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This research aimed to identify signals of polygenic adaptation in various
phenotypes – such as educational attainment, height, and schizophrenia –
by employing traditional Fst enrichment tests and polygenic score
differentiation tests like Qst and Qx. Fst tests offered inconclusive evidence
for over-differentiation in allele frequencies, while Qst tests indicated
significant differences for cognitive traits but not for height. The
investigation underscores that Fst underestimates the extent of phenotypic
differentiation due to additive genetic influences because it fails to account
for the covariance of allelic effects across populations. The research
demonstrates that Bird's (2021) analysis of the genetic IQ disparity between
Africans and Europeans is based on the incorrect assumption that Fst should
be equal to the phenotypic variance between populations (Qst), assuming all
between-group variation results from additive genetic effects.
The findings emphasize the importance of considering both Fst and Qst
values when assessing population genetic differentiation. They also stress
the importance of controlling for population-specific Linkage
Disequilibrium (LD) decay. Indeed, LD decay produced a pro-European bias
in polygenic scores, inflating the European mean compared to Africans and
East Asians. Finally, family based or multi-ancestry GWAS are needed to
account for other sources of bias such as population stratification and
ancestry-specific variants or effects. The currently available data does not
allow us to provide accurate estimates of the genotypic potential of ancestral
groups that are genetically very different from Europeans.

1. Introduction
In recent years, the genomic effects of natural
selection on polygenic traits, or traits that are
influenced by multiple genes, has become a major

area of study in human population genetics and
ecology (Berg and Coop, 2014; Berg et al., 2021; Field
et al., 2016; Gratten et al., 2014). These genomic
effects can provide insights into the evolutionary
history of populations and contribute to our
understanding of complex traits, such as

qeios.com doi.org/10.32388/HDJK5P 1

https://www.qeios.com/
https://doi.org/10.32388/HDJK5P


susceptibility to diseases and response to
environmental factors.

Technological advancements in genome sequencing
and novel analytic methods have significantly
advanced the field. One such method, the Fst
enrichment test, is used to measure divergent
selection pressure on single-gene traits. It involves
comparing Fst, which quantifies genetic variation
between populations, at the candidate gene with the
Fst of the background genetic variation, which is
mostly neutral. However, this method is limited in its
ability to detect divergent selection when the selection
signal is weak and spread across numerous loci, as is
often the case with polygenic traits (soft sweeps)
(Pritchard, 2010; Hollinger et al., 2019).

In contrast, Qst is employed to quantify phenotypic
differentiation between populations resulting from
genetic influences, particularly in the context of
polygenic traits under an additive model. Qst
quantifies the proportion of genetic variation in a trait
that exists between populations. For polygenic traits,
polygenic scores represent the additive genetic
variance, which is the sum of the effects of individual
genes. Qst can be calculated as the ratio of the
variation between populations for polygenic scores to
the overall variation of polygenic scores, which is the
sum of between-population variation and twice the
within-population variation.

According to the model developed by Le Corre and
Kremer (2012), allelic covariance, or the relationship
between allele frequencies and their effects on a trait,
can be broken down into two components: the
covariance of allele frequencies and the covariance of
allelic effects. In cases where polygenic traits are
under divergent selection among populations, alleles
with similar effects are driven to similar frequencies
within populations across multiple loci. This can
result in population differences in the mean of a
quantitative trait due to positive covariances – that is,
linkage disequilibrium – between distant variants
(Latta, 1998; Le Corre and Kremer, 2003; Ma et al.,
2010).

Factor analysis, a statistical method used to analyze
the structure of data, has been employed to measure
allelic covariance for traits such as educational
attainment and height (Piffer, 2013, 2016). Studies
have demonstrated that allelic covariance can help
explain the observed population differences in these
traits, emphasizing the importance of accounting for
allelic covariance when investigating the genetics of
polygenic traits under divergent selection.

The relationship between allelic effects and
frequencies, or the covariance of these variables, can
be considered as the between-population component
of linkage disequilibrium, which refers to the non-
random association of alleles at different loci (Storz
and Kelly, 2008; Ma et al., 2010). Selection can lead to
the accumulation of intergenic disequilibrium, a
phenomenon that can cause differentiation at the
gene level to become uncoupled from differentiation
at the trait level or in the polygenic score, which
represents the cumulative effect of multiple genetic
variants on a trait.

The Fst enrichment test (Guo et al., 2018; Bird, 2021)
compares genetic differentiation, measured as the
average Fst across genome-wide association study
(GWAS) single nucleotide polymorphisms (SNPs),
with that of other randomly matched SNPs. However,
this test is only capable of detecting one component of
genetic differentiation resulting from divergent
selection, specifically, the Fstq(Fst at GWAS
SNPs)/Fst(at neutral SNPs) ratio. In many cases (Le
Corre and Kremer, 2012), this component is small
compared to the allelic covariance across populations,
which can lead to false negatives – that is, incorrectly
identifying no significant difference when one
actually exists.

Studies have compared genetic differentiation at
neutral markers (which are not influenced by
selection) to differentiation at candidate genes (which
are potentially under selection) for various tree
species. These studies have found low levels of genetic
differentiation that are not significantly different
from those observed for neutral markers. However,
they have observed much higher levels of Qst (Eveno
et al., 2008; Pyhäjärvi et al., 2008; Heuertz et al.,
2006; Hall et al., 2007; Luquez et al., 2007; Derory et
al., 2010; Namroud et al., 2008).

Indeed, Qst can be large even if Fst is very small. This
situation occurs when there is little genetic
differentiation between populations at individual loci,
but the covariance in allele frequencies between
populations creates differences in the phenotypic
traits. For highly polygenic traits like height and
cognition, the genetic variance is expected to be
mostly attributable to the allelic covariance
component, as the significance of this component
increases with the number of loci implicated in the
trait (Kremer & Le Corre, 2012; Berg and Coop, 2014).

For traits controlled by 40 loci, the genetic
differentiation Fstq at GWAS SNPs becomes very close
to the neutral differentiation (Fst) and the gap
between Qst and Fst becomes large (Le Corre &
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Kremer, 2012). Conversely, there may be significant
levels of genetic differentiation by (Fst > 0.15) without
any variations in the population means (Qst = 0).

The Fst enrichment test has a technical limitation in
that it relies on randomly matched sets of SNPs,
which can result in different outcomes based on
filtering criteria. Additionally, high genetic
differentiation can occur without differences in
population means (Qst = 0). The ratio between the Qst
and Fst coefficients indicates the degree of decoupling
between Fstq and Qst, and it serves as a useful
indicator of selection for many polygenic trait
scenarios when the allelic covariance, denoted as θB,
is the largest component.

The covariance of allelic effects is related to
Cronbach's Alpha, a measure of internal consistency
commonly employed in psychometric scales.
However, Cronbach's Alpha is dependent on the
number of variables (i.e. SNPs) used, hence it is far
from being a perfect measure of cross-population LD.
The Cronbach´s Alpha coefficient will be used to
assess the reliability of polygenic scores.

As mentioned earlier, theoretical modeling predicts a
high level of decoupling between Qst and Fst for
highly polygenic traits under moderate to strong
divergent selection. Consequently, we predict that Qst
> Fst for the traits hypothesized to be under divergent
selection in humans.

Transferring polygenic scores across populations has
proven challenging in this field of research (Martin et
al., 2019). This issue arises from the variability in the
impact of causal variants and differences in linkage
disequilibrium patterns between populations
(Vilhjálmsson et al., 2015). These factors can lead to a
misalignment in non-GWAS populations between the
"true" causal variant and the "tag" variant (variants
linked to the causal variant that do not directly affect
the trait in question) identified through GWAS in
populations, typically of European descent. The effect
of different, mainly weaker, LD patterns is
particularly strong in individuals of African ancestry,
where the polygenic scores typically show
considerably less validity than they do for other
populations, such as South and East Asians (Fahed et
al., 2021). In fact, a polygenic score for educational
attainment had 50% reduction in effect size for
African Americans as compared to Europeans (Lee et
al., 2018), though it still retained some predictive
validity in a replication sample (Rabinowitz et al.,
2019). In an independent sample, there was a slightly
lower (~40%) effect size reduction (from 0.26 to 0.16)
(Fuerst et al., 2023).

Differential LD patterns are probably responsible for a
large portion of the limited trans-ethnic portability of
GWAS results, because the effects of the "true" causal
alleles remain relatively consistent across ancestries,
with a correlation of 0.95 across local ancestries
within African-European admixed individuals (Hou et
al., 2023). This paper employs a previously published
method (Piffer, 2021) to identify the influence of
population-specific LD patterns on polygenic scores,
and to demonstrate how eliminating the most-
impacted SNPs affects pairwise differences.

We aim to examine the potential influence of
divergent selection on height, educational attainment,
and mental disorders (such as schizophrenia) by
employing polygenic score overdispersion tests (Qst,
Qx). Qx measures the deviation of polygenic scores
from their distribution under genetic drift (Refoyo-
Martinez et al., 2021).

Qst will be calculated on all the traits to show the
amount of population differentiation and how this is
inflated by LD decay, whereas Qx will be computed
only on the traits that were found not to be
significantly biased by LD decay.

To investigate whether genetic factors contribute to
phenotypic differences between groups, we will
calculate the correlation between population-level
polygenic scores and average population IQ (used as a
proxy for education-related abilities), as well as
average height. A strong correlation between average
phenotype and polygenic scores is a signal of
divergent adaptation (Turchin et al., 2012).

Partial polygenic scores will be computed for the
ancestry components found in the Latino/Hispanic
gnomAD sample. This will help us examine if the
mixing of different ethnic groups happens randomly
or not, focusing on certain characteristics like
education. If individuals from one ethnic group don't
choose partners from other ethnic groups randomly,
especially considering certain characteristics, then
the average genetic scores for these characteristics
will differ from the scores of the ethnic groups they
partner with. For example, if individuals from group A
only choose highly educated partners from group B,
then the partial group B genetic scores related to
education among mixed individuals will be higher
than the overall genetic scores for education among
individuals of group B.

Moreover, it will allow us to estimate a “pure” Native
American polygenic score, instead of computing it
using mixed individuals from 1KG (e.g. PEL, MXL,
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PUR) or alternatively relying on small indigenous
samples from HGDP.

Finally, we show that Kevin Bird’s analysis (Bird,
2021) rests on the fallacious assumption that Fst = Qst
and that the value he computed from phenotypic data
is very close to the Qst value computed using
polygenic scores for education.

2. Materials and methods
Datasets: For polygenic score computation, we utilized
data from various GWAS studies. For instance, the
latest GWAS of height used a multi-ancestry sample
of 4 million individuals, identifying 7209 height-
associated loci from 12,111 genome-wide significant
regions, as defined by COJO P-value < 5×10-8 in
trans-ancestry GWAS meta-analysis, with +/- 35 kb
flanking regions (Yengo et al., 2022). Among these,
the SNPs (N= 3,779) that were significant in the GWAS
summary statistics file for all populations. The
educational attainment (EA) GWAS summary
statistics were obtained from four different studies,
including Lee et al. (2018), who used multi-trait
analysis of GWAS (MTAG) to identify SNP associations
with high predictive accuracy for EA3 polygenic score
computation. In addition, the latest GWAS of
educational attainment, which used a sample size of
~3 million individuals, was used for EA4 polygenic
score computation (Okbay et al., 2022). Furthermore,
summary statistics for sibship (within-family) GWAS
of education were retrieved from a recent meta-
analysis of sibship GWAS (Howe et al., 2022). A recent,
small Danish GWAS identified 4 significant SNPs
correlated with the first principal component of
school grades (E1), which captured overall school
performance and showed the strongest genetic
correlations with educational attainment (r g = 0.90;
SE = 0.03; P = 4.8 × 10 –198) and intelligence (r g =
0.80; SE = 0.03; P = 3.3 × 10–128) (Rajagopal et al.,
2023). The PGS from this study will be referred to as
DKedu (Denmark education).

Trubetskoy et al. (2022) conducted the latest
schizophrenia (SCZ) GWAS and identified 313
independent SNPs in the “primary” GWAS that were
significant at a genome-wide level (P < 5 × 10^-8)
with a linkage disequilibrium (LD) of r2 < 0.1. In the
extended GWAS (hereafter “combined”), primary
GWAS results were meta-analyzed with summary
statistics from deCODE genetics, identifying 342
linkage-disequilibrium-independent significant
SNPs.

This study was selected because it is the most recent
and because it is the first large-scale trans-racial
GWAS for schizophrenia, including individuals of
European, East Asian, Africa, and Amerindian
ancestry. Polygenic scores were computed using both
sets of SNPs (“primary” and “combined”). The PGS
derived from the larger combined ancestry GWAS had
more explanatory power than the one based on the
matched ancestry GWAS even for non-European
cohorts, likely due to the smaller sample size of the
latter. Hence, we did not use the ancestry-specific
GWAS summary statistics.

1000 Genomes (1000 Genomes Project Consortium,
2015), HGDP (Bergstrom et al., 2020) and gnomAD v3
(Chen et al., 2022) were used to compute allele
frequencies for different ethnic groups.

Bioinformatics: LD clumping was performed using
PLINK 2.0 on the GWAS summary statistics, with a p-
value threshold of 5×10-8, unless otherwise specified
(Chang et al., 2015). Allele frequencies were computed
by individual using PLINK (Chang et al., 2015), and
polygenic scores were computed using R (R Core
Team, 2021) for individuals in the four 1KG super-
populations (EUR, AFR, EAS, SAS), with AMR being
excluded due to their admixture.

Test of selection and genetic differentiation: The Fst
enrichment test (Guo et al., 2018), which calculates
the Fstq and Fst values (for sets of randomly matched
SNPs), will be performed to test for selection acting on
allelic differentiation. The decoupling between Qst
and Fst is caused by the allelic covariance (θB), which
is the predominant component of selection at highly
polygenic traits (Kremer & Le Corre, 2012). The
covariance of allelic effects and frequencies can also
be thought of as the between-population component
of linkage disequilibrium (Storz and Kelly, 2008; Ma
et al., 2010). Selection can lead to the accumulation of
intergenic disequilibrium, which decouples
differentiation at the gene and trait (or polygenic
score) levels. This happens when alleles with similar
effects are driven to similar frequencies within
populations across multiple loci. Qst was computed
using the formula Qst = σ²B / (σ²B + 2σ²W) (Leinonen
et al., 2013). Qst is defined as the level of genetically
based population differentiation in quantitative traits
(Li et al., 2019).

The total genetic variance is the variance of the
polygenic scores across all individuals in all
populations. The genetic variance within populations
is the average variance of the polygenic scores within
each population, weighted by the number of
individuals in each population.
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Qst is then calculated as the genetic variance among
populations divided by the sum of the genetic variance
among populations and twice the genetic variance
within populations.

As a test of divergent selection, GWAS beta (or OR,
odds ratio) were randomly flipped with a probability
of 0.5. The A1 and A2 alleles were randomly shuffled
with a probability of 0.5 (i.e., coin flip) to produce a
null distribution of polygenic scores and calculate
random Qst values.

Another measure of over-dispersion of phenotypes
(or polygenic scores) closely related to Qst, Qx, will be
calculated using the formula provided by Berg and
Coop (2014). Qx will be much smaller than 1 for traits
under stabilizing selection with the same optimum
across populations, whereas diversifying selection
will produce values larger than 1. P-values for the Qx
statistic were computed using a randomization
procedure based on randomizing the sign of the effect
size estimates of the GWAS SNPs as done in Refoyo-
Martinez et al. (2021).

For the Qst test, the Fst enrichment test and Qx,
control variants were matched to SNP variants using
vSampler (Huang et al., 2021). The effect of LD decay
on mean population polygenic scores will be tested
using the method described by Piffer (2021).

To investigate the variation in linkage disequilibrium
(LD) patterns across populations, the SNPs were
inputted into LDlink (Machiela and Chanock, 2015).
Variants within a +/- 500 Kb window of the query
variant that had a pairwise R2 value greater than 0.01
were downloaded, using CEU (Utah residents with
Northern and Western European ancestry), YRI
(Yoruba in Ibadan, Nigeria), and JPT (Japanese in
Tokyo, Japan) as reference populations.

The pairwise R2 values between the GWAS variant and
the linked variants were then computed for CEU, YRI
and JPT, and the correlation coefficient was used as a
measure of differential LD decay across these
populations compared to the query variant. A higher
correlation between the CEU and YRI (or JPT) R2
values indicated a lower level of trans-ethnic LD
decay. Genetic value scores (GVS) for CEU and YRI (or

JPT) were calculated for each GWAS SNP by
multiplying the frequency of the effect allele by the
GWAS effect size. Other populations of interest could
also be used to calculate genetic value scores in a
similar manner.

To compute the correlations between polygenic scores
and population IQ, we merged HGDP, 1KG and
gnomAD datasets and when there were overlapping
populations, the larger sample was retained. For
example, the ASW and FIN in 1KG (N = 113) were
replaced with the African American (N = 20,744) and
Finnish (N = 5,316) gnomAD samples. The resulting
dataset comprised 72 populations.

The data sources used for population average IQ and
national average height were as follows: Lynn and
Vanhanen (2012) for IQ data and NCD-RisC (2020) for
height data. In cases where specific groups did not
correspond to nations, alternative sources were
consulted. The height data was obtained from various
studies: Zeevi et al. (2019) for Ashkenazi Jews, Fryar et
al. (2021) for African Americans, Whites, and
Hispanics, Cacciari et al. (2006) for Italian regions, Lu
et al. (2022) for Chinese regions, and Corsini (2008)
for Sardinia. IQ data was sourced from Lynn & Cheng
(2013) for Chinese regions, Piffer & Lynn (2014) for
Italian regions, Dalliard (2017) for Hispanics, Malloy
(2014) for Vietnam, Bakhiet and Lynn (2014) for
Palestine, Lynn (2010) for Sardinia, and Shibaev &
Lynn (2017) for the Yakut population.

3. Results

ANOVA

Polygenic scores were calculated for individuals in the
four 1KG super-populations.

One-way ANOVA was run using the GWAS summary
statistics for EA3, EA4, SCZ and Height 2022. Results
revealed statistically significant differences between
the group-level polygenic scores (Table 1), which
suggest there are genetic differences between the
populations studied that are associated with the traits
examined.

qeios.com doi.org/10.32388/HDJK5P 5

https://www.qeios.com/
https://doi.org/10.32388/HDJK5P


GWAS p-value Omega²

EA3 0.00e+00 0.607

EA4 0.00e+00 0.956

Sibling EA 5.65e-40 0.089

Schizophrenia 0.00e+00 0.619

Height 2.16e-107 0.220

Sibling Height 8.48e-128 0.255

Table 1.

The mean and distribution of individual scores can be
visualized in the boxplots (Suppl. Figures 1a, b, c and
2a, b)

Tests of divergent selection

2.2. Randomization

Table 2 reports the results of the computation of Qst,
random Qst, and Fst for the four 1KG
superpopulations as well as Fstq (for random and
GWAS SNPs, respectively). The distribution of random
Qst and Fst values are visualized in Figures 1 and 2,
respectively. Random Qst was calculated by randomly
shuffling effect and non-effect alleles, and the
shuffling process was repeated 1000 times to generate
random Qst values. The Z score and p-value for
Qst/Qst_random and Fstq/Fst are also reported.

LD clumping was performed on the SNPs, using two
different R2 thresholds: 0.1 and 0.01. For
Schizophrenia and Height this was not necessary
because there were no SNPs within the same LD block.

For EA3, EA4, Schizophrenia, and Height GWASs, the
real Qst values were compared to their respective
random Qst and Fst values. EA3 had Qst values of
0.435 (LD filter 0.1), 0.582 (LD 0.1), and 0.465 (LD
0.01), and all were significantly different from their
respective random Qst and Fst values. EA4 had a Qst
value of 0.91 (LD filter 0.1) and 0.864 (LD filter 0.01),
and both were significantly different from their
respective random Qst and Fst values. Schizophrenia
had a Qst value of 0.406 (LD filter 0.1), which was
significantly different from its respective random Qst
and Fst values. Height 2022 had a Qst value of 0.123,
which was not significantly different from its
respective random Qst and Fst values. On the other
hand, the within family EA SNPs had Fst and Qst
values that were not significantly different from
random values.

The ratio between Qst and Fst reveals the degree of
decoupling between phenotypic and genotypic
differentiation. The Qst/Fst values are generally high
(with the exception of height) and match theoretical
predictions of strong divergent selection on traits
controlled by a large number of loci (Kremer & Le
Corre, 2012).
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GWAS LD filter* Qst Qst_random Fstq Fst Z score; p (Qst/Qst_random) Z score; p (Fstq/Fst) Qst/Fst

EA3 0.1 0.582 0.08 0.099 0.093 7.97; 0.001 2.96; 0.003 6.25

EA3 0.01 0.465 0.077 0.098 0.095 6.3; 0.001 1.24; 0.11 4.89

EA4 0.1 0.91 0.068 0.086 0.091 14.26; 0.001 -3.54; 0.95 10

EA4 0.01 0.864 0.067 0.083 0.093 14.22; 0.001 -5.84; 0.96 9.29

EA sibling NA 0.046 0.057 0.06 0.074 -0.22; 0.483 -1.95; 0.98 0.62

SCZ NA 0.406 0.087 0.118 0.096 4.62; 0.004 4.7; 0.001 4.23

Height NA 0.123 0.096 0.109 0.095 0.31; 0.270 10.84; 0.001 1.29

Height sibling 0.1 0.250 0.091 0.093 0.088 2.09; 0.05 1.398; 0.075 2.84

Table 2. Global Qst and Fst values for GWAS and neutral SNPs

*NA values indicate that LD filtering was not possible
because SNPs in the GWAS summary file were LD free.

Figure 1. Qst with reshuffled alleles and betas for
polygenic scores

Figure 2. Fst enrichment test

Pairwise differences

The results of Fst analysis for two different population
pairs (EUR-EAS and EUR-AFR) are presented in Table
3. The Fst values ranged from 0.081 to 0.149,
indicating moderate genetic differentiation among
populations.

To assess the significance of the Fst values, we
compared them with the random Fst values generated
by permutation tests. The Z score (Fstq/Fst) and p-
values are also reported in Table 3.
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For the EUR-EAS population pair, the Fst values for
the polygenic scores EA3 and EA4 (LD filter 0.1) were
0.094 and 0.081, respectively. The corresponding
random Fst values were 0.087 and 0.084, and the Z
scores (Fst/Fst random) were 2.87 (p = 0.003) and
-1.79 (p = 0.55), respectively. These results suggest
significant genetic differentiation between the EUR
and EAS populations for the EA3 score but not for the
EA4 score.

For the EUR-AFR population pair, the Fst values for
schizophrenia and height were 0.096 and 0.149,
respectively. The corresponding Fst random values
were 0.089 and 0.11, and the Z scores (Fst/Fst random)
were 5.23 (p = 0.001) and 5.23 (p = 0.001), respectively.
These results suggest significant genetic
differentiation between the EUR and AFR populations
for both traits.
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GWAS LD filter EUR - EAS EUR - AFR

    Fstq Fst random Z (Fstq/Fst random); p  Fstq Fst random Z score (Fstq/Fst random); p

EA3 0.1 0.094 0.087 2.87; 0.003 0.119 0.107 4.07; 0.001

EA4 0.1 0.081 0.084 -1.79; 0.55 0.101 0.115 -3.51; 0.975

Schizophrenia  NA 0.096 0.089 1.17; 0.11 0.149 0.112 5.23; 0.001

Height NA 0.094 0.088 3.56; 0.001 0.129 0.109 10.27; 0.001

Sibship Height 0.1 0.087 0.089 -0.42; 0.638 0.132 0.112 2.96; 0.001

Table 3. WC pairwise Fst for GWAS and control SNPs*.

*sibs= within-family (sibship) GWAS. LD indicates the
LD-clumping R2 threshold value.
**NA values indicate that LD filtering was not possible
because SNPs in the GWAS summary file were LD free.

Pairwise Qst values were calculated for two population
pairs: EUR-EAS and EUR-AFR. The Qst values were
computed using both real and shuffled beta weights,
These values are reported in Table 4.

For the EUR-EAS population pair, the Qst value for the
EA3 PGS was 0.044 based on real Beta weights, and
0.05 based on shuffled Beta weights. The Z score
comparing these values was -0.1 with a p-value of
0.36. The Qst value for the EA4 PGS was 0.456 based
on real beta weights, and 0.045 based on shuffled beta
weights. The Z score comparing these values was 7.6
with a p-value of 0.001.

The Qst value for the height PGS was 0.192 based on
real Beta weights, and 0.057 based on shuffled beta
weights. The Z score comparing these values was 1.92
with a p-value of.059.

For the EUR-AFR population pair, the Qst value for
Schizophrenia was 0.568 based on real beta weights,
and 0.088 based on shuffled beta weights. The Z score
comparing these values was 4.73 with a p-value
of.001. The Qst value for the EA3 PGS was 0.619 based
on real beta weights, and 0.062 based on shuffled beta
weights. The Z score comparing these values was 6.83
with a p-value of.001.The Qst value for the EA4 PGS
was 0.942 based on real Beta weights, and 0.057 based
on shuffled beta weights. The Z score comparing these
values was 12.58 with a p-value of.001.

The Qst value for the polygenic score height was 0.013
based on real beta weights, and 0.076 based on
shuffled beta weights. The Z score comparing these
values was -0.67 with a p-value of.698.

Overall, these results provide evidence of divergent
selection for some polygenic scores, particularly for
EA3 and SCZ in the EUR-AFR and EA4 in the EUR-EAS
and EUR-AFR population pair.
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EUR - EAS EUR - AFR

Real Qst Random Qst Z; p Real Qst Random Qst Z score; p

EA3*  0.044 0.050 -0.10; .360 0.619 0.062 6.83; .001

EA4 * 0.456 0.045 7.60; .001 0.942 0.057 12.58; .001

EA sibling 0.001 0.027 -0.72; .830 0.071 0.052 0.29; .257 

Schizophrenia  0 0.050 -0.76; .911 0.568 0.088 4.73; .001

Height  0.192 0.057 1.92; .059 0.013 0.076 -0.67; .698

Sibs Height 0.091 0.048 0.72; 0.179 0.166 0.079 1.01; 0.151

Table 4. Qst pairwise values, computed using real and reshuffled beta weights.

*LD-clumping: R2= 0.1

Reliability of population-level polygenic scores

Table 5 reports the Cronbach's alpha of EA3, EA4,
schizophrenia, and height. The values of Cronbach's
alpha are reported for 33 populations for each genetic
trait. In this context, the higher the Cronbach's alpha,
the more reliable the PGS is across the 33 populations.

The table demonstrates that the reliability of
population-level PGS varies across different genetic
traits. EA3, EA4, and schizophrenia have relatively
high reliability, while height and DKedu have
moderate to low reliability. Within Family (WF) EA, on
the other hand, exhibits a negative relationship,
warranting further investigation.
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GWAS Cronbach’s Alpha (33 pops) # SNPs

EA3* 0.935 1695

EA4* 0.997 3734

Schizophrenia 0.835 342

Height 0.484 3772

Sibs EA -0.604** 115

DKedu 0.494 4

Table 5. Cronbach's Alpha for EA3, EA4, SCZ and Height

*LD clumping= R2 0.1
**p< 5*10^-5

Controlling for LD decay

We investigated the impact of LD decay on trans-
ethnic polygenic score differences for four different
polygenic scores (EA3, EA4, SCZ and height) across
two population pairs: Europeans (CEU) and Africans
(YRI), and Europeans (CEU) and East Asians (JPT). LD
decay was measured by calculating the correlation
coefficient (R2) between CEU and YRI or CEU and JPT
R2 values across the GWAS SNPs. The average R2 value
between CEU and YRI was found to be between 0.59
and 0.78, indicating the presence of moderate LD
decay. LD decay for EUR-EAS was lower, with R2
ranging from 0.72 to 0.75. The GVS (“genetic value
score” or weighted allele frequency) difference
between CEU and YRI or CEU and JPT was then

computed by multiplying the effect allele frequency by
the GWAS beta. The correlation between the GVS
difference and the amount of LD decay is reported in
Table 6. The results are visualized in Figure 3. They
show that LD decay did not significantly impact the
trans-ethnic polygenic score difference for most of
the polygenic scores and population pairs. However,
for the EUR-AFR EA4 and EUR-EAS EA4 and height
EUR-EAS pairs, we observed a significant negative
correlation between the GVS difference and the
amount of LD decay. A negative correlation between
GVS difference and lack of LD decay implies that LD
decay is inflating the European PGS relative to the
other population, as SNPs with lower LD decay have
smaller PGS differences.

These findings suggest that the impact of LD decay on
trans-ethnic polygenic score differences may vary
across different polygenic scores and population
pairs.

qeios.com doi.org/10.32388/HDJK5P 11

https://www.qeios.com/
https://doi.org/10.32388/HDJK5P


  r* r x GVS difference p

EUR-AFR EA3 0.59 0.02 0.47

EUR-EAS EA3 0.72 -0.0001 0.37

EUR-AFR EA4 0.588 -0.059 0.005

EUR-EAS EA4 0.716 -0.083 0.002

EUR-AFR Height 0.628 0.016 0.385

EUR-EAS Height 0.75 -0.046 0.016

EUR-AFR SCZ 0.594 -0.015 0.8

EUR-EAS SCZ 0.725 -0.104 0.074

Table 6. LD decay and correlation with GVS difference.

*Average Pearson’s r correlation coefficient between the
CEU and other population (YRI or JPT) R2 values across
the GWAS SNPs

Figure 3. Correlation between LD Decay and GVS
difference

Selecting low LDD SNPs

To select SNPs with low LD decay for the EUR-AFR
and EUR-EAS pairs, a threshold of r = 0.8 was chosen
and applied separately to each population pair.
Because LD decay patterns vary across population
pairs, different SNPs will belong to the low LD group
in each pair of populations. Hence retaining a single
set of SNPs (corresponding to the intersection of the
different sets) would result in a much smaller number
of SNPs, reducing reliability. Cohen’s d values for the
group differences in polygenic scores were compared
to those for the full set of SNPs and are reported in
Table 7.
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  Cohen’s d raw Cohen’s d LDD adjusted

EUR-AFR EA3 3.17 1.05

EUR-EAS EA3 -1.12 -1.45

EUR-AFR EA4 10.12 2.2

EUR-EAS EA4 1.55 -0.5

EUR-AFR height 0.09 0.81

EUR-EAS height 1.45 0.42

Table 7.

Qx test

The Qx test (Berg and Coop, 2014) was carried out on
EA3, SCZ, the sibship EA and height PGS. EA4 was
omitted from the analysis because it was found to be

strongly biased by differential LD-decay. The values
of the Qx for the GWAS effect sizes and the SNPs with
randomly flipped effect sizes are shown in table 8.
There is evidence for overdispersion of EA3 and
Height polygenic scores (p= 0.001 and 0.035,
respectively) but not for the sibship-derived EA PGS.
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  Qx Qx neutral p

EA3 52.82 4.63 0.001

EA sibling 3.35 3.84 0.490

Schizophrenia 14.08 5.14 0.027

Height 13.31 5.08 0.035

Height sibling 10.38 4.81 0.071

Table 8. Qx test results

Correlation with phenotypic means

The correlations between the average
cognitive/educational polygenic scores and average
population IQ were 0.87, 0.78 for EA3 and EA4,
respectively (Figures 5,6).

Figure 5. Correlation between average IQ and EA3

Figure 6. Correlation between average IQ and EA4

As a measure of discriminant validity, we correlated
the height PGS to average IQ, obtaining a correlation
of circa 0 (Figure 7).
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Figure 7. Correlation between average IQ and height
polygenic scores

Conversely, the correlation between the Height PGS
and average height was.74 (Figure 8).

Figure 8. Correlation between average height and
height polygenic score

To test the discriminant validity of the cognitive PGS,
it was correlated with average population height,
yielding positive correlations of 0.54 and 0.51 for EA3
and EA4.

Both EA3 and EA4 were correlated to absolute latitude
(r = 0.64 and 0.60, respectively). A multiple linear
regression was performed with average height as the
dependent variable and Height PGS + EA3 + Latitude
as predictors. The standardized betas were 0.62 and
0.44 for the Height and EA3 PGS, respectively (Table
10).
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  Standardized Beta

(Intercept) 0.00 (0.08)

Height PGS 0.62*** (0.10)

EA3 0.44*** (0.12)

Latitude 0.08 (0.13)

R2 0.82 (N=29)

Table 10. Regression of average height on Height PGS, EA3 and Latitude.

All continuous predictors are mean-centered and scaled
by 1 standard deviation. *** p < 0.001; ** p < 0.01; * p <
0.05.

These findings indicate that both the height and EA3
PGS are valid predictors of average height.

Both EA3 and latitude were significant predictors of
average IQ (Table 11).
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  Standardized Beta (S.E.)

(Intercept) 0.00 (0.08)

EA3 0.73*** (0.11)

Latitude 0.26* (0.11)

R2 0.83 (N=27)

Table 11. Regression of average IQ on EA3 and latitude.

All continuous predictors are mean-centered and
scaled by 1 standard deviation. *** p < 0.001; ** p <
0.01; * p < 0.05.

Replication: School performance GWAS (2023)

The scholastic performance PGS (DKedu) was strongly
correlated to EA3 and EA4 (Figure 9).

Figure 9. Heatmap of cognitive PGS

Partial PGS

Partial polygenic scores were computed for the three
local ancestry components (Amerindian, African,
European) of the Admixed American/Latino
population in gnomAD. This ethnic group is extremely
heterogeneous, consisting of 5% of individuals who
derive their genetic ancestry primarily from a single
continental population, 60% from two continental
populations, and 35% with three continental
populations well-represented within their genome.
The allele frequencies for the three local ancestry
groups were made available by gnomAD in a VCF file.
(https://gnomad.broadinstitute.org/news/2021-12-
local-ancestry-inference-for-latino-admixed-
american-samples-in-gnomad/).

The partial and full PGS are very similar (Figure 10).
The partial AFR PGS is lower than the full PGS because
the latter is computed using the African/African
American sample in the gnomAD dataset, which is
mixed with Europeans, whereas the local ancestry is
“purely” African.
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Figure 10. Partial and full polygenic scores in the gnomAD Latino population.

Discussion
Traditional tests of population genetic differentiation
based on individual loci (Fst enrichment test) offered
mixed evidence for over-differentiation in allele
frequencies (Tables 2 and 3, Figure 2). For the global
test comprising four superpopulations, EA3, the test
attained significance only without LD clumping and
with LD clumping using a threshold of R2 = 0.1. The
results became non-significant with a stricter LD
threshold of 0.01. Conversely, there was evidence of
population under-differentiation for EA4 because the
GWAS Fst values were significantly lower than the
average Fst of the random SNPs. On the other hand,
SCZ and height had significantly higher Fst than the
average Fst of random SNPs.

Tests of polygenic score differentiation such as Qst in
contrast yielded significant results for the cognitive
traits but not for height (figure 1, table 2, 4). Qst
values of polygenic scores were significantly higher
than those obtained from reshuffling the effect alleles.

Qst indicates the proportion of phenotypic variance
accounted for by additive genetic components
between populations to the total variance. Qst values

ranged from 0.12 for height to 0.58 for EA3 and 0.91
for EA4, indicating that a substantial proportion of
variation in polygenic scores is found between
populations. More importantly, Fst underestimates
the amount of phenotypic differentiation due to
additive genetic effects, because it is a single-gene
test that does not take into account the covariance of
allelic effects between populations, which can cause
large differences in phenotypic means even with low
Fst values. Kremer and Le Corre (2012) showed that
the genetic differentiation at the level of individual
loci (Fst) does not necessarily correspond to the
genetic differentiation underlying phenotypic traits
(Qst). This is because Qst considers the additive
genetic variance between populations, while Fst only
measures the allele frequency differences.

Consequently, Bird's assumption (Bird, 2021) that the
Fst value estimated from GWAS-identified SNPs
should equal the phenotypic variance if all between-
group variation is due to additive genetic effects is
theoretically flawed. His oversight when accounting
for cross-population LD leads him to equate
phenotypic (IQ) group differences with Fst, and to
conclude that genetic differentiation cannot explain
between-group variance in IQ scores because the Fst
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value is much lower than the phenotypic Fst (Qst)
calculated using his equation 2.

Bird calculated phenotypic Fst values ranging from
0.51 to 0.6, based on an estimated EUR-AFR difference

of 30.8 IQ points and h2= 0.35 or 0.5 and observed that
these are much higher than the EUR-AFR actual Fst
(0.11), which would instead translate to a 4.7 - 8.5 IQ
points EUR-AFR difference.

In fact, as shown in the introduction, Qst (erroneously
named “phenotypic Fst” by Bird) is often much
higher than Fst as shown by mathematical modeling
(Kremer and Le Corre, 2013) and empirical results
(Berg and Coop, 2014). The equivalence between Qst
and Fst (Qst = Fst) is expected under neutrality, and
higher values of Qst (Qst > Fst) indicate divergent
selection (Leinonen et al., 2013).

Bird’s failure to acknowledge the difference between
Qst and Fst leads him to expect Qst = Fst and to
discard deviations from this equivalence as due to
environmental factors or erroneous estimates of
average IQ (Bird, 2021).

We derived a Qst value of 0.61 for EA3 concerning the
EUR-AFR difference, which aligns with Bird's
estimate of Qst derived from phenotypic IQ
(erroneously misinterpreted as Fst by Bird) of 0.6.
Indeed, Pst (“pseudo Qst” or the phenotypic
equivalent of Qst) = Qst when environmental variance
is zero (Saether et al., 2007).

Divergent selection often occurs in two phases:
initially capturing advantageous allelic associations at
various loci in distinct populations, followed by
targeting changes in allelic frequencies. This supports
the idea that allelic associations contribute to rapid
genetic divergence between populations more
effectively than changes in allelic frequencies. The
disparity between Qst and Fst becomes more
pronounced in traits governed by a large number of
loci experiencing strong divergent selection (Kremer
& Le Corre, 2012), and this effect is expected to be
significant for traits such as educational attainment,
schizophrenia, and height. This in turn reinforces the
findings of Berg and Coop (2014) that the power to
detect population differentiation in polygenic scores
stems almost entirely from the LD-like component,
and the differentiation at the individual loci (i.e. Fst)
has very little impact. Indeed, the Qst values were
much higher than the Fst values for the neutral
alleles, with Qst/Fst ratios of 6, 10 and 4 for EA3, EA4
and SCZ respectively (Table 2). Phenotypic traits with
Qst significantly larger than the Fst estimated from
neutral markers are considered as being under local

adaptation, whereas Qst = Fst is the expectation under
neutrality (Leinonen et al., 2013). Moreover, Qst was
much higher than Fst estimated from GWAS SNPs.
This “decoupling” is caused by the allelic covariance
component (Kremer and Le Corre, 2012; Berg and
Coop, 2014).

In fact, the polygenic selection test carried out by Bird
(2021) that compared the squared difference of
polygenic scores to a null distribution, yielded highly
significant results, showing a large EUR-AFR
divergence. The same test run using within-family
effect sizes failed to reach statistical significance.
However, this is likely due to the small sample size
employed in within-family GWAS, much smaller than
the population GWAS (N = 55K vs 1 and 3 million for
EA3 and EA4, respectively).

Remarkably, none of the within-family SNPs reached
statistical significance (after correction for multiple
testing) and only 15 SNPs passed the p< 5*10^-6 filter
after clumping with LD < 0.1. The null effect of
within-family SNPs was evident both from the Fst
enrichment test (Table 2) and the tests of polygenic
score overdispersion such as Qst and Qx (Tables 4 and
5, respectively). This lack of validity was corroborated
by the negative Cronbach's Alpha values (Table 6).

However, the significant overdispersion of education-
related polygenic scores derived from the traditional
between-family GWAS (Lee et al., 2018) was
confirmed by the Qx test, which achieved values much
higher than the null expectation (table 5). The Qx
values for the height PGS also barely exceeded random
expectations (p = 0.035).

SCZ had Qst values significantly higher than chance
expectation (Qst = 0.57), but this was restricted to the
EUR-AFR difference, with no differentiation between
EUR-EAS (Table 4). This replicates earlier findings of
a strong association between schizophrenia PGS and
African ancestry (Curtis, 2018). The mean EUR-AFR
difference was 10 times as high as the mean difference
between European schizophrenia cases and controls.

Although there were cross-population differences in
LD patterns, they did not significantly affect most of
the polygenic score differences (Table 7).
Nonetheless, LD decay did cause the European mean
to be inflated compared to Africans and East Asians
(Table 8). This was evident in the significant negative
correlation between the GVS difference and the
amount of LD decay (Figure 4). A similar effect was
observed for the height PGS for the EUR-EAS
difference. Moreover, when only the SNPs with low LD
differences (r > 0.8) were selected, East Asians had
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higher EA4 than Europeans (Cohen´s d= -0.5 vs 1.55),
and the gap in the height PGS was reduced (d = 0.42 vs
1.45). Controlling for LD decay also decreased the
EUR-AFR gap in EA4, with the value of Cohen’s d
decreasing from 10 to 2 and in EA3 from 3.17 to 1.05. It
is also likely that the extremely high EA4 global Qst
value (0.91) was inflated by LD decay.

In all cases except for the height EUR-AFR difference,
the bias due to varying LD patterns favored the
European population. This bias results from the
frequency distribution of non-causal SNPs. Although
exploring the origins of this bias is beyond the scope
of this study, it could be explored in future research.

The partial polygenic scores calculated using the
admixed Latino population revealed a similar pattern
to those computed using relatively admixed
individuals from gnomAD and 1KG (Figure 10). The
low score obtained by the Amerindian genetic
component replicated earlier results by Piffer (2013),
who observed a discrepancy between the relatively
low genetic distance of Native American from East
Asians and the large gap in polygenic scores (Piffer,
2013). This finding is supported by the results of
admixture analyses of different American ethnic
groups, which found that Amerindian ancestry is
about equally negatively associated as African
ancestry with general cognitive ability among African,
Hispanic, and other American subsamples (Fuerst, Hu
and Connor, 2021).

There was a strong correlation between the new
polygenic score for educational attainment (EA4) and
the old (EA3). However, the former had a weaker
correlation with IQ (r = 0.78 vs 0.87) because it had a
strong European bias caused by differences in LD
patterns.

Remarkably, a new polygenic score of school grades
showing strong genetic correlations with educational
attainment (rg = 0.90) and intelligence (rg = 0.80)

(Rajagopal et al., 2023) was highly correlated to EA3
and EA4 (r = 0.91 and 0.76, respectively), replicating
the cross-population validity of education PGS (Piffer,
2021).

The EA3 and EA4 PGS were both correlated to latitude
at r = 0.6. A regression model showed that both EA3
and latitude were significant predictors of average IQ
(Table 11). This suggests that higher latitude may
confer an advantage in cognitive performance via
environmental factors, such as limiting the
detrimental effects of heat (Piil et al., 2020).

On the other hand, both EA3 and the height PGS
predicted average height (Table 10). This suggests

that cognitive abilities have an impact on average
height by improving economic conditions.

Finally, we introduced Cronbach’s alpha (a measure
borrowed from psychometrics) to assess the
reliability of population polygenic scores. In
psychometrics, tests are supposed to gauge the same
underlying construct (like anxiety, depression,
intelligence, and so on). If the test is reliable, then we
would expect all the items on the test to correlate
highly with each other – since they all aim to measure
the same thing. Cronbach's alpha quantifies the
degree of intercorrelation among test items. It ranges
from 0 to 1. A higher Cronbach's alpha – generally,
above 0.7 – indicates good internal consistency,
meaning the items on the test are all measuring the
same underlying construct.

When applied to population-level polygenic scores,
the strength of the coefficient depends on the
magnitude of cross-population LD (“covariance of
allelic effects”) and the number of SNPs. However,
instead of the underlying construct, it is the divergent
selection pressure that causes the inter-correlation
between the items (i.e. frequency of the GWAS effect
allele weighted by the effect size).

In summary, this study investigated the relationship
between genetic differentiation in various traits, such
as educational attainment (EA3 and EA4), height, and
schizophrenia, using traditional Fst enrichment tests
and polygenic score differentiation tests such as Qst.
The results revealed mixed evidence for over-
differentiation in allele frequencies using Fst tests,
while Qst tests yielded significant results for cognitive
traits but not for height. The study also highlighted
that Fst underestimates the amount of phenotypic
differentiation due to additive genetic effects, as it
does not account for the covariance of allelic effects
between populations. This finding calls into question
Bird's (2021) assumption that Fst should equal the
phenotypic variance if all between-group variation is
due to additive genetic effects.

The study's findings emphasize the importance of
considering both Fst and Qst values in assessing
population genetic differentiation, as well as the need
to account for the covariance of allelic effects between
populations when interpreting results. The results
also demonstrate that allelic associations contribute
to rapid genetic divergence between populations more
effectively than changes in allele frequencies. This
phenomenon is particularly pronounced in traits
governed by a large number of loci experiencing
strong divergent selection, such as educational
attainment, schizophrenia, and height.
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The results of the selection tests are greatly affected
by the Genome-Wide Association Studies (GWAS)
used to derive polygenic scores. This influence can be
discerned from the disparities observed when
comparing different versions of these studies, such as
between EA3 and EA4, or when contrasting GWAS
based on sibling data versus those relying on broader
population data.

However, it is currently unfeasible to account for all
possible sources of bias and inaccuracies when
estimating these polygenic scores on a population-
wide level. For instance, potential sources of bias
might stem from the lack of representation of diverse
populations in the GWAS databases, which primarily
contain data from people of European ancestry.
Another source of error can be the complex nature of
many traits that are influenced by a multitude of
genes interacting in ways that we do not fully
understand yet.

Moreover, population-based GWAS results are
confounded by population stratification, assortative
mating and indirect genetic effects. Within-family
genetic association estimates are relatively free from
these sources of biases, but the studies published so
far rely on small sample sizes that lack the power to
detect meaningful associations. For example, the
sibship EA and Height GWAS relied on sample sizes of
150K and 129K individuals (Howe et al., 2022),
respectively, much smaller than the population based
GWAS sample sizes of 3 and 5 million individuals
(Okbay et al., 2022; Yengo et al., 2022). This results in
few or no GWAS-significant SNPs, and the lack of
GWAS significant SNPs affects between population
genetic estimates more strongly than within-
population genomic prediction.

Therefore, the findings drawn from these tests should
be viewed as provisional and subject to alteration.
This is because new GWAS, incorporating more
diverse population samples and using more advanced
methodologies, will continue to be conducted. As we
refine these techniques and broaden the scope of our
research, our understanding of polygenic scores and
their implications will evolve, and this will likely
change the outcomes of the selection tests.

Supplementary Figures

Figure 1a. EA3 superpopulations PGS

Figure 1b. EA4 superpopulations PGS
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Figure 2s. Within family EA superpopulations PGS

Figure 3s. SCZ superpopulations PGS

Figure 4s. Height superpopulations PGS

Figure 5s. Sibship height superpopulations PGS
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