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Abstract 

A naïve discussion of Fermat’s last theorem conundrum is described. The 

present theorem’s proof is grounded on the well-known properties of sums 

of powers of the sine and cosine functions, the Minkowski norm definition, 

and some vector-specific structures. 
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1. Introduction 

 

Time has passed since the Wiles 100-page demonstration of Fermat’s last 

theorem [1]. Meanwhile, our laboratory has been working on several 

computational aspects of this mentioned theorem. These studies were 

focused on extending Fermat’s theorem to larger dimensions and involving 

powers of higher natural numbers [2-5].  

Still, as far as the present author knows, it seems that no new alternative 

proofs of the theorem exist, conforming to the handwritten note left by 

Fermat about a supposedly straightforward proof of the famous initial self-

formulated theorem. 

The present paper describes a simple proof of Fermat’s last theorem. 

 

2. Whole perfect vectors 

 

In three-dimensional vector semispaces, see references [6-10], constructed 

on the non-negative real set: 𝑉3(ℝ+), one can define a (whole) perfect vector: 

⟨𝐩| = (𝑎, 𝑏, 𝑟), see for more information references [10,12], when the vector 

elements meet the following property: 
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⟨𝐩| ∈ 𝑉3(ℝ+) ∧  {𝑎, 𝑏, 𝑟} ⊂ ℝ+ ∧  0 < 𝑎 < 𝑏 < 𝑟.          

(1) 

In such a semispace, the perfect vectors can be collected into a subset 𝐏 of 

the space: 𝑉3(ℝ+), that is: ∀⟨𝐩| ∈ 𝐏 ⊂ 𝑉3(ℝ+). 

 

3. Minkowski n-th order norms 

 

In the perfect vector subset 𝐏, one can define a Minkowski norm of n-th 

order as follows: 

∀⟨𝐩| = (𝑎, 𝑏, 𝑟) ∈ 𝐏: 𝑀𝑛(⟨𝐩|) = 𝑎𝑛 + 𝑏𝑛 − 𝑟𝑛.          

(2) 

Thus, in the subset 𝐏, one can suppose contained a vector set with a Banach-

Minkowski metric associated with a metric vector: ⟨𝐦| = (1,1, −1). 

A recent general study of Minkowski metric spaces discussed such vector 

space structure; references [12-14]. 

For the sake of coherence, a 3-dimensional space with a defined Minkowski 

norm can be named as (2+1)-dimensional, for example: 𝑉(2+1)(ℕ), notes a 

natural semispace where one has defined a Minkowski metric, like in the 

equation (2). 

 

4. Homothecy and original vector 

 

The homotheties of an original perfect vector ⟨𝐩| are defined as: 

∀⟨𝐩| ∈ 𝐏 ∧ ∀𝜆 ∈ ℝ+: ⟨𝐡| = 𝜆⟨𝐩| = (𝜆𝑎, 𝜆𝑏, 𝜆𝑟) ∈ 𝐏.         

(3) 

The Minkowski norms of the homotheties ⟨𝐡| of perfect vectors are easily 

related to the ones associated with a perfect origin vector: 

𝑀𝑛(⟨𝐡|) = (𝜆𝑎)𝑛 + (𝜆𝑏)𝑛 − (𝜆𝑟)𝑛 = 𝜆𝑛(𝑎𝑛 + 𝑏𝑛 − 𝑟𝑛) = 𝜆𝑛𝑀𝑛(⟨𝐩|).      

(4) 

This above equation corresponds to the fact that a vector with a Minkowski 

norm-specific value has the homothetic vector norms as the original vector 

one multiplied by a factor equivalent to the homothecy parameter, powered 

to the order of the norm. 
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5. Extended Fermat vectors 

 

A WP vector can be named as an extended Fermat vector when its second-

order Minkowski norm is null, that is: 

∀⟨𝐟| ∈ 𝐅 ⊂ 𝐏: 𝑀2(⟨𝐟|) = 0 ⇒ 𝑎2 + 𝑏2 − 𝑟2 = 0 ↔ 𝑎2 + 𝑏2 = 𝑟2.       

(5) 

 

6. Natural Fermat vectors 

 

As natural numbers are a subset of non-negative real numbers: ℕ ⊂ ℝ+, there 

can exist within the extended Fermat vectors subset, some natural Fermat 

vectors with elements belonging entirely to the natural number set. If this is 

the case, they can be called shortly true natural Fermat vectors (of second 

order or order 2) and symbolize their subset with 𝐓, that is: 

∀⟨𝐭| = (𝑎, 𝑏, 𝑟) ∈ 𝐓 ⊂ 𝐅 ∧ {𝑎, 𝑏, 𝑟} ⊂ ℕ: 𝑀2(⟨𝐭|) = 0.        (6) 

The so-called Pythagorean triples are a nickname for true Fermat vectors (of 

second order). 

 

7. Rational Fermat vectors 

 

Any true Fermat vector can be transformed into a vector with elements 

defined within the non-negative rational number set: ℚ+ ⊂ ℝ+. Such a 

possibility is easy to consider, as it can be written: 

∀⟨𝐭| = (𝑎, 𝑏, 𝑟) ∈ 𝐓: 𝑀2(⟨𝐭|) = 0 ⇒ 

𝑎2 + 𝑏2 = 𝑟2 ⇒ (
𝑎

𝑟
)

2
+ (

𝑏

𝑟
)

2
= 1 ⇒ {(

𝑎

𝑟
) , (

𝑏

𝑟
)} ⊂ ℚ+.        (7) 

Therefore, the vectors defined over the non-negative rational set have the 

form: 

⟨𝐤| = ((
𝑎

𝑟
) , (

𝑏

𝑟
) , 1) ∈ 𝐊 → 𝑀2(⟨𝐤|) = 0,          (8) 

and could be considered as extended rational Fermat vectors, with elements 

constructed over the set ℚ+, whenever equations (7) and (8) hold. 

Therefore, by construction, one can write: 
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0 < 𝑎 < 𝑏 < 𝑟 ↔ 0 <
𝑎

𝑟
<

𝑏

𝑟
< 1,            

(9) 

and thus, one can also consider the vectors of the subset 𝐊 as possessing 

elements defined within the 0,1 unit interval. 

 

8. Isomorphism between natural and rational Fermat vectors 

 

In fact, true natural Fermat vectors and rational Fermat vector sets are 

isomorphic via a homothecy, which can also be accepted as acting like an 

operator, that is: 

∀⟨𝐭| ∈ 𝐓: ∃𝑟−1⟨𝐭| = ⟨𝐤| ∈ 𝐊 ⇔ ∀⟨𝐤| ∈ 𝐊: ∃𝑟⟨𝐤| = ⟨𝐭| ∈ 𝐓.      

(10) 

One can also symbolically write: 

𝑟−1(𝐓) = 𝐊 ⇔ 𝑟(𝐊) = 𝐓.          (11) 

Therefore, proving Fermat’s last theorem in the set 𝐓 is the same as proving 

it in the set 𝐊, and vice versa.  

 

9. Trigonometric Fermat vectors 

 

Such an isomorphism between true natural and rational Fermat vectors is 

essential because the vectors in 𝐊 can be rewritten with trigonometric 

functions. 

First, note that as the true Fermat vectors are whole perfect vectors, one can 

suppose that the relations of the equation (9) hold. Second, because one 

initially deals with natural Fermat vectors, one can also write: 

𝑎2 + 𝑏2 − 𝑟2 = 0 ↔ (
𝑎

𝑟
)

2
+ (

𝑏

𝑟
)

2
− 1 = 0,        (12) 

Then, taking angles in the interval 𝛼 ∈ (0,
𝜋

4
], due to the symmetrical nature 

of the sine and cosine functions, one can write the true natural Fermat vectors 

as vectors possessing trigonometric functions as elements instead of 

divisions of two natural numbers, that is: 

∀𝛼 ∈ (0,
𝜋

4
] ∧ 𝐶 = 𝑐𝑜𝑠(𝛼) ; 𝑆 = 𝑠𝑖𝑛(𝛼) : 

                 ⟨𝐮| = (𝑆, 𝐶, 1) ∈ 𝐔 → 𝑀2(⟨𝐮|) = 𝑆2 + 𝐶2 − 1 = 0     (13) 
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9.1. Some remarks on trigonometric Fermat vectors 

Not all the trigonometric vectors ⟨𝐮| ∈ 𝐔 written as in equation (13) could 

be associated to the rational Fermat vectors ⟨𝐤|. Trigonometric vectors of 

type ⟨𝐮| can be seen as extended Fermat vectors. But because all true natural 

Fermat vectors ⟨𝐭| can generate rational Fermat vectors ⟨𝐤|, one can 

undoubtedly write that: 

𝐊 ⊂ 𝐔 ⇒ 𝑟−1(𝐓) ∈ 𝐔 → 𝑟(𝐊) = 𝐓.         (14) 

As we have seen, one can transform all true natural Fermat vectors into 

rational Fermat vectors, which can also be expressed as trigonometric Fermat 

vectors.  

 

10. Minkowski norms of trigonometric vectors 

 

Then, due to the nature of the expressions of the powers of the sine and 

cosine functions, and in compliance with Fermat’s theorem, one can write 

that: 

∀⟨𝐮| = (𝑆, 𝐶, 1) ∈ 𝐔 → 

            ∀𝑛 ∈ ℕ ∧ 𝑛 ≠ 2: 𝑀𝑛(⟨𝐮|) = 𝑆𝑛 + 𝐶𝑛 − 1 ≠ 0       

(15) 

Such inequality can be easily proven upon knowing the sum of natural 

powers expressions of both sine and cosine functions. The most revealing 

source can be found in reference [15]. Thus, the formulation will not be 

explicitly repeated here, except for the 1st, 3rd, and 4th powers, given as a 

short illustrative example below: 

𝑆 + 𝐶 ≠ 1 

𝑆3 + 𝐶3 =
1

4
(3(𝑆 + 𝐶) + 𝑐𝑜𝑠(3𝛼) − 𝑠𝑖𝑛(3𝛼)) ≠ 1 

𝑆4 + 𝐶4 =
1

4
(3 + 𝑐𝑜𝑠(4𝛼)) ≠ 1.       (16) 

Inequality expressions like those shown in the equation (16) can be easily 

seen as different from unity in general. Sums of larger powers are readily 

available, yielding terms for the sums of powers, which also clearly differ 

from the unity. 

Therefore, the natural true natural Fermat vectors are isomorphic to some 

trigonometric vectors ⟨𝐮|, and their Minkowski norms satisfy the above 

equation (15) inequality.  
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Hence, a Fermat last theorem holds for all rational Fermat vectors and thus 

has to hold for the true natural Fermat vectors because of the isomorphism 

early discussed between the sets 𝐓and 𝐊. 

 

11.  Discarding the existence of true natural Fermat vectors of order 

greater than 2 

 

In previous sections, one has implicitly shown Fermat’s last theorem. One 

can suppose such a demonstration included within the definition of true 

natural Fermat (2+1)-dimensional vectors by an attached Minkowski norm. 

This fact makes the existence of true natural Fermat vectors of order higher 

than two impossible.  

To complete Fermat’s theorem proof, a discussion follows of whether one 

might construct natural (2+1)-dimensional vectors as true natural Fermat 

vectors of orders higher than the second. 

Suppose one wants to demonstrate that vectors in any (2+1)-dimensional 

natural vector space with a well-defined Minkowski norm cannot be true 

natural Fermat vectors of order higher than 2.  

That is: 

∀𝑛 ∈ ℕ ∧ 𝑛 > 2: ∀⟨𝐩| = (𝑎, 𝑏, 𝑟) ∈ 𝑉(2+1)(ℕ) ⇒ 𝑀𝑛(⟨𝐩|) ≠ 0,     

(17) 

then one can continue, trying to follow a reductio ad absurdum procedure 

leading to the demonstration.  

One can start admitting that the equation (17) is false, so one can write the 

following property for some natural vector and Minkowski norm order: 

 ∃𝑝 ∈ ℕ ∧ 𝑝 > 2: ∃⟨𝐩| = (𝑎, 𝑏, 𝑟) ∈ 𝑉(2+1)(ℕ) ⇒ 𝑀𝑝(⟨𝐩|) = 0,     

(18) 

therefore, if the expression (18) is true, then one can also write: 

𝑀𝑝(⟨𝐩|) = 0 → 𝑎𝑝 + 𝑏𝑝 − 𝑟𝑝 = 0 → 𝑎𝑝 + 𝑏𝑝 = 𝑟𝑝 

                 ⇒ (
𝑎

𝑟
)

𝑝
+ (

𝑏

𝑟
)

𝑝
= 1       (19) 

in the same manner, one can use the above equalities also to write: 

𝑥 =
𝑎

𝑟
∧ 𝑦 =

𝑏

𝑟
→ 𝑥𝑝 + 𝑦𝑝 = 1.          (20) 
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However, the pair of rational numbers: {𝑥, 𝑦} ⊂ ℚ+, corresponds to the 

Cartesian coordinates of a point situated into a circumference of unit radius. 

One can admit such a previous affirmation following a similar reasoning as 

in section 9. Choosing the appropriate angle in trigonometric coordinates, 

one can write: 

{𝑥, 𝑦} → {𝑠𝑖𝑛(𝛼) , 𝑐𝑜𝑠(𝛼)} ≡ {𝑆, 𝐶}.         (21) 

Then, owing to the equation (21), one can also write: 

𝑆2 + 𝐶2 = 1 → 𝑥2 + 𝑦2 = 1 ⇒ (
𝑎

𝑟
)

2
+ (

𝑏

𝑟
)

2
= 1 → 𝑀2(⟨𝐩|) = 0,     

(22) 

therefore, the vector ⟨𝐩| of the equation (17) is a rational Fermat vector. Such 

a result contradicts the existence of Minkowski norms higher than 2, as 

expressed in the equation (18).  

Therefore, one cannot obtain natural vectors fulfilling the equation (18) 

providing Minkowski norms of order larger than two; thus, the equation (17) 

must be true.  

As a result, one can say that true natural Fermat vectors of order higher than 

two cannot exist. 

Moreover, this implies that in the context of the present study, only true 

natural Fermat vectors of dimension (2+1) and order two are relevant. 

 

12. Discussion 

 

One can write that some whole perfect natural vectors fulfill the equation 

concerning the nullity of the second-order Minkowski norm: 

∃⟨𝐭| = (𝑎, 𝑏, 𝑟) ∈ 𝐓: 𝑀2(⟨𝐭|) = 0 → ⟨𝐭| = ⟨𝐟|,        

(23) 

defining in this way true Fermat vectors of second order.  

Here, in general, one has deduced, via the isomorphism between natural and 

rational Fermat vectors, under a trigonometric representation, that true 

natural Fermat vectors cannot possess Minkowski null norms other than the 

second-order ones: 

∀𝑛 ∈ ℕ ∧ 𝑛 > 2 ∧ ∀⟨𝐯| = (𝑎, 𝑏, 𝑟) ∈ 𝑉(2+1)(ℕ) ⇒ 𝑀𝑛(⟨𝐯|) ≠ 0.     

(24) 
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A result corresponding to how one can formulate Fermat’s last theorem. 
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