's_Surfaces_in_Minkowski's_N1_-Dimensional_Spaces_and_Extended_Fermat's_Last_Theorem_Mathematical_Framework_and_Computational_Results?_sg%5B0%5D=II3tjzqTaJdZe3iptx3p5ScoJaVmnpUgQXnh8X1xRAU6INuIJzBTJr6mfszw7578atpyODOvobuIJQtqXSwZupF9HYbZEraj3QTeBjAZ.jKJvA-jA9U4WMAg8xi1orsN-hV5mVdiZJDTVo6LXfXsYyJHSIekWGS5aSF2YaG63tDfnR7Rk9Idihpr6TQwVng&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI6InBhZ2VDb250ZW50In19
http://dx.doi.org/10.13140/RG.2.2.34181.52967

