
On the Origins of Mass

Moshe Szweizer1* and Rivka Schlagbaum2†

1*Emeritus, Auckland, 1061, New Zealand.
2Not A�liated, Auckland, 1061, New Zealand.

*Corresponding author(s). E-mail(s): mszweizer@gmail.com;
†These authors contributed equally to this work.

Abstract

Probability, as manifested through entropy, is presented in this study as one of
the most fundamental components of physical reality. It is demonstrated that the
quantization of probability allows for the introduction of the mass phenomenon.
In simple terms, gaps in probability impose resistance to change in movement,
which observers experience as inertial mass. The model presented in the paper
builds on two probability fields that are allowed to interact. The resultant prob-
ability distribution is quantized, producing discrete probability levels. Finally, a
formula is developed that correlates the gaps in probability levels with physical
mass. The model allows for the estimation of quark masses. The masses of the
proton and neutron are arrived at with an error of under 0.04%. The masses of
sigma baryons are calculated with an error between 0.2% and 0.05%. The W
boson mass is calculated with an error of under 0.5%. The model explains why
proton is stable while other baryons are not, and it gives an explanation of the
origins and nature of dark matter. Throughout the text, the article illustrates
that the approach required to describe the nature of mass is incompatible with
the mathematical framework needed to explain other physical phenomena.

MSC Classification: 65C20 , 81P05 , 81P16 , 81Q50 , 37D45

1 Introduction

Since the conception of the General Relativity Theorem, the idea of establishing a uni-
fied model describing the fundamental forces of nature has become an active research
topic. At first, the objective was to unify electromagnetism with gravity. Later, the
strong and weak interactions became part of the objective.
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Einstein was adamant that a single theory must describe all of nature. In his Nobel
lecture in 1923, he said “The intellect seeking an integrated theory cannot rest content
with the assumption that there exist two distinct fields totally independent of each
other by their nature”. So it is a one-hundredth anniversary this year since the quest
for a unified theorem became a hot research topic. After 100 years of e↵ort, countless
research papers, numerous Nobel prizes awarded for the achievements towards that
goal, and still a huge pool of intellectual endeavour invested by the giants of scientific
thought into this topic, the theory has not been formulated.

The paper’s conclusions call into question the opinions of many great thinkers.
We will try to defend the scientific reasoning within the text, and the only indication
of authority that we may summon to the defence of this research may be found at
the beginning of a book that is not supposed to be quoted in any scientific research.
Namely, we would like to recall that the book of Genesis begins with two statements.
The first day is the creation of light, and the second is the separation of water into
two bodies. One may think that the creation of light correlates with electromagnetism.
But what would those waters be compared to?

Physics employs di↵erentials as one of the most fundamental tools. However, for
a function to be di↵erentiable, it needs to be smooth, and the relevant limit needs to
exist. When one considers sub-atomic distances, it is not a given that the assumptions
of functional smoothness still hold. In particular, why would one expect that the
distances below a Fermi can be described by smooth functions? This is why we picked
methods of the chaos theory. Those methods employ sequences of numbers, never
demanding any form of di↵erentiability from mappings.

The method is a simple one. A researcher constructs some feedback formulae and
runs a looping iteration employing a computer, feeding the results of each step as
input to the next. The problem is when to stop, or, in other words, when to decide
that the iteration is close enough to the limit that it may be terminated. An imperfect
but e↵ective method is to look at the sequence. If it stops deviating from some points
(assumed to be attractors), then one could decide to terminate the process. In our other
research projects, a 50-step iteration was su�cient. Here, we stopped after 200 steps,
as this gave us some level of confidence that the limiting values had been achieved.

The paper introduces the concept of a probability field, which is arrived at within
the framework of classical physics. It is important to stress that the discussion pre-
sented in this paper does not relate to any notions introduced through quantum
mechanics. Rather, the probability field introduced here is derived in the context
of Boltzmann-Gibbs entropy and is employed through an interaction between two
classical probability distributions. Chaos theory is used to model such interactions.

The investigation of entropic forces constitutes one of the most exciting research
topics. This is partly because of the evidence of entropy influencing a wide spectrum of
reality, but also due to entropy exerting such influence at the most fundamental levels.
In physics, it is expected that entropy provides an agent, which is expressed through
the four observable forces of nature [1]. Moreover, entropy has been recognised as a
major factor in information transmission theory [2] [3].

The paper assumes the validity of some of the currently established entropy theo-
ries. In particular, entropic time is associated with entropy production [4] [5] [6], and
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consequently, the evolution of the universe is associated with entropy production [7].
Entropy is assumed to constitute a fundamental force underlying physically observable
reality [8].

The paper looks at a set of two feedback formulae that are connected through the
standard conditional probability relationship. Such a setup models an intra-entropic
interaction. The attractor obtained in this way is analysed in the context of the
attractor’s basin of attraction.

A method of association of quark masses with probability transitions is proposed.
The transitions are observed at particularly low values of entropic time, thus allowing
us to perceive quark formation in the context of the universe’s emergence. In the
second part of the paper, the model is employed to assess the masses of composite
particles. In particular, the masses of the proton, neutron, sigma, and W boson are
calculated. The paper is closed with a discussion of the findings.

2 A note on the Chaos Theory

In mathematics, an infinite sequence of numbers may converge to a specific value,
called a limit. A precise definition of a limit was provided by Augustin-Louis Cauchy.
The definition assumes that a limit, if it exists for a given sequence, is always a singular
number. One of the roots of the chaos theory is the observation that a sequence of
numbers may tend to more than one limit, alternatively jumping from one to the next
as the sequence progresses. To avoid confusion with the concept introduced by Cauchy,
the collection of such limiting numbers is called an attractor, as if to say that these
numbers attract the sequence for large n. An attractor can be a singular number, a
finite collection of numbers, or an infinite collection, in which case the state while
“chaotic” may still be represented through a well-defined orbit.

In many cases, an attractor depends on the initial conditions of the sequence. This
leads to the notion of a “basin of attraction”. A set of initial conditions that result in
the sequence being bounded, that is, when it does not diverge to infinity, belong to
the attractors’ basin of attraction.

Thus, an attractor may consist of several distinct points. This should not be
confused with eigenstates observed in quantum mechanics. In quantum physics, quan-
tization is obtained through the imposition of boundary conditions on a wave function,
so these correspond to standing waves. In chaos theory, quantization of an attractor is
a result of specific settings of parameters determining the behaviour of the sequence
being considered, together with the initial conditions influencing the behaviour of the
attractor. [9][10]

3 Materials and Methods

In the case of a two-parameter sequence, for an initial point (p0, q0), the sequence is
initiated with (1), followed by (2), and (1), etc. This makes the “p” sequence never
exposed to the initial condition of q0, as in q1(p0, q0), p1(p0, q1), q2(p1, q1), p2(p1,
q2), etc. The sequence is iterated 200 times, and then, depending on the requirements,
either the next 200 iterations or the immediately following value is collected. As (1)
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is used in the first iteration, the two sequences are asymmetric, with the Q-sequence
having an advantage of the first move.

The basin of attraction chart is obtained by setting an equally spaced 1,000x1,000
grid of initial conditions covering the square (0, 0, pmax, qmax) = (0, 0, 1.2, 1.2).
Starting from each initial point, a trajectory is calculated and then evaluated at k =
2.05.

4 Two Parameter Chaotic Entropy – The

Methodology

Let us describe an interaction between two fields, both of which are defined by
the Boltzmann-Gibbs entropies and interact with each other via normal conditional
relationships.

qn+1 = P (q |p ) = P (q \ p)

P (p)
=

�kqnpn ln(qnpn)

pn
= �kqn ln(qnpn) (1)

pn+1 = P (p |q ) = P (q \ p)

P (q)
=

�kqnpn ln(qnpn)

qn
= �kpn ln(qnpn) (2)

where 0 < k < e (2.71) and 0 < qp
(Note: Here, k stands for a parameter that varies between 0 and Euler’s number

and does not relate to the Boltzmann constant.)
Formulae (1) and (2) constitute a two-dimensional set of feedback sequences. An

important point to note is to observe that the formulae, as they stand, do not impose a
limiting value of either q or p. The only constraint is the argument under the logarithm,
which must be within the open (0,1) interval (otherwise q or p becomes negative and
feeds a negative value to the logarithm’s argument). In order to recover probabilities
from q and p, we scaled them back by dividing each by their sum. These scaled values
are used in the subsequent calculations and shown in the figures.

An example of trajectories obtained through (1) and (2) for a sample of randomly
selected initial conditions is shown in Figure 1.

The procedure used in the construction of Figure 1 consists of the following steps:

1. Select a random pair of initial conditions (q0, p0) with values from the (0, 1) interval.
2. Choose a small value of k.
3. Run the sequence (1) (2) for 200 steps, and then collect the subsequent values of

(qn, pn) as the attractor.
4. Draw the attractor point(s) with some chosen colour.
5. Increase k by a small step and use the same initial condition for the next run.

Again, plot the attractor with the same colour. Repeat until k is close to the Euler’s
number.

6. Choose another set of initial conditions (q0, p0) and repeat steps 2–5, drawing the
results in a di↵erent colour.

7. Repeat the above with 20 or so di↵erent initial conditions. Plot each set of points
in a di↵erent colour.
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The figure clearly consists of three distinct regions. When k is below 2.0, the
attractor is represented by a multiple of points aligned along semi-continuous lines.
At k between 2.0 and 2.6, the trajectories asymptotically converge to 0 or 1, without
attaining either of these values. When k is above 2.6, the sequences become chaotic,
and the attractor consists of a collection of seemingly random points.

Fig. 1 An example of p-normalized trajectories

5 The banding, error rounding principle and the

basin of attraction

The basin of attraction is defined as a collection of initial points that are mapped
through the feedback sequence into a specific value of the attractor. It is evident from
Figure 1 that for k in the 2.0 to 2.6 range, all trajectories asymptotically tend to the
normalized values of either 1 or 0. Therefore, the attractor is either 1 or 0 for k in this
interval. Thus, if we demand that the attractor be equal to one of these two values,
the collection of the initial points is going to be split into those that lead to 0 and
those that lead to 1. Figure 2 illustrates this phenomenon, showing the distinctive
banding of the basin of attraction. Here, with k set to 2.1, any initial condition within
the green bands leads to the attractors’ value of 1, and the initial conditions within
the yellow bands lead to the attractors’ value of 0.

The error rounding principle is a result of banding and is introduced by observing
that, from the attractor’s point of view, it is impossible to establish what point within
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Fig. 2 Close up of the basin of attraction at k=2.1 and p0, q0 under 1.20 showing attractor bands

a band was used as the initial condition to arrive at this attractor’s value. The breadth
of the band limits the most precise estimation that can be established.

To arrive at this estimation, we used the p0=q0 line. This line cuts the bands in
their widest region. This allows for the maximal width of each band to be measured,
which results in a one-dimensional error-defining parameter.

The next crucial step is the error rounding. One does not consider an error to be a
precise number, but rather its magnitude is taken as a representation of its estimation.
Therefore, we scale each of the variables by expressing them as multiples of band
width. Another way of looking at this problem is to say that, because of the banding,
the most precise knowledge one may have about each of the variables can be expressed
as a multiple of the band width.
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This approach is applied to the values of p, q, and k variables. Thus, when per-
forming a computation, the sequence is run on a computer at the highest precision
available. However, the values used to obtain the normalized p, q, and k are scaled
through the banding parameter, as in below. In the case of q and p sequences, the
integer portion of the scaling is taken to implement rounding. K is set as multiples of
the width of each band, splitting the attractor into a collection of distinctive points
along the k-axis. When performing the quantization it is essential that the number is
rounded to the nearest integer rather than truncated. This operation mimics the most
naturally expected behaviour; that is, when introducing quantization, the most likely
movement would be towards the closest integer. (The formulae for the q-sequence are
shown; the p-sequence is similar.)

qinteger = Integer(rounded)(
q

(widthof band)
) (3)

qscaled = qinteger ⇤ (widthof band) (4)

ki = (widthof band) ⇤ i (5)

Thus, the computed number is divided by the width of the band, rounded to the
nearest integer, and then multiplied back by the width of the band to arrive at the
scaled value. The scaled value expresses both p and q in terms of multiples of the
band width. These values are used to normalise q and p, respectively. The attractor
charts are plotted for the normalised values of p-normalised and q-normalised against
granulated k, as in (5), (6), and (7).

qnormalised :=
qscaled

qscaled + pscaled
(6)

pnormalised :=
pscaled

pscaled + qscaled
(7)

Table 1 lists each band characteristics as measured by setting the trajectories’
initial conditions to p0=q0.

Figure 3 illustrates trajectories for bands 4, 5, and 6 in the region of small k. The
error rounding principle results in quantization both along the k-axis as well as p and
q normalised values. Now the attractor consists of distinct points, as opposed to the
original continuous lines.

5.1 Probability-Mass relationship

Figure 3 shows some form of probability quantization. It would be natural to seek a
physical interpretation of this phenomenon as well as a formula that would translate
the changes in probabilities into quantities that could be measured physically. In
particular, we are interested in how the probability chart could be interpreted in terms
of mass.

Let us start with some observations. Firstly, in the very low region of k, when
k increases, the probability p also increases. That is, an increase in k results in an
entropy increase. So, in light of the Second Law of Thermodynamics, the system should
naturally tend to move in the direction of increasing k. We feel strongly that the
opposite should be happening. That is, we would like to associate a decrease in k with
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Band Id Lower Edge p0 Upper Edge p0 Attractor Width of Band
1 0.00000001000 0.00000001086 0 0.00000000086
2 0.00000001129 0.00000009492 1 0.00000008363
3 0.00000009535 0.00000078541 0 0.00000069007
4 0.00000078584 0.00000603617 1 0.00000525033
5 0.00000603660 0.00004288499 0 0.00003684839
6 0.00004288542 0.00027871100 1 0.00023582558
7 0.00027872700 0.00163415600 0 0.00135542900
8 0.00163423800 0.00848224000 1 0.00684800200
9 0.00848412000 0.03797004000 0 0.02948592000
10 0.03797192000 0.14073648000 1 0.10276456000
11 0.14073836000 0.40388424500 0 0.26314588500
12 0.40389073800 0.78812363500 1 0.38423289700
13 0.78813012700 0.95861575200 0 0.17048562500
14 0.95861620500 0.99524989500 1 0.03663369000
15 0.99525034700 0.99965653100 0 0.00440618400
16 0.99965657900 0.99998285400 1 0.00032627500
17 0.99998290100 0.99999936400 0 0.00001646300
18 0.99999936400 0.99999998100 1 0.00000061700
19 0.99999998200 0.99999999900 0 0.00000001700

Table 1 Widths of attractor basin bands

the system coming to rest. The way to resolve this is to assume that the probability
of a particular state should be measured in the context of p-level distances. Thus, the
first two levels, with the smallest values of k, have the largest gap between them, so
they are the most probable. Moving to the right, the gaps decrease, so the probabilities
decrease accordingly.

Secondly, if we were to apply this to mass, then smaller mass should be more
probable than heavier mass. Therefore, some form of inverse relationship between
probability and mass would be expected. Thus, we would like to assume that mass is
related to some form of the inverse of the gap between the adjacent p-levels.

We would like to present a derivation that leads to a functional form we are inclined
to use in this context. We are unable to provide a strict derivation of the formula
used later on. The best we can present is a general discussion of the expected form of
relationship. The actual formula was found by the trial-and-error method.

Firstly (8), we multiply formulae (1) and (2), then (9) substitute ”y” for the prod-
uct of q and p, and finally (10) rearrange to remove the logarithm and replace it with
an exponential power. This gives:

pn+1qn+1 = k2pnqn(ln(pnqn))
2 (8)

yn+1 = k2yn(ln(yn))
2 (9)

yn = exp(
1

k
q

yn

yn+1

) (10)

Based on the formula (10), we would like to seek a relationship between mass and
probability through a formula involving an exponent and an inverse of the square root
of the line gap.
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Fig. 3 Trajectories for bands 4, 5, and 6. The central point of each band was used as the initial
condition for each trajectory.

6 The Probability Field and the Quark Masses

The following application of the modelling method allows for the retrieval of the quark
masses. The initial conditions are set to q0 = p0 for each trajectory, with values set in
the middle of the band. In Figure 4, the trajectory for the 4th band is plotted, and the
locations of the lines relevant to the quark positions are indicated. The k-parameter is
run from zero, and the p-normalised values are shown when they depart from null. For
values of k where a discontinuity of line is apparent, p-normalised attains a value of
exactly 0.5. This is not shown to enhance clarity. If 0.5 were to be included in Figure
4, the quark levels would resemble energy wells, all starting from a common 0.5 level.

It is assumed that gaining mass is achieved by transiting from each line to the line
above. The change in probability is denoted as �line. These changes in probability
are associated with the mass through (11) and (12), which show that the gain in mass
is exponentially proportional to the inverse of the square root of the probability step.

M = M0 exp(
1p

�line
) (11)

whereM0 = 0.15014817
MeV

c2
(12)

Formula (11) has not been derived, but rather it is proposed. The authors arrived
at this relationship by looking at the chart characteristics and the way the data aligns
itself. The scaling constant M0 is found by setting �line = 2/3 and assuming that
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Fig. 4 The trajectory for band 4 with quark levels

such transition corresponds to the mass of an electron, which is known to eight decimal
places.

Table 2 compares quark masses found through the model to those that are experi-
mentally measured. The experimental data is as published by the Particle Data Group
[11]. Except for the Down quark and the Top, the values proposed by the model
undershoot those found experimentally. The di↵erence is indicated in the deviation
column.

The model predicts eight quarks rather than the measured six. Between the Bottom
and the Top, an extra quark with a mass of roughly 25 GeV/c2 is expected. Taking
into account the data-model relationship’s negative bias, its mass has been estimated
to be around 28 GeV/c2, as bracketed at ID 6. Another quark (ID 8) with a mass of
roughly 1.3 TeV/c2 is also expected.

When k increases further, another set of levels appears beneath the initial one.
This terminates the sequence (making the total number of quarks eight) and may
point to a later set of distinct particles. IDs 9 to 11 represent the first three in this
collection. At this point in the investigation, it is unclear how to interpret any further
probability gaps.

Figure 5 compares experimentally found quark masses with the values proposed
by the model. The chart employs a logarithmic scale which produces a straight line
for the model.
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ID K Start K End P End Model Measured Deviation(%) Quark
1 0.0424856851 0.0426116931 0.3333333333 0.85 2.16 -60.71 Up
2 0.0443705542 0.0445963185 0.4 7.22 4.67 54.6 Down
3 0.0457041385 0.0460086578 0.4285714286 55.70 93.0 -40.11 Strange
4 0.0467542049 0.0471269784 0.4444444444 420.36 1,270 -66.9 Charm
5 0.04762576 0.0480562872 0.4545454545 3,145.54 4,180 -24.75 Bottom
6 0.0483765574 0.0488595879 0.4615384615 23,438.33 (28,000) Unknown
7 0.0490433495 0.0495736331 0.4666666667 174,225.79 172,760 0.85 Top
8 0.049636637 0.0501721709 0.4705882353 1,293,143.65 Uncharted
9 0.0501774212 0.0502141735 0.4444444444 72.86
10 0.0502194239 0.0506657021 0.4736842105 52.04
11 0.0506709524 0.0507969604 0.45 99.66

Table 2 The Model and the Experimental results (mass is in MeV/c2)

Fig. 5 Reported and Modelled Quark Masses

6.1 Other Considerations – the background energy

The model assumes the existence of two distinct probability fields. After normalisation,
these are separated by a 0–1 gap, that is, �line equals 1, for their respective base
lines. Using Formula (11), one can associate this gap with energy (mass) di↵erence of
0.408145 MeV/c2. A natural way of thinking would be to associate this energy with
some background energy that is present in all mass-related contexts. It could be called
background energy or mass, and it is reasonable to think that it may be related to
dark matter.

Another observation that needs to be pointed out is the apparent complementary
relationship between the Up quark and the electron. The Up quark line gap is 1/3,
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and the electron gap line is 2/3. Therefore, their line gaps add up to unity. This may
indicate some fundamental relationship between those two constituents.

7 Baryon masses and weak interactions

Bands 4, 5, and 6 allow for the reproduction of the baryon masses. Band 7 does not
contain the up quark due to the width of the band. Table 3 summarises the values
obtained here and compares them to the experimental data published by the Particle
Data Group [11]. A percentage deviation between the model and the experimental
results is presented in the last column.

Particle Constituents Model (MeV/c2) Experimental (MeV/c2) Di↵erence (%)
proton uud 938.394 938.272 0.013%
neutron udd 939.897 939.565 0.035%

⌃ uus 1,188.840 1,189.370 -0.05%
⌃ uds 1,193.505 1,192.642 0.07%
⌃ dds 1,199.876 1,197.449 0.20%

W Boson W 79,920.362 80,379.000 -0.57%

Table 3 Summary of results

The following is the presentation of the method as applied to each calculation.

7.1 Gluons and the probability metric

Quarks interact through the exchange of gluons. This is represented here through a
metric (13), which assumes that the interaction requires a gluon’s movement along the
k-direction and p-direction, both treated as changes in probability, with the absolute
value of the product measuring the amount of the movement. The e↵ective probability
is the mean of the movements (14).

�ij = | (kj � ki) (pj � pi) | (13)

�line =
1

2

rP
�ij

N
(14)

In (14), the summation is over all possible movements, and N stands for the number
of combinations.

7.2 The composite band error

The calculations are subject to yet another banding-related principle. A baryon con-
sists of three quarks. Each quark is distinct as it is associated with a separate band.
The quarks can interact with each other in six ways: (12), (13), (23), (21), (31), and
(32). Each interaction involves two moves, one along the k-direction and another along
the p-direction, as in (13). Therefore, when calculating the �line, there are 12 possible
sources of error.

Each movement is subject to an error associated with the width of the band. This
error is calculated as the geometric mean of the three widths. Therefore, the maximum

12



error allowed by the movements is 12 times the geometric mean of the widths. This
puts a maximum value on the probability of composite particles. Table 4 compares
the sum of the quark probabilities (listed in Table 2 in the column labelled ”P End”)
with the maximum error allowed.

Particle Quarks Sum of Quark Levels (P End) 1 + Max Error Di↵erence
proton uud 1.067 1.072 -0.005
neutron udd 1.133 1.072 0.062

⌃ uus 1.095 1.072 0.024
⌃ uds 1.162 1.072 0.090
⌃ dds 1.229 1.072 0.157

Table 4 Composite band error and the particle constituents’ probabilities

When one takes a measurement, one allows for a certain degree of error. If the
measurement result is within the margin of error, the result is deemed true. In our
scenario, we calculate a baryon’s composite probability, which is the sum of its three
constituent probabilities.

Because the initial conditions were not accurately defined, that measurement has
an associated inaccuracy. The breadth of the error is 0.072. In the case of the proton,
the constituent probabilities are 2 times 0.333 (up quarks) plus 0.40 (down quark). As
a result, the total probability of a proton is 1.066(6), which is greater than one.

That number would appear to be illogical, as probability, by definition, cannot
exceed one. However, the measurement error (0.072) surpasses 0.066. As a result,
we blame the measurement error for the protons’ excess in probability. As a conse-
quence, we may state that the probability of a proton is one while being within the
measurement error. Therefore, the proton is stable.

All the other particles listed above have composite probabilities that exceed the
measurement error. As a result, they should not appear, and in order for them to exist,
even for a brief period of time, something must accommodate the excess in probability.
This is also why they must deteriorate.

Table 4 shows that only the proton’s total probability imposed through the con-
stituents is less than the maximum error allowed. All other baryons exceed this error,
which influences the stability of those particles. This has two consequences. Firstly,
the life span of the particle is influenced, with the proton being the only truly sta-
ble one. Secondly, in order for the particle to occur, the excess probability must be
diverted somewhere.

Granulation in the k direction is introduced through (5). The width of k spacing
is dependent on the band considered, with the 4th band producing the least spaced
points and the 6th band the most spread out. The number of points is also influenced
by granulation. Table 5 lists the number of points on each level, as shown in Figure
6. Only those involved in the subsequent calculations are shown. In the case of the
neutron, the down quark on the 4th trajectory includes the 21 extended points, as
shown in Figure 6 (at k close to 0.09).
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Fig. 6 Quark lines/trajectories 4, 5, and 6 for up, down and strange quarks as used in calculations

quark W neutron proton sigma
4 5 6 4 5 6 4 5 6 4 5 6

s - 0.42857 0 0 0 0 0 0 0 0 0 59 0 0
d - 0.40000 44 10 3 44+21 0 3 0 10 0 0 0 0
u - 0.33333 25 6 1 0 6 0 25 0 1 0 6 1

Table 5 Point counts for levels as in Figure 6

7.3 Proton – u4 d5 u6

Proton is obtained by placing the first up quark on the 4th band, the down quark on the
5th band, and the second up quark on the 6th band. The number of gluon combinations
N is calculated as a sum of pairwise products, giving 10*1 + 10*25 + 25*1 = 285. The
line width is calculated with (13). These are entered into (14) and (11), which gives the
value of M in (15). To obtain the result listed in Table 3, the proton quark-constituent
masses of two down quarks and one up quark are subtracted as in (15).

protonmass = M �mu � 2md (15)

Please note. The proton is composed of one down and two up quarks, but here the
masses of one up and two down quarks are subtracted. Why? Why indeed. Also, in all
the calculations, the model-arrived quark masses, as listed in Table 2, are used, not
the experimentally found values.
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7.4 Neutron – d4 u5 d6 including the extension of the 4
th

band

Neutron is obtained by placing the first down quark on the 4th band, the up quark on
the 5th band, and the second down quark on the 6th band. The 4th band is expanded
to include points on the closest returning curve, as in Figure 3 and Figure 6 (k in the
region of 0.088). The expansion is to partially accommodate the excess of probability.
The remaining excess of probability modifies the method of combination counting,
which is increased by the maximum amount of the available error. The combinations
N are counted as: N = (65*6 + 65*3 + 6*3)* 1.071732166 = 646.254

The redirection of the excess in probability consists of two processes. Firstly, the
neutron increases the gluonic activity through the utilisation of the measurement
error, but only to its maximum value. In this setting, gluons are more active than the
ordinary combination count would have indicated. The remaining excess of probability
expands the k range to include the points on the returning branch of the trajectory.
The closest points, which are on the 4th band, are therefore included.

To obtain the line width, the summing is calculated over points that include
the expanded 4th band. These, together with the expanded combinations count, are
entered into (13) and (14).

To obtain the result listed in Table 3, the neutron quark-constituent masses of two
up quarks and one down quark are added to (11). As in the case of the proton, the
model-calculated quark masses are entered in (16).

neutronmass = M + 2mu +md (16)

Here, the result is adjusted by involving the masses of two up and one down
quarks. As in the case of the proton, this operation is anti-symmetric with respect
to the particle constituents. The overall count of the correction and the constituents
comes up to the composition of the deuteron, which is stable and, from the quark’s
composition point of view, balanced.

7.5 Sigma – uus, uds, dds

Sigma mass is calculated by placing the strange quark on the fourth trajectory and the
two up quarks on the fifth and the sixth. The formula (13) is used in the calculation,
with the summing run over each pair of quark locations. This yields the M component,
which is corrected by adding the respective quark masses. In each scenario, the strange
quark’s mass is multiplied by two.

⌃uus = M +mu +mu + 2ms (17)

⌃uds = M +mu +md + 2ms (18)

⌃dds = M +md +md + 2ms (19)

The factor of 2 in the above is understood to account for the strange quark being
two levels above the up quark location.
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7.6 The W Boson u4-d4, u5-d5 and u6-d6 transitions

The mass of the W boson is obtained by limiting the interactions to those that are
within each of the three bands. Thus, only u4-d4, u5-d5, and u6-d6 transitions are con-
sidered. The line width is calculated using (13) for each transition band independently,
and then the results are added together to represent the entire structure. Similarly,
the number of combinations is arrived at by adding combinations for each of the bands
separately, that is, 44*25 + 10*6 + 3*1 = 1,163. Formula (14) is employed to calculate
the e↵ective width and (11) to arrive at the mass listed in Table 3. No other factors
are applied in the calculation.

8 Discussion

Mass is perceived as something solid. The question being asked is how mass came to be.
Therefore, whatever originated mass could not have been solid. In other words, before
mass came into being, solidity did not exist. Light is not solid, as it does not have the
rest mass. The e↵ect is that photons have to move at the speed of light. However, mass
can be stationary. Einstein was motivated by the achievements of his Special Relativity
Theorem. Space contraction, coupled with the postulation of undistinguishable heavy
and inertial mass, gave rise to General Relativity. This allowed for the introduction of
non-solid curved space-time as an explanation of the solid mass.

It is di�cult to escape from a comment we need to make here. Einstein’s way of
thinking was like that of a pure mathematician. He demonstrated precise reasoning
when deriving his theorems, which is a trademark of this approach. It is most evident
in the Special Relativity papers, but he followed that approach in all of them, including
the foundation logic of General Relativity. However, when it came to interpretations,
he was making errors. Most talked about was the rejection of the probabilistic inter-
pretation of quantum mechanics. Instead, he should have embraced it and applied it
to the problems produced by his Special Relativity. If he had done that, he would
have arrived at a more general statement, namely that “physical measurement and
objective reality do not have to agree with each other.” This discrepancy is evident
when one considers a system at its limiting boundary. Like extremely small distances
(quantum physics), but also at extremely high speeds (close to the speed of light).
In general, one could postulate that this phenomenon occurs always, but in common
situations, due to the law of large numbers, it is hidden behind the averages.

In other words, any form of physical measurement has an associated probability. In
common experiments, a physicist associates an error estimation with it. Thus, the field
of statistics and probability estimation became incorporated into any part of physics,
not just quantum mechanics. Here, we have taken another step in that direction,
postulating that probability and entropy existed as that ’something’ that predates the
existence of solidity.

We see mass and light as having di↵erent underlying natures. Both of these phe-
nomena must have some origin. However, we would expect that these origins di↵er in
character, resulting in the fundamental di↵erence between mass and light. The prior
can be stationary, and the latter lacks that ability.
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9 Conclusion

The findings presented in the paper are the culmination of years of research into prob-
ability and its application to the nature of matter. As our investigation progressed, it
became clear that an entirely new philosophical approach was required to confront the
failure of the scientific community’s quest to establish a unified theory of everything.

The break with the traditional approach to the subject is evident on all fronts. Here
we challenge the assumption that inertial and heavy mass are indistinguishable. That
assumption was used as the foundation of General Relativity. We break with the notion
that entropy is a feature of reality, replacing this with the assumption that entropy
is a constituent resulting in physical manifestation. We also discard the traditional
mathematical tools used to describe physical phenomena. Instead, we assume that
the relationships and mappings that need to be employed are discontinuous, non-
di↵erentiable, and chaotic in their nature.

Thus, the work presented here separates inertial mass from other concepts and
uses a totally di↵erent mathematical framework to describe this phenomenon.

It is postulated here that the inertial mass is a manifestation of two entropic proba-
bility fields that interact with each other through conditional probability dependence.
This interaction, when quantized, results in probability gaps, which may be associated
with the masses of quarks and the electron. In turn, the resultant mass values may be
used to reconstruct the masses of elementary particles as measured experimentally.

The model is applied to reconstruct the masses of the proton, neutron, sigma
baryon, andW boson. These are provided here as examples to show how the model may
be applied. Each calculation di↵ers somewhat from the others, indicating that a certain
level of understanding is required in order to apply the model successfully. These
examples are provided to open a research field that may be exploited to investigate
masses of other elementary particles.

The approach presented here is fresh and new and opens a new avenue for further
research. The authors put a great deal of e↵ort into simplifying the presentation of
the text to make the paper accessible to a wide audience of readers.

Declarations

• No funds, grants, or other support was received.
• The authors have no competing interests to declare that are relevant to the content
of this article.

• All authors certify that they have no a�liations with or involvement in any orga-
nization or entity with any financial interest or non-financial interest in the subject
matter or materials discussed in this manuscript.

10 References

References

[1] Caticha, A. Entropic Dynamics Entropy 2015, 17(9), 6110-6128; https://doi.org/
10.3390/e17096110

17

https://doi.org/10.3390/e17096110
https://doi.org/10.3390/e17096110


[2] Shannon, C. E. Probability of error for optimal codes in a Gaussian channel, Bell
Syst. Tech. J., 1959, vol. 38, pp. 611–656.

[3] Verdu, S. Fifty years of Shannon theory, IEEE Transactions on Information Theory,
1998, vol. 44, no. 6, pp. 2057–2078. https://doi.org/10.1109/18.720531

[4] Martyushev, L.M.; Shaiapin, E.V. Entropic Measure of Time, and Gas Expansion

in Vacuum. Entropy, 2016, 18, 233. https://doi.org/10.3390/e18060233
[5] Caticha, Ariel, Entropic Time, AIP Conference Proceedings, 2011, 1305, pp. 200–

207. https://doi.org/10.1063/1.3573617
[6] Martyushev, L.M. On Interrelation of Time and Entropy, Entropy, 2017, 19(7),

345. https://doi.org/10.3390/e19070345
[7] Vilenchik, L. and Vilenchik, M. The Emergence and Evolution of the Universe,

Journal of High Energy Physics, Gravitation and Cosmology, (2019), 5, 884-898.
https://doi.org/10.4236/jhepgc.2019.53044

[8] Wissner-Gross, A. D., and C. E. Freer. Causal Entropic Forces, Physical Review
Letters, (2013), 110.16. http://hdl.handle.net/1721.1/79750

[9] Feigenbaum, M. Quantitative universality for a class of non-linear transformations,
J. Statist. Phys. (1978), 19, pp. 25–52.

[10] Luque, B., Lacasa, L., Ballesteros, F. J., Robledo, A. Feigenbaum graphs: a complex

network perspective of chaos PloS one,(2011), 6(9), e22411. https://doi.org/10.
1371/journal.pone.0022411

[11] R. L. Workman et al. [Particle Data Group], PTEP 2022, 083C01 (2022) https:
//doi.org/10.1093/ptep/ptac097 web: https://pdg.lbl.gov/2022/listings/contents
listings.html. Accessed 28 November 2023

18

https://doi.org/10.1109/18.720531
https://doi.org/10.3390/e18060233
https://doi.org/10.1063/1.3573617
https://doi.org/10.3390/e19070345
https://doi.org/10.4236/jhepgc.2019.53044
http://hdl.handle.net/1721.1/79750
https://doi.org/10.1371/journal.pone.0022411
https://doi.org/10.1371/journal.pone.0022411
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://pdg.lbl.gov/2022/listings/contents_listings.html
https://pdg.lbl.gov/2022/listings/contents_listings.html

	Introduction
	A note on the Chaos Theory
	Materials and Methods
	Two Parameter Chaotic Entropy – The Methodology
	The banding, error rounding principle and the basin of attraction
	Probability-Mass relationship

	The Probability Field and the Quark Masses
	Other Considerations – the background energy

	Baryon masses and weak interactions
	Gluons and the probability metric
	The composite band error
	Proton – u4 d5 u6 
	Neutron – d4 u5 d6 with the 4th band expanded 
	Sigma – uus, uds, dds
	The W Boson u4-d4, u5-d5 and u6-d6 transitions

	Discussion
	Conclusion
	References

