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Abstract Clinical diagnosis is a challenging task for which high expertise
is required at the doctors’ end. It is recognized that technology integration
with the clinical domain would facilitate the diagnostic process. A seman-
tic understanding of the medical domain and clinical context is needed to
make intelligent analytics. These analytics need to learn the medical context
for different purposes of diagnosing and treating patients. Traditional diag-
noses are made through phenotype features from patients’ profiles. It is also
a known fact that diabetes mellitus (DM) is widely affecting the population
and is a chronic disease that requires timely diagnosis. The motivation for this
research comes from the gap found in discovering the common ground for med-
ical context learning in analytics to diagnose DM and its comorbidity diseases.
Therefore, a unified medical knowledge base is found significantly important to
learning contextual Named Entity Recognition (NER) embedding for seman-
tic intelligence. Our search for possible solutions for medical context learning
told us that unified corpora tagged with medical terms were missing to train
the analytics for diagnoses of DM and its comorbidities. Hence, we put effort
into collecting endocrine diagnostic electronic health records (EHR) corpora
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for clinical purposes that are labeled with ICD-10-CM international coding
scheme. International Codes for Diseases (ICD) by the World Health Organi-
zation (WHO) is a known schema to represent medical codes for diagnoses. The
complete endocrine EHR corpora make DM-Comorbid-EHR-ICD-10 Corpora.
DM-Comorbid-EHR-ICD-10 Corpora is tagged for understanding the medi-
cal context with uniformity. We experimented with different NER sequence
embedding approaches using advanced ML integrated with NLP techniques.
Different experiments used common frameworks like; Spacy, Flair, and Ten-
sorFlow, Keras. In our experiments albeit label sets in the form of (instance,
label) pair for diagnoses were tagged with the Sequential() model found in
TensorFlow.Keras using Bi-LSTM and dense layers. The maximum accuracy
achieved was 0.9 for Corpus14407_DM_pts_33185 with a maximum number
of diagnostic features taken as input. The sequential DNN NER model diag-
nostic accuracy increased as the size of the corpus grew from 100 to 14407
DM patients suffering from comorbidity diseases. The significance of clinical
notes and practitioner comments available as free text is clearly seen in the
diagnostic accuracy.

Keywords Medical Corpora, Endocrine Diseases, Big Data Healthcare
Diagnostics, ICD-10, NLP, Deep Neural Networks (DNN), International
Diabetes Federation

1 Introduction

Automated clinical diagnoses are challenging. Machines are trained on health-
care information that is usually in free running text. Hence, information in
free text is labeled to understand the context. Recently, researchers have fo-
cused on learning the context in the clinical domain. Special consideration is
given to diagnosing cancer, retinopathy or pediatric issues amongst others in
previous studies [1]–[4]. In our case, we classified diabetes mellitus (DM) and
its comorbidity diseases. Natural Language Processing (NLP) is a promising
technique for text mining. We need it to train machines or analytics to learn
the context in a domain as humans do. Named Entity Recognition (NER) is
an NLP technique among others that gives meaning to words or sequences of
words in a sentence for contextual learning. This intelligence that we incor-
porate in analytics is called semantic intelligence. NER techniques are being
applied to embed semantic intelligence in big data healthcare analytics for
decision-making in a clinical context. Manual or automated NER annotation
techniques are mostly used for embedding domain vocabulary in the analytics
models [5], [6].

Labeled or annotated text with healthcare information is required for di-
agnoses, treatments, procedures and admissions. However, mostly labeled text
is not available. But there are some unstructured texts available known as
corpora. There are some corpora collected in the medical domain by the or-
ganizations such as; Multi-parameter Intelligent Monitoring in Intensive Care
(MIMIC [7] and National Center for Biotechnology Information (NCBI) [8].



These corpora are regularly updated and maintained at the institutional level.
These corpora need to be labeled in order to learn clinical context. This is a
challenging task because manual or automated annotation is required which
is difficult and requires lots of computation and memory. In this paper, we
proposed a novel technique that uses semantic tagging/embedding [9], [10] of
tabular corpora for diagnoses.

Clinical entity classification in EHRs is challenging and takes time starting
from collecting labeled training and validation datasets that are private and
keeping patients’ identities anonymous [11]. Custom corpora are developed
through the collection of real-time datasets in Excel formats in a normal-
ized tabular form provided by Shifa International Hospital, Pakistan. These
datasets consist of endocrine patients diagnosed with diabetes mellitus (DM)
and its comorbidity diseases. These are converted into three de-normalized
flat datasets. There are standards for diagnoses known as the International
Classification of Diseases (ICD-10) and for interoperability and generalizabil-
ity of data, there is Fast Healthcare Interoperability Resources (FHIR) given
by Health Level Seven (HL7). We kept the standardization to the global per-
spective for analytics to be deployed on the cloud and therefore, used FHIR
4.0 HL7 schema to model data. ICD-10-CM codes were used to label the en-
docrine EHR datasets for diagnoses. These standardized endocrine corpora
labeled with ICD-10-CM codes are being analyzed to diagnose diabetes melli-
tus (DM) and its comorbidities in this paper. These corpora are tabular and
domain-specific instead of general therefore providing better semantic rep-
resentation of terms which makes it a good candidate for embedding. The
corpora contain clinical notes and practitioner comments fields and the ICD-
10 corpus as free text inputs for sequential NER annotation. These free text
corpora were annotated for sequence NER embedding. Manual annotation is
done using spaCy. Automated sequence NER annotation was done using a
previously built model that was trained on medical data in Flair. Finally, we
used the corpora in CSV format for sequence embedding to diagnose endocrine
diseases as a case study. Evaluation of sequence NER embedding techniques
is done through validation of results by experimental design. Experimentation
is done on our proposed mechanism to annotate and implement sequential
embedding to get corpora that are semantically intelligent. We used three
techniques for NER sequence embedding. Manual and automated annotations
using Spacy and Flair respectively were time-consuming. Correct classification
is important, and it requires including all important features and attributes of
a patient medical profile for achieving the correct diagnosis. Open-source cloud
platforms like; Anaconda, Gradient Paperspace and Google Collab, provided
us with high throughput and speed to train large unified medical corpora for
multi-classification and embedding for semantic contextual intelligence. The
standard corpora in CSV format have multiple columns or fields labeling the
corresponding textual values that we need to sequence using NLP NER tag-
ging and cluster to reach the right diagnosis. The patients in our dataset have
multiple co-existing diagnoses with DM from multiple visits hence we have
multiple classes to classify. Hence, we are trying to solve a multi-class and



semi-supervised learning problem to diagnose DM and its comorbidity dis-
eases in a patient or set of patients in large unified standardized corpora. The
corpora in tabular form gave labeled/annotated features in sequence to clas-
sify and diagnose multiple endocrine diseases. These datasets formed an input
to TensorFlow.Keras Sequential model embedded with Bi-LSTM layers and
dense layers to give diagnoses. TensorFlow Keras DNN Sequential model gave
a maximum accuracy of 0.9 for multiclass diagnoses of endocrine diseases.

Our contributions to this research entail (i) unified corpora built, (ii) a
proposed sequential NER embedding mechanism and, (iii) achieved diagnostic
accuracy of 0.9 for multiclass classification of DM and its comorbidities.

The rest of the paper is organized as follows. Section 2 discusses some
related work that is done to further organize our experiments for NER tag-
ging. The Proposed mechanism for NER embedding with Corpora details is
given in section 3 of this paper. Section 4 explores ML algorithms and NLP
tools and techniques by experimenting with traditional NER embedding ap-
proaches. Section 5 sheds light on sequential NER approaches and coming up
with a custom NER model using Spacy for manual and automated annotation.
Section 6 elaborates our proposed sequential DNN model for NER-embedded
diagnoses of DM and its comorbidities. Section 7 evaluates all the experiments
done showing that the DNN model gives better accuracy on a large corpus
with an increased number of features. The conclusion is drawn in section 8
with future intentions to take this work further and diagnose all the diseases
present in the corpora using multi-label and multiclass embedding.

2 Related Work

We did an in-depth study of previous research done in this domain of Natu-
ral Language Processing (NLP). It plays a significant role in embedding free
text. Recent research is catering domain domain-specific NER embedding, and
clinical contextual learning is gaining attention. Structured and unstructured
clinical data is annotated to train analytics for NER embedding. Medical in-
formation extracted as Electronic Health Records (EHRs) or free text forms
is labeled for getting clinical insights.

Natural Language Processing (NLP) [12] plays an important role in ex-
tracting rich information using deep phenotyping. Deep Phenotyping needs to
be more expressive and interoperable for semantic intelligence. These pheno-
types need to be in normalized form for decision-making or interpretation of
meaningful information. Hence, the dataset or corpus needs standardization
using the Human Phenotype Ontology (HPO) or coding scheme like; ICD-
10 or SNOMED, etc. Therefore, the whole process of application of NLP is
challenging and a very cautious task for the best explainability of the clinical
context. Textual clinical notes are also a good resource for data extraction
for e-Phenotyping however challenging due to their free form for which two
ways of extraction are there; symbolic and statistical [13]. Symbolic focuses on
predefined relations where statistics annotates the corpus of text for finding



semantic relationships. A study on the Natural Language Processing (NLP)
tools and techniques was done by Ruas et al. in their doctoral thesis [3] and by
Qureshi et al. for M-Health [4] that we referred to for semantic contextual em-
bedding in the medical domain. There have been growing platforms for NLP
processing on text in clinical notes to form interoperable data models but the
first one was MedLEE (Medical Language Extraction and Encoding). Mayo
Clinic [13], [16], while working on Learning Healthcare System also devised
an NLP pipeline cTAKES (clinical text analysis and knowledge extraction
system) that is open source to get clinical rules for symptoms, diagnosis, med-
ication, etc. Research has led to the development of a large corpus of clinical
text taken from Mayo Clinic in syntactic form.

The first machine learning application was applied to Phenotyping in 2007
[17] on a cohort of diabetic patients using feature selection via supervised
model construction (FSSMC) with 47 filtered features ranked on the scale for
their significance. At that time Naïve Bayes, C4.5 and IBl (Instance Bases
Learning algorithms) were used to identify diabetic patients. In another study
[18], prescription data, ICD-9 coding and clinical notes from the Unified Mod-
eling Language System (UMLS) were employed to come up with a Phenotyping
model using SVM for rheumatoid arthritis. This study took all feature struc-
tures and unstructured ones to show that SVM as in [19]–[21] was as good
on unrefined feature sets as was on engineered. Noise in data could not be
ignored for which Halpern et al. [22] used the framework of Agarwal et al.
[23] XPRESS (extraction of phenotypes from records using silver standard)
to build a platform for extraction of features and building models. These re-
searchers assumed that large datasets would mitigate the effect of label errors
by setting bounds and would generate results as good as in small data that is
clearly labeled (Gold Standard). Phenotyping was defined as three pillars; (i)
a complex relationship between multiple features, (ii) it is understandable by
medical knowledge domain experts, and (iii) its definition is transferable into
new domain knowledge. Researchers used this definition to introduce high-
throughput Phenotyping [24] that was unsupervised and transformed in a
scalable format. These phenotypes were clustered in correspondence with the
diseases and validated by medical experts. PheKnow cloud tool by Hender-
son et al. [25] evaluated phenotypes derived from previous medical literature
and associates them to the biomedical standard codes; latest International
Classification of Diseases (ICD) codes, SNOMED-CT (Systemized Nomencla-
ture of Medical – Clinical Terms), or MeSH, etc. and ranks as per relativity
thus limiting the need of medical expert review. Automated Feature Extrac-
tion for Phenotyping (AFEP) extracted features from medical resources like;
Wikipedia and Medscape, to list UMLS concepts to train the classifier. Fea-
ture sets are more refined using NLP and ICD codes are given to develop
hybrid applications like; ElasticNet on the Logistic Regression Model. SAFE
(Surrogate-Assisted Feature Extraction) extended AFEP to include other re-
sources like; Merck Manuals, Mayo Clinic UMLS and MedlinePlus Encyclope-
dia removing noise from phenotypes to classify manually labeled patients on
gold standard.



Embedding applied on sparse text in a general or clinical context to mul-
tidimensional arrays/vectors is a known task and a recent survey addresses it
in a clinical context [26]. This concept of contextual text embedding is under-
stood as a de facto standard. Details of some medical corpora having certain
characteristics are chosen for review and known embedding models are com-
pared. Nine types of clinical embeddings are discussed with evaluation meth-
ods and solutions. Distributed vector representations are recent additions to
the knowledge of natural language processing (NLP). Word embedding puts a
word as part of hundreds of dimensions to learn semantic similarity with other
similar words. Each dimension represents a feature itself. Word embeddings
represent words in fixed-length vectors, and are dense in low dimensions. Word
embedding [27] in sparse continuous vector space needs deep learning models
for quantifying high-level textual representations. Bag-of-words has previously
been used by researchers for NLP problems that represented a dimension re-
lated to the word as 1 and others as 0. These sets of 0s and 1s can be replaced
by word frequencies, term frequency-inverse document frequency (TF-IDF)
n-gram measures, etc. These previous traditional NLP methods did not con-
sider the semantic similarity of words. Embedding solved this problem with an
application related to unlabeled corpus and is used to map the text to dense
vector representations overcoming the issue of dimensionality and adhering to
finding semantic similarity in context. The survey [27] contains classification
and comparison of medical corpora. The quality of embedding models is based
on the size and type of corpus. In a large general corpus, there is a large vocab-
ulary that can be inferred. A domain-specific corpus is inferred for the semantic
similarity of terms. Medical corpora are categorized into four types; electronic
health records (EHRs), social media medical corpus, online medical sources
and scientific literature. Embedding models are compared that are; word2vec,
paragraph2vec, glove, fasttext and Elmo. Embedding applications are being
looked into for unsupervised and transfer learning as they infer an unlabeled
corpus to map onto smaller datasets for smaller tasks. Embedding models are
of two types; prediction and count-based models. Prediction-based embedding
learns a context to predict target labels whereas count-based models learn the
context to know word counts or their co-occurrences in any document or a
corpus. Tanh and softmax activations are mostly used by previously proposed
models for hidden and output layers to predict the next word of all the pos-
sible outputs for an unseen sentence of unknown dimensionality. Elmo builds
on Bi-LSTM or CNN architecture is found best for word embedding to give
context-level vector representations and understands similar contextual words
and out-of-vocabulary (OOV) or misspelled words. Its drawback is intensive
training time for massive computation.

Clinical embedding is classified as; Char, Word, Code, Concept Unique
Identifier (CUI), Augmented, Patient, Phrase, Sentence and Document embed-
ding. The resultant embedding is evaluated as intrinsic or extrinsic. Intrinsic
evaluation of embedding for encoding similar/related contextual information is
done using nearest neighbor search (NNS), clustering and similarity measures.
Extrinsic evaluation is done by testing the model accuracy for input text for



an expected output for name entity recognition (NER), medical text classi-
fication, medical concept normalization, etc. Known NLP methods listed for
clinical predictions are; word2vec [26] and stacked de-noising auto-encoders, for
medical coding; Glove [28], fasttext and word2vec have been preferred before,
for NER in the clinical domain; word2vec and fasttext were chosen, for patient
de-identification; Glove [28] or RNN encoder/decoder are used and for patient
similarity word2vec. It is understood in [26] that NLP tasks vary from corpus
to corpus and expertise of embedding applied by researchers. The size of the
unlabeled corpus also influences the quality of embedding. A huge amount of
medical text is developed by combining multiple corpora from different sources
into corpora. Domain knowledge can further endorse embedding using ICD-
10 or other standards like; RxNorm or SNOMED [29], or update embedding
using other NLP methods like; word2vec, etc. Domain-specific embedding is
improved by adding task-specific knowledge.

Information Extraction from Medical Data is an open issue discussed in
detail [30] focusing on the challenges that hinder its progression. There are two
concerns; (1) whether to develop a clinical decision support system (CDSS) or
(2) design search engines for health-related queries; recommending patients for
possible diagnosis and treatment or facilitating experts, clinicians, and doc-
tors. Although there is a great deal of hype surrounding research in the health
informatics field during our search for a solution to diagnose DM and its comor-
bidities having a large EHR diagnostic data of patients we came to know there
was a lot of room for performance improvement in these systems. Tamine and
Goeuriot [30] focused on information retrieval (IR) through state-of-the-art se-
mantic search techniques to facilitate health informatics tasks. The semantic
search capability also coincides with the feature tagging methods for medical
search systems. Tamine and Goeuriot [30] emphasized on future direction for
development in deep learning while elaborating on current research trends that
open several issues and challenges in the field. There are two methods that as-
sist in semantic search within in text or document and that are semantic gap
analysis and finding vocabulary mismatch. A semantic gap refers to the dif-
ference in conceptual meaning of two sentences, phrases, or documents where
vocabulary mismatch relates to the difference in lexical representations of two
texts. WordNet, DBPedia or MeSH for the medical domain are known exam-
ples that relate words and create associations to understand literature. Wu
et al. [31] had worked on automated free text mining to find phenotypes in a
medical context. NLP process implementation or transfer has always remained
difficult on new data or settings. Paper [31] proposes a distributed representa-
tion mechanism to train and reuse NLP models through identified phenotype
embeddings in patient profiles. 23 phenotypes were extracted from 17 million
documents of anonymous medical records from South London Maudsley, NHS
Trust in the UK, for application on 6 morbidities. The experiments were done
to reevaluate NLP models for the identification of 4 phenotypes. The proposed
approach selects the best NLP model using two measures for quantification
of reductions in duplicate and imbalance wastes. The proposed approach also
guides in the validation and retraining of NLP models to perform up to 93%



to 97% accuracy. Recent advancements show that text mining is being used to
find associating features with diseases [32]. Electronic Health Records (EHRs)
are there to keep these phenotypes in a structured format. Language models
are best at finding patterns and relationships between dependable features.
Accuracy increases by adding additional dense layers to be used as deep learn-
ing heuristics to analyze big EHR diagnostic data. These Language Models
[11], [33] like bidirectional Long Short Term Memory (Bi-LSTM) combined
with dense layers analyze big EHR data in a generalized way when given
categorical feature vectors. Dense layers [34] of variable sizes of neurons build
deep learning heuristics to analyze big complex datasets as in our case. A deep
learning model is built and trained with the perspective of continuous data
coming in to predict. Recently deep learning heuristics are seen embedded in
automated clinical diagnoses architecture for higher accuracy [35]. NER Em-
bedding [11] in EHR patients’ diagnostic records to label disease names with
associated attributes rely on annotated labeled data. Task-specific rules-based
NER embedding is a known technique in clinical text. Recent promising re-
search [7] has compared NLP techniques enhanced with neural networks for
contextual embedding with traditional embedding in a clinical setting but
could not provide a common standard mechanism to follow.

EHRs [26] is defined as a publicly available form of the known corpus.
MIMIC is a public dataset fetched from Intensive Care Units (ICU) and pre-
pared by MIT lab. The MIMIC dataset has three versions and the latest
version collected data from 2001 to 2012. Access to this dataset is given with
permission and a training course. Electronic libraries are being maintained to
tag prominent medical vocabulary for named entities. Some medical resources
mentioned in the paper [30] are; ICD-10, SNOMED-CT, MeSH and UMLS.
NER tagging requires annotating the raw text dataset to be used as train and
test sets. Annotation makes the raw text semantically intelligent to under-
stand vocabulary and the contextual relationship of words in the document.
Annotation [10] is either done manually or automatically for NER tagging.
In the medical domain, it is mostly manual and ICD-10 codes are also given
to related diagnoses by humans. Mostly it is seen that NER embedding fol-
lows Part-of-Speech (POS) tagging for best textual learning approaches [36].
In our study, we omitted the use of POS tagging and applied NER embed-
ding only that minimized the code and kept it simple. Our experimental study
took inspiration from the experiment run in [37] that predicted miscoded dia-
betes ICD-10 labels in a large EHR dataset extracted from CERNER Health
Facts, a HIPPA-compliant repository maintained by the University of South
California.

This previous research helped us to take it further and apply it to the
custom DM_Comorbid_EHR_ICD10 corpora for diagnoses of endocrine dis-
eases. Study of big data classification tools and techniques [38] was done to
direct our experimental study for diagnosing DM and its comorbidity diseases
labeled with related ICD-10-CM diagnostic codes. The data tables specifically
for diagnostics of endocrine patients were fetched from the Shifa International
Hospital EHR system. This normalized data was converted to flat tables us-



Fig. 1 The Architectural Design for Clinical Diagnoses.

ing data warehousing techniques. It was cleaned and pruned where the target
diagnostic labels were missing. We started off with some traditional ML al-
gorithms like; multinomial logistic regression, decision tree, naïve Bayes, ada
boost and light gradient boosting machine (Light GBM) as in [39]. Our pre-
vious explorations in [39] and [40] showed us some good results using deep
learning heuristics. ML algorithms integrated with traditional NLP methods
were also experimented with and results were obtained. Free text fields in a
single patient profile in Corpus100_DM_pts_2844, were manually annotated
using spaCy which gave us 789 lines of information-rich annotated text. Man-
ual annotation was a time-consuming task and we used it to train a custom
NER model for automated annotation of the corpora using the Spacy and
Sequential DNN model available in the TensorFlow Keras framework.

MetaMap [41], cTakes [41] or QuickUMLS [30] would be looked into in
future as cTakes [30] was not downloadable from ctakes.apache.org and our
use of Interactive MetaMap [30] yielded us no results.

3 Architecture and Design

A high-level diagram of our diagnosis framework is shown in figure 1. The figure
illustrates that there are five main modules in our system. Starting from the
left we provide EHR corpora as input to the extraction module. The extraction
module covers the corpora in an input format suitable for machine learning
and NLP. Various algorithms are employed in the ML module which returns
trained classifiers. Finally, the model is executed on a cloud platform to return
the primary diagnosis and comorbidity diseases. An abstraction of this figure
has recently been presented by researchers at an international conference [42].
Detailed descriptions of the modules comprising our system are described in
the subsections below.
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3.1 Unified Corpora

The work on building a knowledge base in healthcare is initiated. The corpora
were prepared from health care data made available to us from the Man-
agement Information System (MIS) of Shifa International Hospital, Pakistan.
They were provided Excel sheet templates which the health professionals filled
out and returned to us. in three parts. It is to be noted that the patient IDs
were anonymized for privacy purposes. The data model of these Excel sheets
is shown as an Entity Relationship Diagram (ERD) in figure 2. As can be seen
in the figure these entities were designed based on the HL7 FHIR v4.0 schema.
There are a total of sixteen normalized entities. The main entities are Patients,
Tests, Allergies, Medication and DiagnosticReport. These were also the main
entities that were used for features in our machine-learning algorithms. These
Excel sheets were first imported into an access database as normalized tables.
Subsequently, these were de-normalized into three flat data sheets. Data wran-
gling and preprocessing steps were carried out for cleaning and pruning where
the labeled columns had missing or misspelled diagnoses.

To keep the naming convention uniform and meaningful throughout the
rest of the paper the corpora and three corpora are named as follows: ‘Dis-
easeName_Comorbid_EHR_StandardLabelConvention’

In this paper, we are diagnosing primarily DM patients and their comor-
bidity diseases labeled with ICD-10 codes Therefore, our corpora are named
‘DM_Comorbid_EHR_ICD10’. The descriptions of the corpora comprising
our ‘DM_Comorbid_EHR_ICD10’ corpora are provided in table 1. As can
be seen, the corpus size gradually increases with the number of patients.

Table 1 Corpus Descriptions.

Corpus Name Number of Patients Comorbidities Number of Records

Corpus100_DM_pts_2844 100 4 2844
Corpus100_DM_pts_9304 100 65 9304

Corpus14407_DM_pts_33185 14407 30 33185

3.2 Feature Extraction

Table 2 illustrates through the example of a single patient record what these
corpora contain. An individual patient ID is connected to multiple visits and
is denoted as Visit Account Numbers (VAN) as can be seen in column two
of table 2 along with the medical examinations recommended by the clinician
over the course of these visits. Further, the laboratory examinations contain
multiple prescribed lab tests with their corresponding results as well as the



diagnoses. Raw text columns comprising clinical notes and practitioner com-
ments are also included in the example.

3.3 Advanced Machine / Deep Learning algorithms

This module houses a collection of advanced machine-learning algorithms with
the goal of maximizing the accuracy and the speed of diagnosis. To build an
optimal ML model, diagnostic data is required for correct prediction. However,
the challenge for the ML algorithm is to understand and interpret the variety
of formats in medical data that are quantitative e.g., tests like pH or are
categorical e.g., negative or positive bilirubin. Therefore, we used fuzzification
to unify the input features. In addition, the data is multidimensional because
there are multiple classes of diagnosis for which we employed multinomial
methods in the ML models. In fact, medical data also contains plain text e.g.,
clinical notes and practitioner comments but to process these we employed
NLP techniques mentioned in the next section.

3.4 Natural Language Processing Pipeline

As mentioned in the previous section the clinical notes and practitioner com-
ments features in the corpus cannot be reliably processed by traditional ma-
chine learning algorithms. For this text data the NLP pipeline is used for
tokenization and preprocessing using the popular NER embedding techniques
[26] that includes bag of words, TF-IDF for 1-gram, 2-gram and word2vector
frequency analysis. This data was then used to train ML models through strat-
ified sampling and was cross-validated.

3.5 Deep Neural Net (DNN) Layered Architecture for NER Embedding

For effective NLP it is important to have sequential NER embedding because
it helps understand the semantics by defining a sequence of categorical features
for diagnosis. For example, the proper sequencing for recommended medical
analysis is first examination, then the test and then its result in that order,
gives a diagnosis. The module of the NLP pipeline for sequential NER em-
bedding works as a DNN. Selected categorical fields are converted to vectors;
Examination, Test and Result. These inputs (x) are passed to the sequential
model adapted with an embedding layer, bidirectional language model lay-
ers (Bi-LSTM) and dense layers. The Output (y) dense layer then predicts
a multiclass diagnosis for a single patient labeled with ICD-10-CM codes.
NER-embedded tags are given on the true prediction of test sets. The various
submodules of the DNN module are described below.

1. Language Model: find patterns and relationships between dependent fea-
tures and are helpful for our use case of classifying diseases. Using language
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models, we associated lab results comprising of medical examinations, test
and their results. We utilized the Bidirectional Long Short-Term Memory
(Bi-LSTM) language model which when combined with dense layers al-
lowed us to analyze big EHR data in a generalized way on a given set of
categorical feature vectors. Annotations of features or events are used to
create contextual embedding taking word vectors as inputs. In our case,
we have tabular fields to annotate the values in each column vector and se-
quence them as albeit form (x, y) to classify diagnoses with corresponding
ICD-10-CM code for NER embedding.

2. Dense Layers: The accuracy of a DNN increases by adding additional dense
layers of configurable sizes of neurons to build a deep learning heuristic
tailored to our healthcare dataset. The deep learning model is specifically
trained with the intention of embedding it for automated disease diagno-
sis by streaming input data on the cloud. Our big datasets of endocrine
patients having multi-class diagnoses for a single patient add the desired
complexity to test the accuracy of such embedding models based on DNNs.
The architecture in Figure 1 has a flexible number of dense layers of vari-
able sizes with respect to the complexity of the problem at hand.

3. Sequential NER Embedding: in EHR patients’ diagnostic records to label
disease names with associated attributes rely on annotated labeled data.
NER embedding using task-specific rules is a known technique for process-
ing clinical text. In this framework, we propose a novel NER sequential
model that uses vectored categorical features; clinical examination, test
and results combined as laboratory results to tag diagnoses with ICD-10-
CM codes.

3.6 HPC Cloud Platform

Different ML and deep learning models integrated with NLP pipelines produce
various trained classifier models. These models were needed for experiments to
achieve the maximum accuracy possible. The models were then validated on
test datasets of different sizes and needed HPC cloud platforms for processing.
We consider three cloud platforms to compare performance and speed achieved
with selected classifier models. These three platforms are: (i) Anaconda, (ii)
Google Colab and (iii) Gradient Paperspace for High-Performance Computing
(HPC).

3.7 Predicted Diagnoses

The test datasets had endocrine-diagnosed diseases with DM as primary and
several other coexisting comorbid secondary diseases affecting individual pa-
tients. The outputs gained from different classifier models are presented in
different forms showing corresponding diagnoses as primary and secondary
diseases.



4 Diagnoses using Machine Learning Algorithms and NLP Pipeline

This section provides the implementation-level details of the architecture in-
troduced previously. We start with an exploratory data analysis and discuss
the machine learning and NLP algorithms applied.

4.1 Exploratory Data Analysis (EDA)

The corpora are used to diagnose corresponding diseases listed in table 4 with
their frequency of occurrences. The first partition of rows shows five disease
labels for corpus100_DM_pts_2844. The two highlighted diseases were not
included in the analysis due to repetition in the records and ambiguity in the
terminology. The other two corpora likewise have 20 and 27 diseases listed
respectively. The diseases shown in Table 4 are those that have all the features
including clinical notes and practitioner comments. These corpora are explored
for data and NLP preprocessing to be inputted into the ML algorithms to train
classification models. For the exploratory data analysis, we used visualization
techniques to characterize our data and understand the summary statistics
of the patients. Practitioners’ diagnoses listed for different endocrine diseases
with the relevance of the respective corpora with the frequencies in table 3 are
relatable with figures 3, 4, 5 and 6.

1. Gender, Age, Examination Ratio with Diagnoses: Figure 3 illustrates the
correlation between the patient gender and age with the practitioner diag-
noses present in Corpus14407_DM_pts_33185. In endocrine patients, it is
observed that the ratio of females is more compared to men. There are some
diseases like urinary tract infection, obesity, infertility, and gestational di-
abetes generally seen only in females and chronic obstructive pulmonary
disease (COPD) or pre-diabetes are identified mostly in males. It can be
observed that DM in females is typically diagnosed in the early middle ages
from 25 to 40 and then in the later ages of 50 to 60. Similarly, males are di-
agnosed with DM after their 30s. Other comorbidity diseases evolve at later
stages resulting from mismanagement of DM. Figure 4 provides a sunburst
plot of gender that can be seen in the innermost circle for corresponding
diagnoses in the middle circle and recommended examinations in the outer-
most circle. Amongst all the diseases in Corpus100_DM_pts_9304 shown
in figure 4 affecting females, DM and breast cancer are the most prevalent.
The data in figure 4 shows that practitioners mostly recommend several ex-
aminations to ascertain that a patient is suffering from a particular disease.
For example, to accurately diagnose breast cancer there are 22 possible ex-
aminations. The HbA1c examination is important as shown expanded in
the orange box on the right corner of figure 4. It is conducted to diagnose
DM and its severity in any patient as here it is done for a male patient.

2. Word Embedding for Clinical Notes and Practitioner Comments: NLP is
used to preprocess clinical notes and practitioner comments in all records
in the corpora to find embedding in sentences for input into ML algorithms.
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Fig. 4 Sunburst for Examination and Gender with diagnosis.

In Figure 5 there are three bar graphs for each corpus showing sentence
length on the x-axis and their frequencies on the y-axis. There were five
classes of diseases in Corpus100_DM_pts_2844 out of which we only con-
sidered three discarding the other two erroneous disease labels that were
repeating themselves or were not understandable. The three diseases taken
for analysis are DM, Thyroid and Hormonal as was shown in the first row
of table 4. The clinical notes and practitioner comments on these three
diseases are analyzed for sentence length. The sentences had a maximum
length of 41 words and a mean length of 3.56 which were tokenized into
a total of 10114 words with a vocabulary size of 208. On tokenizing clini-
cal notes and practitioner comments in Corpus100_DM_pts_9304, we get
29670 words total from sentences ranging from a maximum length of 60
to a mean sentence length of 31.33 with a vocabulary size of 464. In Cor-
pus14407_DM_pts_33185, the sentences ranging from a maximum length



of 76 and mean sentence length of 20.9 are tokenized into 681676 words
total, with a vocabulary size of 1151. In our understanding the varying
sentence lengths could affect the performance of ML models and diagnos-
tic results therefore we used NLP word embedding techniques to tokenize.
Tokenization into unigrams (i.e. tokenized into separate words), and re-
moval of stop words and bad symbols were done with the goal of balancing
the data and for fast processing in training multinomial ML models with
weighted average [43]. This way of preprocessing clinical notes and prac-
titioner comments did not let sentence length and vocabulary affect the
diagnostic results and performance of the ML models.
In Figure 6, three bar graphs are plotted for each of the major diseases
namely DM, hypo-glycaemia and kidney infection. Relevance to the diag-
nosis of these diseases is shown on the x-axis of some important keywords
(on the y-axis) extracted from tokenization. Note the keywords ‘tamoxifen’,
‘breast’ and ‘cancer’ have a high degree of importance. This is because
Breast cancer is treated with the medication tamoxifen and has a strong
relationship with DM. Medical research shows that patients who recovered
from breast cancer formed DM later due to chemotherapy treatment. Simi-
larly in the second graph, hypoglycemia means low blood glucose that DM
patients often undergo. ‘Increased’ and ‘urine’ are other keywords related
to hypoglycemia and in the medical literature, this test is shown to be a
very important measure that doctors recommend to patients for such di-
agnoses. This condition of low glucose results in several complications as
can be seen in the third graph of Figure 6 resulting in stress, HTN or even
kidney infection. All these correlations between words related to DM and
its comorbidities were also manually validated from the relevant literature
in the discipline. It is also interesting to note that inverse relationships
typically exist as well where for example patients prone to DM also form
diseases like breast cancer, hypoglycaemia, HTN or kidney infection.

4.2 Traditional Machine Learning Algorithms Applied

Multi-label encoding is a technique for fuzzification. We have a human-understandable
dataset having multiple categorical column fields that contain labels in text.
Traditional machine learning algorithms process quantitative data more accu-
rately and therefore label encoding converts the labels into numerical form.
This preprocessing of structured data is an important step in supervised learn-
ing. We used the LabelEncoder() method in Scikit-learn which takes multiple
columns as arguments and returns a numbered matrix for input into ML al-
gorithms.

Our ML models comprised of the below algorithms were run successfully
on our input corpora.

1. Logistic Regression [44]–[48] model is taken from statistical method to eval-
uate or distinguish between classes or events through probabilistic distribu-
tion. It may be binary in the case of two classes or multinomial if multiple
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Fig. 6 extracted words relevant to DM and comorbidities.

target classes exist with regard to any specific classification problem as
diagnosed in our case.

2. Decision Tree algorithm [15], [47], [49]–[51] breaks the problem or features
(nodes) in a tree-like structure to find sequence or association between each
node to reach a decision or a consequence and finally a target class (leaf).

3. Adaptive Boosting (AdaBoost) algorithm [49], [52]–[55] when combined
with other types of learning algorithms boosts the overall performance of
a classifier.

4.3 Analytics applied using NLP and ML techniques

NLP methods are applied to preprocess the textual fields in the datasets be-
fore the application of ML algorithms. Distributed vector representations are
recent additions to the knowledge of natural language processing (NLP) [26].
The previous traditional NLP methods did not consider the semantic similar-
ity of words. Embedding solved this problem with application on unlabeled
corpus and is used to map the text to dense vector representations overcoming
the issue of dimensionality and adhering to find semantic similarity in con-
text. The quality of embedding models is based on the size and type of corpus
whether general or domain-specific. In a large general corpus, there is a large
vocabulary to infer. The domain-specific corpus is inferred for semantic simi-
larity of terms as in our case of clinical diagnoses. Data is preprocessed taking
different NLP embedding as vector lists from a bag of words, word2vec and
TF-IDF. Analytics is then applied using cross-validation with stratified sam-
pling in logistic regression, Naïve Bayes and Light Gradient Boosting Machine
(GBM). These embedding techniques and ML algorithms are detailed below.



1. Bag of Words [10], [56]–[58] is a multi-set representation of all the vo-
cabulary present in the text or a document ready to be used in NLP for
information extraction. A bag of words has previously been used by re-
searchers for NLP problems that represented a dimension to related words
as 1 and unrelated as 0. These sets of 0s and 1s can be replaced by word
frequencies, TF-IDF and n-gram measures.

2. Term Frequency Inverse Document Frequency (TF-IDF) [56], [59]–[61] is a
statistical evaluation of a word in relevance of its importance in a document
or a corpus. It is important to assign weights to a word for its relevance in
a particular finding or prediction.

3. Word2Vec [7], [56], [59], [62], [63] is an NLP technique that uses neural
networks to learn relationships between words in a textual corpus. Each
word has a particular number to form a list represented as a vector. All the
words listed in the vector have some sort of semantic similarity that can
be deduced using a mathematical function. Word embedding puts a word
as part of hundreds of dimensions to learn semantic similarity with other
similar words. Each dimension represents a feature itself. Word embedding
represents words in fixed-length vectors, dense in low dimensions. Word
embedding in sparse continuous vector space needs deep learning models
for quantifying high-level textual representations.

4. Naïve Bayes [64]–[67] is a simple probabilistic classifier based on the Bayesian
statistical model. The Bayes classifier considers all features independently
contributing to the target label without any correlation. A multinomial
Naïve Bayes is chosen for this multi-class diagnostic problem.

5. Multinomial logistic regression [48], [67]–[70] generalizes the classifier to
multi-class problems where there are more than two target classes. It is
applied to predict categorical or nominal class variables.

6. Light Gradient Boosting Machine (Light GBM) [71]–[74] is a fast deci-
sion tree algorithm that supports a high-performance distributed gradient
boosting framework. It is used with multi-class objectives here. It is fast
as it puts continuous features in discrete bins for efficient memory usage.

5 Sequential NER Embedding Techniques

Anaconda, Google Colab and Gradient Paperspace are cloud platforms with
GPU and high-performance computing (HPC) data science frameworks that
were used to implement the NLP models for sequential NER embedding. Ana-
conda and Google Colab are open-source and widely used by the research
community, whereas Gradient Paperspace is based on a subscription-based
pricing model and all three provide analytical processing capability by sup-
porting frameworks like tensorflow. A comparative analysis of the efficiency of
these three platforms was performed as is detailed in the later sections. The
sequential NER analytical techniques used in our research are applied to the
DM_Comorbid_EHR_ICD10 corpora. Phenotyping means to extract patient
characteristics like age, gender, vitals and symptoms from datasets. Our goal



is to perform phenotyping of our corpus using text mining techniques. There
are three ways of doing this namely manual annotation through spaCy [9],
pre-trained NLP models like HunFlair [75], [76] and training of custom NLP
models using keras sequential model [77].

5.1 Manual Annotation

To extract clinical embedding from the textual fields in the dataset manual
annotation using spacy was employed. Figure 7 elaborates on this process
where nine named entities were defined for clinical diagnosis. These entities
are as follows: patient, age, gender, condition, exam, test, results, diagnosis,
and ICD-10-CM. Our naming convention is based on the FHIR HL7 schema
that has defined a comprehensive set of entities for clinical diagnosis. The
‘patient’ entity captures variables such as patient identifier, age, and gender.
Our labels ‘exam’ and ‘test’ are based on events from the HL7 ‘observation’
entity which captures different categories and methods some important ones
being vital signs, BMI, Triglyceride, HDL, and LDL. Then ‘results’ are drawn
for these observations to reach a final diagnosis. Finally, our ‘ICD-10-CM’ is
based on the ‘code’ entity in HL7. Other standardized coding schemes include
SNOMED and RxNorm.

We employed a team of nursing staff to annotate some textual data. The
free text present in our dataset is taken as sentences and individual words
or sequences of words that are annotated with related named entities as po-
sitional arguments. In figure 7, there are four compartments. Raw data is
entered into the bottom left corner box ready to be annotated. The upper
left window shows the current sentence that is being annotated where ‘loss of
appetite’, ’nausea’, ‘loss of consciousness’ and ‘dizziness’ are tagged with the
label ‘condition’. ‘DM’ is tagged with the ‘diagnosis’ label and ‘E08-E13’ as
‘ICD-10-CM’. The right-hand side window shows the spans of labeled entities
that are identifiable in different colors. Finally, on tagging each sentence when
the ‘Mark as completed’ tab is pressed all the annotated data gets collected
in the bottom right window in annotated format to be stored as a dataset. It
was observed that one staff member was able to annotate on average 70 com-
ments per hour. With an average of 6000 comments per dataset, it is not hard
to imagine that this process can easily become intractable. However, it is to
note that if this process is conducted comprehensively, it can be very useful to
build future knowledge bases as annotated datasets to train NER models with
human precision. Due to increased man hours, we preferred to use automated
annotation for our problem and finally came up with a custom bi-LSTM DNN
sequential model for NER embedding built on categorically annotated tabular
datasets.



Fig. 7 The spacy manual annotation is shown tagging named entities.

5.2 Automated Annotation

Flair [75] is an easy-to-use NLP framework built on top of PyTorch. It boasts a
unified interface for embedding and labeling sequences in contextual domain-
specific data. Flair can integrate with manual annotation tools like Spacy and
NLTK. Reusing pre-trained word embedding models is helpful for generalized
learning from unlabeled data included in an already-learned approach. Hun-
Flair [76] is a specialized version of Flair that is designed for embedding in a
medical context and has been trained on the National Center for Biotechnol-
ogy Information (NCBI-Disease) data. This model was tested and validated
on clinical notes stored in an array. The HunFlair model tags the sequence
of words in a disease entity as either a beginner word with <B-Disease>, an
inner word with <I-Disease>, or an ending word with <E-Disease>. If it is
just a single word, then it’s tagged <S-Disease>. Non-relevant sentences were
scanned as having no entities.

array =
[’I took Tylinole because my head was throbbing in pain’,
’T2 Diabetes 12 years LVF AKI’,
’T2 Diabetes Humulin 70/30 24 bd’,
’Loss appetite nausea, Polyurea loss of consciousness and dizziness’]

We found some limitations in conducting our experiment with HunFlair in
the medical learning context. It is observed in table 4 that in some sentences
where there were spelling errors as in; ‘Diabeets’ at line 6, it could not be
recognised as a DM disease. It misinterpreted some symptoms as a disease, for
example, pain (line 4), loss of appetite nausea (line 16), loss of consciousness
(line 17) and dizziness (line 18).



On finding the above limitations in the HunFlair model we trained a custom
NER model on the partially manually annotated dataset using spacy. This
model could differentiate ‘condition’ from ‘disease’. We further trained it on
labels; age, gender, family, exam, test, result, medicine, procedure, and ICD-
10-CM. Training of these embeddings would take some more time and effort
to reach maximum accuracy.

Table 4: Results for tagging tokenized array of sentences are de-
picted as Labels with mentioned accuracies.

1. ****
2. Sentence: "I took Tylinole because my head was throbbing in pain" [Tokens:

10 Token Labels: "I took Tylinole because my head was throbbing in pain
<S-Disease>"]

3. Found entities:
4. Span [10]: "pain" [Labels: Disease (0.9277)]
5. ****
6. Sentence: "T2 Diabetes 12 years LVF AKI" [Tokens: 6 Token Labels: "T2

Diabetes 12 years LVF AKI <S-Disease>"]
7. Found entities:
8. Span [6]: "AKI" [Labels: Disease (0.7772)]
9. ****

10. Sentence: "T2 Diabetes Humulin 70 / 30 24 bd" [Tokens: 8 Token Labels:
"T2 Diabetes <S-Disease> Humulin 70 / 30 24 bd"]

11. Found entities:
12. Span [2]: "Diabetes" [Labels: Disease (0.3926)]
13. ****
14. Sentence: "Loss appetite nausea , Polyurea loss of consciousness and dizzi-

ness" [Tokens: 11 Token Labels: "Loss <B-Disease> appetite <I-Disease>
nausea <E-Disease> , Polyurea <B-Disease> loss <I-Disease> of <I-
Disease> consciousness <E-Disease> and dizziness <S-Disease>"]

15. Found entities:
16. Span [1,2,3]: "Loss appetite nausea" [Labels: Disease (0.614)]
17. Span [5,6,7,8]: "Polyurea loss of consciousness" [Labels: Disease (0.72)]
18. Span [11]: "dizziness" [Labels: Disease (0.8078)]

6 TensorFlow.Keras NER Embeddings using Bi-LSTM Dense

Layered Neural Networks Architecture

We used the categorically annotated ‘DM_Comorbid_EHR_ICD10’ corpora
as input to understand the sequence of features to predict diagnosed patients
individually for DM and its comorbid diseases with their relative ICD-10-
CM codes. A custom NER model built with Spacy is used for annotation of



free text fields; ‘Note’ and ‘PC’ to extract features ‘condition’, ‘disease’, and
‘medicine’. These features relate to the patient’s current condition with which
he/she visited the doctor for consultation. A sequential model [78] based on
the TensorFlow Keras library was used to hold a stack of embedding of bidi-
rectional long short-term memory (Bi-LSTM) [79] and dense layers of varying
sizes built on the recurrent neural networks architecture. TensorFlow.Keras
[77], [80] was adopted as a neural networks interface to preprocess the finalized
sequential columns: ‘test’, ‘examine’, ‘result’, ‘condition’, ‘disease’, ‘medicine’
and ‘diagnosed’ in our ‘DM_Comorbid_EHR_ICD10’ corpora.

Table 5 shows a dry run of the Python code. The selected feature is denoted
as x, and the target feature diagnosed is denoted as y. We preferred Relu as the
activation function for DNN layers and the outer dense layer is set softmax as
its activation function. The optimizer chosen was Nesterov-accelerated Adap-
tive Momentum Estimation (NAdam). NAdam is a higher version of Adam
and uses Nesterov momentum.

The hyper-parameters such as vocabulary size, number, and size of layers,
learning rate, optimizers and accuracy metrics, in the sequential analytics
model were learned on multiple runs on each corpus. The f1-score was not
found significant.

Table 5: The pseudo-code of TensorFlow.Keras Sequential() model
to predict diagnosed diseases with ICD-10-CM codes.

1. Read corpus
2. Get lists of the feature set for x-axis
3. Get list of labels for y-axis
4. Group all features as per PatientID
5. Import TensorFlow, Keras, Bi-LSTM
6. Initialize x, y
7. Split the data for training and validation
8. Initialize sequential() model
9. Add embedding layer

10. Add bi-LSTM layers
11. Add Dense layers
12. Compile the model
13. Get resultant model and validation accuracies

Figure 8 evaluates the Sequential model with accuracies achieved for the
three feature sets selected in the three corpora. The feature sets are; (i)
(‘exam’,’test’,’result’), (ii) (‘exam’, ’test’, ’result’, ‘condition’), (iii) (‘exam’,
’test’, ’result’, ‘condition’, ‘disease’, ‘medicine’). It is observed that the overall
accuracy increases as the corpus size grows. The maximum accuracy achieved
amongst all feature sets for Corpus100_DM_pts_2844 is 0.4615 for the se-
lected feature set (‘exam’,’test’,’result’) as other features in the corpus mostly



Fig. 8 Sequential Model Accuracies achieved for the three corpora with hyper parameter
setting and selection of features.

hold null values and those records get dropped during analysis. The maximum
accuracy of 0.6 and 0.9 is achieved in Corpus100_DM_pts_9304 and Cor-
pus14407_DM_pts_33185 respectively with the maximum number of features
selected. This observation reflects the importance of free-text clinical notes and
practitioner comments from which the key attributes; condition, disease and
medicine are extracted for accurate diagnoses. Another observation made is
that the number of DNN layers increases with the size of the corpus being
analyzed where the learning rate was set at 0.05.

7 Evaluation of Analytics Performance

7.1 Evaluation and Validation Results for ML Diagnostic Algorithms

Accuracy results are stored for each input corpus and the selected classifier
models. Results are compared based on the algorithmic performance and size of
the corpus. The decision Tree algorithm in Table 6 is seen as outperforming but
there is a significant decrease in validation accuracy where there are maximum
numbers of diagnostic classes equal to 65 in 9304 instances of 100 patients.
Maximum accuracy results are observed where there are larger numbers of
classes equal to 32 but to balance it number of instances has also increased to
33185 from 14407 DM patients.

7.2 Evaluation and Validation Results for NLP embedded ML Diagnostic
Algorithms

The resultant embedding is evaluated before as intrinsic or extrinsic [26]. In-
trinsic evaluation of embedding for encoding similar/related contextual infor-



mation is done using nearest neighbor search (NNS), clustering and similarity
measures. Extrinsic evaluation is done by testing the model accuracy for input
text for an expected output for name entity recognition (NER), medical text
classification, medical concept normalization, etc. Known NLP methods are
listed for clinical predictions; word2vec and stacked de-noising auto-encoders,
for medical coding; Glove, fasttext and word2vec have been preferred before,
for NER in the clinical domain; word2vec and fasttext were chosen, for pa-
tient de-identification; Glove or RNN encoder/decoder are used and for patient
similarity word2vec. Word2vec is considered a popular technique for NER em-
bedding therefore we chose it for experimentation on our corpora.

1. Base Results on Original Corpora: In Table 7, we see that maximum ac-
curacy is achieved with logistic regression with word embedding on Cor-
pus14407_DM_pts_33185 where there are maximum instances of 33185
having 30 diagnostic classes. On smaller Corpus100_DM_pts_2844, the
accuracy is 0.89 which is not bad. Accuracy for Corpus100_DM_pts_9304
having maximum classes and maximum mean sentence length falls to 0.7.
We understand that large or multiple datasets would have a skewed class
distribution that may affect the accuracy. We used undersampling and
oversampling methods to balance the distribution of classes in corpora
[81]–[83].

2. Undersampling using Naïve Approach Undersampling is done with the
assumption that any random sample taken from a majority class would
balance the distribution of data while discarding the remaining. It is un-
derstood that the information that is lost is not significant for model train-
ing. This approach is called the naïve approach. We observed that overall
accuracy decreases for all corpora but there is a significant decrease in ac-
curacy in the smallest Corpus100_DM_pts_2844 having 2844 instances
with three classes only. Therefore we can say that with a decrease in sample
size, the accuracy deteriorates for the trained ML models.

3. Oversampling using SMOTE The Synthetic Minority Oversampling Tech-
nique (SMOTE) duplicates the samples from the minority class to balance
the distribution. The majority of classes remain untouched. The SMOTE
oversampling technique is used with naïve Bayes, logistic regression and
light GBM in this diagnostic problem. The accuracy results with oversam-
pling are also not very significant. Therefore, the original corpora prove
best to train our classification models.

4. Results Analysis of Best Model Logistic Regression gave the best accuracy
results and confusion matrices (Figure 9) depict the comparison between its
predictions on corpora with original sample size and oversampled sample
size. It is seen that with oversampled corpora the rate of predicted classes
increases.
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7.3 Evaluation for Sequential NER Embedding

We implemented sequential NER embedding using three separate annotation
tools namely spaCy [9], HunFlair [75], [76] and the Keras sequential model
[77]. These tools were compared in terms of the support they provide for the
annotation process and the amount of tagging required, the accuracy achieved
and their limitations. These details are shown in Table 8. As can be seen in
the first column manual annotation was conducted using spaCy and a custom
NER model was built and trained to tag the phenotypes ‘condition’, ‘disease’
and ‘medicine’. Manual annotation is time-consuming requiring increased man-
hours and effort to reach maximum accuracy. The next column shows that the
pre-trained HunFlair model in flair on Anaconda Jupyter Notebook was used
to annotate free text in clinical notes and practitioner comments present in the
tabular datasets that only labeled diseases with probabilistic accuracy. Tagging
the complete dataset needed high computational memory. Finally, the third
column is used to depict the performance of our proposed DNN sequential
model for NER embedding.

Table 8: Comparison of three Sequential NER Embedding Tech-
niques experimented with in this paper.

Model/s Spacy HunFlair TensorFlow.Keras Sequen-
tial()

Annotation Manual for cus-
tom built NER
model

Automatic Categorically

NER embed-
ding/tagging

Partially
Tagged

Partially
Tagged/Labeled

Partially Tagged / Classi-
fied / Diagnosed

Accuracy Precise Probabilistic Accuracy = 0.9 Max.
Limitation Huge Effort

Required/Time
Taking

High Comput-
ing Memory
Required

Validation accuracy deteri-
orates with a high no. of la-
beled diagnostic classes, but
model accuracy increases
with the size of corpus

Tools / Plat-
forms

Spacy NER
annotation
(agateteam.org)

Anaconda
Jupyter Note-
book

Anaconda/Google Co-
lab/Paperspace

The phenotype fields contained in DM_Comorbid_EHR_ICD10 corpora
in .csv format were used to annotate the corresponding ‘condition’, ‘disease’,
‘medicine’, ‘Examination’, ‘Test’, ‘Result’ in NER format associated with the
diagnoses of DM and its comorbidities. The sequential DNN model was run on
three cloud platforms; Anaconda, Google Colab and Paperspace. It is notable
in Figure 10 that Google Colab speeds up the processing with the increase in
corpus size and the model learns fast. This model gave maximum accuracies



Fig. 10 Performance Comparison of three cloud platforms on different size Big EHR data.
Anaconda, Google Colab and Gradient Paperspace Learning Rate (LR) with Time per
iteration are shown for predicted classes in each dataset.

of 0.4615, 0.6, and 0.9 where validation accuracies were 1, 1 and 0.8462 with
respect to the size of three EHR corpora and features taken as input and diag-
nosed several endocrine diseases (Figure 8 in section 6). A single patient in a
100-patient corpus (named Corpus100_DM_pts_2844 having 2844 instances
with CSV columns) is classified for multiple classes of diagnoses having DM
and coexisting Hormonal and Thyroid diseases referred to as comorbidities.
In Corpus100_DM_pts_9304 of 65 diagnosed classes, it classified eight en-
docrine diseases. In Corpus14407_DM_pts_33185 having 32 classes of diag-
nosed endocrine diseases it successfully diagnosed 17 classes with a learning
rate set to 0.05 in Google Colab (Figure 11).

8 Conclusion and Future Work

This paper has initiated the extraction, preparation and maintenance of our
unified knowledge base in the form of ‘DM_Comorbid_EHR_ICD10’. We
proposed the high-level architecture for a diagnostic framework that incorpo-
rates advanced ML integrated with NER embedding tools and techniques to
learn semantics on our corpora as illustrated in Figure 1. The sequential NER
embedding on these corpora let us deduce intelligent semantics to diagnose
DM patient and their comorbidity diseases. The corpora would grow to main-
tain data for diagnoses of other diseases in the future and fill all the entities
mentioned in Figure 2.

In this paper, we proposed the mechanism (Figure 1) in section 3 for NER
tagging of unified medical corpora for standardized medical context learning.
We specifically applied Spacy for manual annotation of a single patient pro-



Fig. 11 Multi-class classification for the patients’ medical profiles led to diagnoses of pri-
mary disease DM and its comorbidities.

file extracted from Corpus100_DM_pts_2844. HunFlair’s pre-trained NER
model was reused and tested on raw medical data that only tagged diseases.
Later we trained a custom NER model to extract attributes like ‘condition’,
‘disease’ and ‘medicine’ from free text fields; ‘Note’ and ‘PC’. We trained
our proposed DNN model based on Bi-LSTM with dense layers on Tensor-
Flow.Keras with Corpus100_DM_pts_2844, Corpus100_DM_pts_9304 and
Corpus14407_DM_pts_33185 taking key diagnostic features as inputs. The
diagnosis problem was solved for DM as well as other comorbidity diseases in
patients (Figure 11) using sequence embedding or tagging. The final features
selected were ‘exam, ‘test’, ‘result’, ‘condition’, ‘disease’ and ‘medicine’. It was
observed that running the Sequential DNN model on Corpus100_DM_pts_2844,
Corpus100_DM_pts_9304 and Corpus14407_DM_pts_33185 gave us the
validation accuracies of 1, 1 and 0.8462 respectively. These accuracies signal
the good quality of our corpora having real-time datasets. The differences in
the validation accuracy results relate to the size of each corpus and the fea-
tures that were the input. Model accuracy increased with added features and
an increase in corpus size (Figure 8).

In this paper, where we explored some NER tagging schemes, we also identi-
fied some high-performance tools and techniques that would fasten the process
of NER tagging and embedding for intelligent medical semantics in the future.
In the future, we need to do more experimentation using other mechanisms
like Auto ML, BERT or ELMo to solve multi-label and multiclass problems
for diagnostics. These domain-specific medical corpora are structured on HL7
FHIR schema with labeled fields having untagged/unlabeled text values like
clinical notes or practitioner comments. We extracted the selected feature set
from raw corpora named ‘DM_Comorbid_EHR_ICD10’ as stated in repre-
sentation learning. These extracted raw corpora would enable us to tag the
medical vocabulary used for active learning in the future. Active deep learning
would train these unified medical corpora using semi-supervised or reinforced



learning techniques. Advanced learning techniques like; active deep learning
through representation learning [38] have gained our interest. Active learning
is semi-supervised where initial input is labeled dataset to train the model.
Final evaluation would be done on unlabeled or undiagnosed classes (that
were pruned in this paper) to get an efficient learning model after multiple
iterations.
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