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Recent advancements in models linking natural language with human motions have shown

significant promise in motion generation and editing based on instructional text. Motivated by

applications in sports coaching and motor skill learning, we investigate the inverse problem:

generating corrective instructional text, leveraging motion editing and generation models. We

introduce a novel approach that, given a user’s current motion (source) and the desired motion

(target), generates text instructions to guide the user towards achieving the target motion. We

leverage large language models to generate corrective texts and utilize existing motion generation

and editing frameworks to compile datasets of triplets (source motion, target motion, and corrective

text). Using this data, we propose a new motion-language model for generating corrective

instructions. We present both qualitative and quantitative results across a diverse range of

applications that largely improve upon baselines. Our approach demonstrates its effectiveness in

instructional scenarios, offering text-based guidance to correct and enhance user performance.

1. Introduction

Corrective instructions are crucial for learning motor skills, such as sports. Without feedback, people

are at risk of developing improper, suboptimal, and injury-prone moves that hinder long-term

progress and health. With the growing popularity and immersion of motion-sensing sports games,

the increasing accuracy and accessibility of 3D pose estimation techniques, and the advancement of

fitness equipment and trackers with versatile sensing technologies, the need for intelligent coaching

systems that provide corrective feedback on user motion is becoming increasingly important.
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In this work, we study the task of Motion Corrective Instruction Generation, which aims to create text-

based guidance to help users correct and improve their physical movements. This task has significant

applications in sports coaching, rehabilitation, and general motor skill learning, providing users with

precise and actionable instructions to enhance their performance. By leveraging advancements in

human motion generation and editing, this task addresses the need for personalized and adaptive

feedback in various instructional scenarios.

Recent research in text-conditioned human motion generation has shown impressive progress.

Methods like MotionCLIP[1]  and TEMOS[2]  have utilized neural networks and transformer-based

models to align text and motion into a joint embedding space, producing diverse and high-quality

motion sequences. These models, however, focus primarily on generating motions from text rather

than generating corrective instructions from motion pairs. Therefore they are not directly suitable for

analyzing and improving user movements based on a comparison of motion sequences.

Research specifically focused on corrective instruction generation is still in its early stages.

Traditional methods often rely on building statistical models for specific action categories, which

require expert experience and are difficult to scale and generalize to various actions. For example,

Pose Trainer[3]  and AIFit[4]  employ neural networks and statistical models to provide feedback on

specific exercises, but these methods have significant drawbacks: (1) They often require large amounts

of annotated data for each specific action class, making them hard to generalize across different types

of motions. However, unlike text-to-motion or human pose correction (which can be annotated

through simple pipelines[5]), human motion sequences involve temporal changes. Annotating the

differences between these temporal changes is challenging. (2) Many of these methods are limited to

analyzing static poses or images rather than dynamic sequences of motion, reducing their

applicability to real-world scenarios where movement dynamics are crucial.

LLMs, such as Llama[6], have shown potential in generating corrective instructions using few-shot or

zero-shot learning. However, without proper fine-tuning and additional modalities, LLMs struggle to

understand the spatial and temporal context of poses and motions, limiting their effectiveness in

specialized fields like coaching or corrective instruction generation.

To address these limitations, we propose a novel approach, CigTime, for generating motion corrective

instructions. Our method leverages existing motion editing pipelines to create datasets of motion

triplets (source, target, and instruction). The key components of our approach include:
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Motion-Editing-Based Data Collection:

We develop a pipeline that uses motion editing techniques to generate large datasets of motion pairs

and corresponding corrective instructions. This process involves using a pre-trained motion editor to

modify source motions according to generated instructions, resulting in target motions that reflect

the desired corrections.

Fine-Tuning Large Language Models:

We fine-tune a large language model (LLM) on the generated datasets to enable it to produce precise

and actionable corrective instructions. By training the LLM on a diverse set of motion sequences and

corrections, we enhance its ability to understand and generate contextually relevant feedback.

In summary, our contributions include:

We introduce a motion-editing-based pipeline to efficiently generate large datasets of corrective

instructions, reducing the dependency on extensive manual annotations.

We propose a general motion corrective instruction generation method which utilizes a large

language model to translate motion discrepancies into precise and actionable instructional text,

addressing the relationship between language and dynamic motions.

Through comprehensive evaluations, we show that our method significantly outperforms existing

models in generating high-quality corrective instructions, providing better guidance for users in

various real-world scenarios.

2. Related work

2.1. Text Conditioned Human Motion Generation.

Conditional motion generation aims to synthesize diverse and realistic motion conditioning on

different control signals, such as music[7][8][9][10], action categories[11][12][13], physical signals[14][15]

[16]. Recent years have seen significant progress in text conditioned human motion generation[17][11]

[18][19][20][21][22][2][1][23][24][25][26]. Some methods[17][18][1]  align the texts and motions into a joint

embedding space for generation. Benefiting by aligning motion latent to the CLIP[27]  embedding

space, MotionCLIP[1]  could generate out-of-distribution motions. Several works utilize other

mechanisms to increase the diversity and quality of generated motions. TEMOS[2]  and

TEACH[11]  employ transformer-based VAEs to generate motion sequences based on texts. Guo et al.
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[19] propose an auto-regressive conditional VAE to generate human motion sequences. Inspired by the

achievements in image generation, the diffusion models, such as MotionDiffuse[25], MDM[23]  and

FLAME[22], have also been applied to motion generation. Some follow-up works[28][29]  attempt to

improve the controllability of the diffusion model. Recently, the Vector Quantized Variational

Autoencoder (VQ-VAE) has gained significant traction in being used to convert 3D human motion into

motion tokens which are subsequently employed alongside language models. TM2T[20]  proposes

using these quantized tokens to facilitate the mapping between text and motion. T2M-

GPT[24] employs an auto-regressive method to predict the next-index token. Further, MotionGPT[21]

[26] utilizes large language models (LLMs) to simultaneously handle different motion-related tasks.

Recently, AvatarGPT[30]  extends the generation models to unify high-level and low-level motion-

related tasks, which supports human motions generation, prediction and understanding.

2.2. Motion Editing

Motion editing enables users to interactively refine generated motions to suit their expectations.

PoseFix[31]  utilize neural networks to edit 3D poses. Holden et al.[32]  employs an autoencoder to

optimize the trajectory constraints. MDM[23], MotionDiffuse[25] and FLAME[22] involve processing by

masks that designate parts for editing through reverse diffusion. GMD[33]  and PriorMDM[28]  are

designed to edit motion sequences conditioned on joint trajectories. OmniControl[29]  incorporates

control signals that encourage motions to conform to the spatial constraints while being realistic.

Recently, FineMoGen[34]  tackles fine-grained motion editing which allows for editing the motion of

individual body parts, however its heavy reliance on specific-fine grained format limits the smooth

coordination among movements of different body parts.

2.3. Corrective Instruction Generation

Traditional methods[3][4] focus on specific action categories by building statistical models that require

expert experience. These methods struggle to scale and generalize to various actions. Pose

Tutor[35] uses neural networks to learn statistical models but requires large amounts of data for each

action and can only analyze static images or poses. FixMyPose[36]  creates a dataset with human-

annotated corrective instructions on synthetic 2D images. PoseFix[31]  designs an automatic

annotation system and a conditioned auto-regressive model for corrective instruction generation, but
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it is limited to static poses. Recently, Large Language Models (LLMs)[6]  have made significant

advances in text generation. With appropriate prompting, LLMs can generate pose corrective

instructions with few-shot or zero-shot example data. However, LLMs’ access to text makes them

less aware of a variety of possible motions that people could perform and links them with languages.

Our key insight for corrective instruction generation is to regard this task as a close yet inverse

problem to text-conditioned motion generation and editing, allowing us to bring the progress in that

fast-growing space to this understudied problem: We first propose a novel corrective instruction data

collection pipeline based on motion editing. Subsequently, we design a model that leverage large

language models to provide corrective instructions on spatial form and temporal dynamics.

3. Method

3.1. Overview

We present an overview of our approach in Fig. 1. Given a source motion sequence,  , where 

  is the number of frames and    is the dimensionality of the motion representation, and a target

motion sequence,  , as input, our goal is to learn a function   which maps   and   to the

corrective text instruction  , i.e., 

To achieve this, we employ a pre-trained motion editor, which takes as input the source motion

sequence and ground-truth corrective text, to output target motion sequences. Next, we quantize the

source and target motion sequences into discrete tokens using a VQ-VAE-based network. Finally, we

organize these tokens with a predefined template to fine-tune an LLM on the triplets that contain

source motion sequence  , target motion sequence  , and corrective instruction   for generating

instructions that can efficiently modify the source to the target motion sequence.

∈xI
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Figure 1. Overview of CigTime. Left: We leverage source motion tokens and corrective

instructions as input to a motion editor to produce target motion tokens. Right: We then

employ a language model to generate precise corrective instructions based on a given source

and target motion. We demonstrate in the example generating corrective instructions for

lifting weights with the upper body.

3.2. Motion-Editing-Based Data Collection

The task of generating corrective instructions requires triplet data consisting of the source motion,

the target motion, and the corrective instruction. Collecting such a dataset through human annotation

is costly and inefficient. We aim to leverage existing pre-trained models to streamline the data

collection process. However, there isn’t an existing model that generates such triplets.

Our fundamental insight is to treat corrective instruction generation as an inverse process of motion

editing, which uses a given text to guide an agent in editing its initial motion. We utilize the motion

editing process to gather required triplets: we collect a set of source motions and employ a pre-trained

motion editor to edit the source motion based on a corrective instruction, resulting in the target

motion.
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Motion Editing

In this work, we utilize the motion diffusion model (MDM) [23] as the motion editor. Given the input

motion sequence,  , and generation condition,  , MDM uses probabilistic diffusion models for motion

generation. It comprises a forward process, which is a Markov chain involving the sequential addition

of Gaussian noise to the data, and a reverse process that progressively denoises the data to get the

edited motion. The forward process of MDM is formulated as,

where   are constant hyper-parameters. Further, the reverse process is formulated as,

where   is the learnable parameters of the diffusion model, which gradually anneals the noise from a

Gaussian distribution to the data distribution. We train MDM as a conditional generator   that

outputs  , where   is the text condition, to maximize  .

In inference, MDM takes noise   as   and applies the reverse process to denoise the input based on

the text condition,  , generating the motion sequences,  , corresponding to  . For the motion editing

task, we utilize the corrective instruction,  , as the generation condition,  , to generate the

corresponding corrective motion sequence,  . We then calculate the target motion sequence,  , by

combining the source motion sequence,  , and the corrective motion sequence,  ,

where   is the joint mask for the body part  , and   is the element-wise multiplication for masking

operation. Through the above process, we are able to collect a large amount of   triplets. We

use this dataset to fine-tune a large language model (LLM) for the corrective instruction generation

task as in the following.

3.3. Fine-tuning LLMs for Corrective Instruction Generation

With the prepared dataset of triplets from the motion editing process, we learn the inverse process of

motion editing, a function,  , that maps source and target motion sequence pairs to corrective

instructions. We first learn an encoder based on VQ-VAE  [37]  to tokenize the motion sequences into

x c
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discrete tokens and organize the discrete tokens based on a pre-defined template. Then, we fine-

tuned an LLM to generate the corrective instruction,  , based on the tokens of the source and target

motion sequence,   and  .

Tokenizer Pre-training

Compared to directly feeding the original data to the LLMs, the discrete representation has been

proven to be more suitable for fine-tuning LLMs with human-motion-related tasks[21][26]. Inspired

by these works, we initialize a VQ-VAE-based network, which contains an encoder  , a codebook  ,

and a decoder  . The encoder    takes motion sequence,  , as input and maps,  , into discrete

features,  , where   is the dimensionality of the frame feature.

The codebook,  , represents different codes, where    is a predefined number of different

discrete codes and    is the k-th code. VQ-VAE quantizes the discontinuous feature    to the

discrete latent codes,  , through codebook,  , by projecting each per-frame feature    to its

nearest code:

where    represents the quantization operation. The decoder    takes the code,  , as input, and

reconstructs the motion sequence,  . We use the index   as the token of each discrete code,  , as the

token representation of the frame feature  . We apply the L2 loss for the training of the tokenizer,

Considering that the quantization operation disrupts gradient backpropagation, we employ an

exponential moving average (EMA)  [38]  for the codebook update and stabilize the training process.

Besides, we apply the commitment loss [37] to update the tokenizer encoder,

where   is the stop gradient operation that helps stabilize the training process.

Fine-tuning LLM

Instruction Tuning is a widely used technique to enable LLMs to handle specific tasks. In this work, we

employ this technique to fine-tune our LLM. Specifically, given an LLM,  , a source discrete token

set,  , and a target discrete token set,  , we organize the input of 

L
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  to follow the template as shown in Fig.  2. This input is then tokenized into text tokens 

. Additionally, we tokenize the ground-truth corrective instruction,  , into text

tokens, 

The LLM processes the input tokens,  , and auto-regressively predicts the probability distribution of

the next tokens  . During training, we maximize the log-likelihood

of the data distribution by applying cross-entropy loss:

By using a structured input template and optimizing the cross-entropy loss, we enable the LLM to

generate accurate and contextually relevant corrective instructions. This approach ensures that the

model effectively learns to convert discrepancies between the source and target motions into precise

and actionable instructional text.

Figure 2. Template for LLM fine-tuning. The LLM is required to output the corrective instructions

given token lists for the source and target motion sequences (i.e., Action 1 and Action 2) as well as

instructions on the expected output.

Learning Representation for Motion Tokens

Previous methods for training text-to-motion models involve either using an existing vocabulary for

motion tokens[26]  or assigning new learnable embeddings[21][30], followed by fine-tuning with

techniques like LoRA. We tried both approaches, but the results of utilizing one of them alone were not

T
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satisfying. There are two main reasons: First, using a fixed vocabulary and embeddings prevents

capturing the correlation of motion differences and corrective instructions, as the weights are trained

on tasks with a large domain gap. Second, while new embeddings can be learned with LoRA, the

distribution of the original vocabulary’s embeddings imposes constraints, making the learned

embeddings suboptimal, especially given the smaller scale of training data for corrective instructions.

To address these challenges, we integrate the goods of both. We use existing vocabulary tokens for

their rich semantics and fine-tune all embeddings to maximize performance and reduce the domain

gap. We also introduce an anchor loss to prevent the embeddings from diverging:

where   is a regularization coefficient that controls the influence of loss,   represents the network

weights before training,   represents the network weights after training.

4. Evaluation

4.1. Experiment Setup

Datasets

We obtain the source motion sequences from HumanML3D[19], a dataset containing 3D human

motions and associated language descriptions. We make use of the entire dataset for the collection of

source motions. We then generate triplets based on pre-trained motion editor with instructions and

target motions. We split HumanML3D following the original setting and for each motion sequence in

HumanML3D, we randomly select one instruction from the corresponding split for editing the

sequence. We subsequently edit the source motion sequences with MDM[23]  conditioned on the

corrective instructions to obtain the target sequences.

Implementation Details

We fine-tune a pre-trained Llama-3-8B[6]  using full-parameter fine-tuning for corrective

instruction generation. The model is optimized using the Adam optimizer with an initial learning rate

of  . We use a batch size of 512 and train on four NVIDIA Tesla A100 GPUs for eight epochs, which

takes approximately 5 hours to complete. Following HumanML3D[19], the dimensionality,  , of the

motion sequences is set to   for our experiments.

= λ ⋅ ∥W − ,LAnchor W0∥2
2 (10)

λ W0

W

10−5

D

263
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Evaluation Metrics

We evaluate the generated corrective instruction with two types of metrics.

1. Corrective instruction quality: BLEU[39], ROUGE[40], and METEOR[41]  are commonly employed

metrics that assess various n-gram overlaps between the ground-truth text and the generated

text. Although these metrics focus on structural text similarity, they tend to disregard semantic

meaning. Consequently, we also utilize the cosine similarity of text CLIP embeddings as an

evaluation metric to better compare semantic similarity.

2. Reconstruction accuracy: To evaluate the quality, we use the generated corrective instruction as

an editing condition to modify the source motion sequences and obtain the generated target

motion. We then compare this with the ground-truth target motion. Specifically, we employ

Mean Per Joint Position Error (MPJPE) to measure the average Euclidean distance between the

generated and ground-truth 3D joint positions for all joints. Additionally, we calculate the

Fréchet Inception Distance (FID) using a feature extractor[19]  to evaluate the distance between

the feature distributions of the generated and ground-truth target motions. Ideally, the

generated motion sequences should closely resemble the target motion sequences.
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Method
Instruction Quality Reconstruction Accuracy

BLEU  ROUGE  METERO  CLIPScore  MPJPE  FID 

Ground-Truth 1.00 1.00 1.00 1.00 0.00 0.00

Llama-3-8B 0.15 0.29 0.45 0.77 0.21 3.04

Llama-3-8B-LoRA 0.10 0.19 0.36 0.77 0.24 2.09

Mistral-7B 0.16 0.30 0.46 0.80 0.22 5.03

Mistral-7B-LoRA 0.08 0.19 0.27 0.79 0.75 1.84

MotionGPT 0.02 0.10 0.11 0.76 0.80 8.84

MotionGPT-M2T 0.02 0.13 0.12 0.76 1.05 7.96

Ours 0.24 0.35 0.52 0.82 0.13 1.44

Table 1. Comparison to the Existing Work. We compare our approach against large language (Llama-

3-8B, Llama-3-8B-LoRA, Qwen-7B, Mistral-7B) and motion-language (MotionGPT, MotionGPT-

M2T) models. We demonstrate that our approach, CigTime outperforms all the baselines by a large

margin for corrective instruction generation for human motion.

Comparison Baselines

To the best of our knowledge, we are the first to generate corrective instruction for general motion

pairs. Thus, we adopt two different kinds of methods designed for general text-based tasks and

motion captioning.

1. Llama3[6], Qwen[42]  and Mistral[43]  are all large language models designed for general text-

based tasks. They can be applied to unseen tasks with just a few-shot data. We utilize the in-

context learning technique[44]  to generate correction instructions by giving them examples of

the source-target-instruction triplets. We present the detailed prompts in the supplemental

material. In addition to the baselines that use in-context learning with LLMs, we ablate different

fine-tuning techniques. To do so, we compare our approach, which uses full-parameter LLM

↑ ↑ ↑ ↑ ↓ ↓
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tuning to a variant, which utilizes the LoRA adapter[45] to fine-tune the Llama 3 8B and Mistral

7B models.

2. MotionGPT[21]. Although MotionGPT isn’t trained with corrective instruction data, it has been

proven to have the ability to generalize across different motion-based tasks by utilizing specific

input templates for different tasks. Thus, we adopt this method for corrective instruction

generation by utilizing the template mentioned in Section.  3.3. In addition, as generating

corrective instructions is not a target for MotionGPT, we create yet another baseline called

MotionGPT-M2T that employs MotionGPT to generate captions corresponding for the target

motions.

4.2. Quantitative Results

Our quantitative results are presented in Table. 1. We further discuss below the quality of the corrective

instructions and the reconstruction accuracy of target motion after editing.

Corrective Instruction Quality

Our method demonstrated superior performance across most metrics when compared to baseline

methods, as presented in Table.  1. Specifically, our method achieved the highest BLEU-4, ROUGE-2

and METERO scores of 0.24, 0.35, and 0.52, significantly surpassing the baseline methods. This

indicates that our method generates text with higher precision.

Furthermore, our method achieved the highest CLIP Score of 0.82, outperforming other baselines. The

CLIP Score indicates the semantic alignment of the generated text with visual content, and a higher

score demonstrates better performance in maintaining this alignment.

We find that the two baselines adopted from MotionGPT both present inferior performances, which

can be attributed to its training on a text-motion dataset, which lacks the capability to compare two

motion sequences and identify specific differences. Besides, although MotionGPT excels at generating

captions for motion sequences, it’s still difficult to reconstruct the original target motion sequence

from the generated descriptions. This is because describing the differences and similarities between

two motion sequences can help us accurately depict the target motion with fewer statements, which

MotionGPT does not possess.

This evidenced that simply fine-tuning Llama-3 using the generated data would not result in a

satisfactory corrective instruction generation, e.g., due to overfitting or catastrophic forgetting.
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Although the outputs can induce similar target motion sequences compared to the ground truth, the

increased variance in the text can lead to a decrease in the overall NLP metrics such as BLEU, ROUGE,

and METERO.

Overall, these results highlight the effectiveness of our method in generating high-quality corrective

instructions, with significant improvements in precision, similarity, and visual-semantic consistency

over the baseline methods.

Method
Instruction Quality Reconstruction Accuracy

BLEU  ROUGE  METERO  CLIPScore  MPJPE  FID 

Llama-3-8B-Extended 0.12 0.23 0.44 0.80 0.27 5.43

Mistral-7B-Extended 0.18 0.27 0.42 0.81 0.19 1.45

Ours-Extended 0.24 0.37 0.55 0.84 0.16 1.50

Ours-Continuous 0.12 0.24 0.47 0.78 0.20 2.56

Ours-T5 0.14 0.25 0.46 0.80 0.33 5.03

Ours 0.24 0.35 0.52 0.82 0.13 1.44

Table 2. Ablation study with different network structure. We extend the LLMs’ vocabularies with new

learnable embeddings for the motion tokens and update the corresponding embeddings during fine-

tuning as baselines. We also compare variants that utilizes T5 as the backbone (ours-T5), and

continous representaion (Ours-Continuous).

Reconstruction Accuracy

The evaluation of reconstruction accuracy highlights the superior performance of our method in

distinguishing between source and target motions. As shown in Table 1, our method achieved the

lowest MPJPE of 0.1330, indicating the highest accuracy in pose reconstruction. Furthermore, our

method also attained the lowest FID - Target score of 1.4442, demonstrating its effectiveness in

generating data that closely matches the target motion. Similarly, MotionGPT’s inferior performance

↑ ↑ ↑ ↑ ↓ ↓
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in these metrics is a result of its limited ability to analyze differences between motion pairs, as

evidenced by its MPJPE of 0.8011 and FID score of 8.8350.

Additionally, although LLM models like Llama-3-8B can maintain text consistency via in-context

learning, they are unable to grasp the intricate connections between motion sequences and language,

leading to inferior overall performance compared to our approach. Even when benefiting from fine-

tuning through LoRA, these models still cannot generate high-quality corrective instructions.

Overall, these results underline the effectiveness of our method in accurately distinguishing and

reconstructing the differences between source and target motions, outperforming the baseline

methods in both MPJPE and FID metrics.

Method
MDM PriorMDM – LW PriorMDM – RF

MPJPE  FID  MPJPE  FID  MPJPE  FID 

Ground-Truth 0.00 0.00 0.22 2.97 0.25 5.22

Llama-3-8B-LoRA 0.24 2.09 0.27 3.08 0.37 7.08

MotionGPT 0.80 8.84 0.80 9.80 0.77 19.07

MotionGPT-M2T 1.05 7.96 0.80 8.48 0.74 28.95

Ours 0.13 1.44 0.22 3.02 0.26 5.34

Table 3. Ablation study with different motion editors. We assess the reconstruction accuracy of various

methods employing different motion editors for evaluation.

Ablation study with different network structurer

To validate that our token embedding training method is superior to the extended token embedding

approach used in previous algorithms, we conducted a comparison of LLMs trained using token

embeddings, as shown in Table  2. Although fine-tuning with extended vocabulary can enhance the

text-based metrics, these instructions cause a decline in the motion editing performance, resulting in

a reduction in MPJPE and FID. From the perspective of the task definition, we require a model that

↓ ↓ ↓ ↓ ↓ ↓
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prioritizes high reconstruction quality over instruction quality. Therefore, extending vocabulary is

more detrimental than beneficial for our task.

Besides we fine-tune T5-770M[46], as in Motion-GPT[21] and AvatarGPT[30] to validate the impact of

different LLM frameworks on the results. The experimental results show that the T5 framework does

not offer an advantage over larger language models[6] in the Motion Corrective Instruction Generation

task. We also compared our method with its variant based on continuous representations, as

implemented by MotionLlm[47]. As observed, our method still outperforms the continuous baseline

across all the reconstruction accuracy metrics.

Evaluation with Different Motion Editors

Different people may perform various actions in response to the same instruction. Our goal is for our

model to produce instructions that are as accurate and widely accepted as possible. Therefore, we

evaluate our methods and baselines using different motion editors. In addition to MDM, which we

used to generate the ground-truth dataset, we also assess the methods with two different versions of

PriorMDM as shown in Table 3.

Our proposed method consistently outperforms other models across different motion editors,

demonstrating the lowest MPJPE and FID values, close to the ground truth. This highlights its

effectiveness in generating accurate and visually similar corrective motions. In contrast, models like

MotionGPT and its variant exhibit significantly higher errors, indicating limitations in their

generation capabilities.
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Figure 3. Visualization of corrective instructions and reconstructed motions for different methods.

4.3. Visual Results

To further analyze the performance of different methods, we present visual comparisons in Figure 3.

As shown in the results, our algorithm largely maintains similar semantics and achieves

reconstruction results that are closely aligned with the ground truth. This demonstrates the accuracy

of our algorithm in generating corrective instructions. In contrast, Llama3-8B, despite achieving

favorable numerical results, may incorrectly identify the joint parts involved in motion editing. This

highlights our approach’s superiority in providing accurate and contextually appropriate motion

corrections.

5. Conclusion

We introduced a new task and a framework for generating corrective instructions that translate a

source motion into a target motion. Our key insight is to leverage the fast growing field of text-

conditioned motion-editing for this related yet understudied inverse problem. To create a dataset for

this task, we proposed a motion editing pipeline that minimizes the need for extensive manual

annotations. We demonstrated the utility of our approach which largely outperforms existing related

models.
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While our work provides a strong foundation for corrective instruction generation in human motion,

there are limitations to our framework.

1. First, the curated dataset captures differences between source and target motions, but it lacks

targeted feedback on form and dynamics that are specific to actions and sports, which require

more detailed and subtle instructions for learning particular skills.

2. Second, due to the limitation of the pretrained motion editor[23], we can only handle source and

target motion pairs with the same sequence length, without context or scenes.

3. Third, the corrective instruction generation method may be misused to generate instructions for

insulting or inappropriate motions.

We aim to address these limitations in future research, along with further advances of text-

conditioned motion-editing frameworks, which share our challenges, limitations, and potential

solutions.

Appendix A. Prompt for the LLMs In-context Learning

To enable large language models (LLMs) for generating correctional instructions grounded in given

sequences, we apply the in-context learning technique[44]. This method allows LLMs to make

predictions based on contexts supplemented with a limited number of examples. The prompt used for

in-context learning is displayed in Figure 4.
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Figure 4. In-context learning for corrective instruction generation. The prompt for the LLMs in in-

context learning includes a task description and several examples. This information is given to the

LLMs, instructing them to generate correctional instructions for new motion pairs.

Appendix B. Additional Experiments

B.1. Generalization to New Data

Our algorithm is fully trained and tested on the HumanML3D[19]  dataset, which may impact its

generalization. To evaluate the generalization ability of our algorithm, we collected 1525 samples from

the Fit3D[4] dataset.

We present the results in Table 4. These results show that the BLEU, ROUGE, and METEOR scores

decreased from 0.24, 0.35, and 0.52 to 0.03, 0.05, and 0.20, respectively. This indicates that when the

dataset changes, the corrective instructions generated by our algorithm deviate from the ground truth

in form. However, the changes in CLIP score, MPJPE, and FID are subtle. This suggests that even after

switching datasets, our algorithm can still effectively capture the differences in motion pairs and
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describe them in appropriate language. Our algorithm therefore generally showcases a notable level of

generalization capability.

Method Dataset
Instruction Quality Reconstruction Accuracy

BLEU  ROUGE METERO  ClipScore  MPJPE  FID 

Ours Humanml3D 0.24 0.35 0.52 0.82 0.13 1.44

Ours Fit3d 0.03 0.05 0.20 0.81 0.18 1.24

Table 4. Numeric Results

B.2. Experimental Results on KIT Dataset

We further evaluate our method baselines on KIT dataset. As shown in Table 5, our method still

outperforms other baselines across all metrics, demonstrating the generalization capability.

Method
Instruction Quality Reconstruction Accuracy

BLEU  ROUGE METERO  CLIPScore  MPJPE  FID 

Llama-3-8B-LoRA 0.11 0.17 0.36 0.78 0.37 5.03

Qwen-1.5-7B-LoRA 0.14 0.25 0.46 0.80 0.33 5.03

Mistral-7B-LoRA 0.13 0.17 0.36 0.79 0.30 5.02

Ours 0.14 0.27 0.47 0.80 0.21 4.52

Table 5. Experimental results on KIT dataset. We conduct a comparative analysis of our method

against baselines on the KIT dataset.

↑ ↑ ↑ ↑ ↓ ↓

↑ ↑ ↑ ↑ ↓ ↓
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B.3. Additional Visual Results

We present visualization examples of our corrective instructions and reconstructed motion sequences

in Fig. 5. We observe that although the corrective instructions predicted by our algorithm sometimes

differ from the ground truth (e.g., "forehand table tennis" versus "throwing a frisbee"), they can still

result in remarkably similar modified motions. In specific frames, the resulting motions are nearly

identical, as seen in the beginning and ending frames of the first example. This phenomenon aligns

with real-world scenarios where individuals can provide multiple, semantically distinct suggestions

that lead to similar corrective outcomes when correcting others’ mistakes. This underscores the

robustness of our approach in generating effective motion corrections, even when the specific

instructions vary.

Considering the diversity of correction instructions, traditional metrics such as BLEU, ROUGE, or

METEOR alone may not be sufficient to describe their correctness. Thus, we incorporated CLIP score

and reconstruction metrics as supplementary evaluation measures, creating a more exhaustive

benchmark for evaluating correction instruction generation. We present more visual results in Fig. 7

and 8.
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Figure 5. Diversity of the corrective instructions. We present some examples where the reconstructed

motions have a similar appearance to the target motions, but the corrective instructions still differ

from the ground truth, demonstrating the robustness of our approach generating effective and

semantically meaningful corrective instructions.
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Figure 6. Real-world application. This figure illustrates the source and target motions collected from

real-world participants, alongside the corrective instructions generated by different methods. Left to

right: the source motion, target motion, generated corrective instruction, and the corrected motions.

We collect the videos with a single camera and extract motions with WHAM.

qeios.com doi.org/10.32388/HIAXAT 23

https://www.qeios.com/
https://doi.org/10.32388/HIAXAT


Figure 7. Additional visualizations. Qualitative results for the corrective instructions and recon-

structed motion sequences.
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Figure 8. Additional visualizations. Qualitative results for the corrective instructions and recon-

structed motion sequences.
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Appendix C. Implementation Details

C.1. Motion Editing

We utilize the pre-trained MDM[23]  for motion editing. The model is trained on the HumanML3D

dataset with a batch size 32, a learning rate 0.0002, and training for 50000 epochs. In the editing

process, we set the maximum reverse diffusion steps to 50.

C.2. Architecture of Our Tokenizer

We utilize TCN-based structures for both encoder and decoders, which extract spatiotemporal

features for human motion through convolution with a kernel size of 1. We also extract temporal

features through dilation convolution and larger kernels (9 or 3). We list the details of our network

architecture in Tab. 7. The decoders   and   share the same architecture.

Appendix D. Example of Corrective Instructions

We present some corrective instructions in Tab. 6.

U B
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Body part Corrective instruction

Upper body

Gesture as if explaining a large concept with both hands.

Act as if using a whip with their right hand

Feign holding and adjusting a large telescope

Performs a chest-expanding exercise, pulling arms back

Fake a tennis serve

Reenact painting a wall with a roller

Act out swinging a cricket bat

Shoot a bow and arrow

Lower body

Wade through water

Simulate hopping over a turning jump rope

Stand on their right leg briefly

Step side to side, simulating dancing

Act out getting on a bicycle

Jump over a puddle

Kick gently with the right foot

Walk like a model on a runway

Table 6. Examples of corrective instructions.

Appendix E. Real-world Application

Obtaining precise motion in real life is difficult. However, we find that existing motion estimation

algorithms enable us to obtain usable motion sequences in most cases. To verify whether the current

pipeline can be applied to real life, we conduct the following experiment.
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We invited two participants, one acting as a coach and the other as a trainee. The trainee first

performed a source motion sequence. Then, the coach was tasked with generating a target motion

sequence that differed from the source sequence. We utilized a pose estimation algorithm (WHAM[48])

to extract these motion sequences and use our method to generate corrective instructions. The trainee

is then required to correct his motion based on the corrective instructions. We present an example in

Figure  6 of the global response pdf. In this example, it is evident that existing motion estimation

algorithms can accurately estimate the motions of both the trainee and the coach. Furthermore, our

algorithm is capable of understanding these motion sequences to provide appropriate corrective

instructions.
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Components Architecture

Linear

Encoder

(0): Conv1D(J*3, 256, kernel_size=(3,), stride=(1,), padding=(1,))

(1): ReLU()

(2): 2   Sequential(

     (0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))

     (1): ResConv1DBlock(

         (0): (activation1): ReLU()

         (1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(9,),

dilation=(9,))

         (2): (activation2): ReLU()

         (3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,)))

     (2): ResConv1DBlock(

         (0): (activation1): ReLU()

         (1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(3,),

dilation=(3,))

         (2): (activation2): ReLU()

         (3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,)))

     (3): ResConv1DBlock(

         (0): (activation1): ReLU()

         (1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))

         (2): (activation2): ReLU()

         (3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,))))

Residual VQ (0): (conv1): Conv1D(256, 16, kernel_size=(1,), stride(1,))

(1): (codebook_class): nn.Parameter((64, 16), requires_grad=False)

×
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Components Architecture

(2): (codebook_residual): nn.Parameter((64, 16), requires_grad=False)

(3): (conv2): Conv1d: Conv1D(16, 256, kernel_size=(1,), stride=(1,))

Decoder

(0): 2   Sequential(

     (0): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))

     (1): ResConv1DBlock(

         (0): (activation1): ReLU()

         (1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(9,),

dilation=(9,))

         (2): (activation2): ReLU()

         (3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,)))

     (2): ResConv1DBlock(

         (0): (activation1): ReLU()

         (1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(3,),

dilation=(3,))

         (2): (activation2): ReLU()

         (3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,)))

     (3): ResConv1DBlock(

         (0): (activation1): ReLU()

         (1): (conv1): Conv1D(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))

         (2): (activation2): ReLU()

         (3): (conv2): Conv1D(256, 256, kernel_size=(1,), stride=(1,))))

     (2) Conv1D(256, 256, kerne_size=(1,), stride=(1,))

(1): ReLU()

(2): Conv1D(256, 75, kernel_size=(1,), stride=(1,))

×
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Table 7. Architecture of the tokenizer.
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