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Electrocardiogram (ECG) analysis plays a crucial role in diagnosing cardiovascular diseases, but

accurate interpretation of these complex signals remains challenging. This paper introduces a novel

multimodal framework(GAF-FusionNet) for ECG classi�cation that integrates time-series analysis

with image-based representation using Gramian Angular Fields (GAF). Our approach employs a

dual-layer cross-channel split attention module to adaptively fuse temporal and spatial features,

enabling nuanced integration of complementary information. We evaluate GAF-FusionNet on three

diverse ECG datasets: ECG200, ECG5000, and the MIT-BIH Arrhythmia Database. Results

demonstrate signi�cant improvements over state-of-the-art methods, with our model achieving

94.5%, 96.9%, and 99.6% accuracy on the respective datasets. Our code will soon be available at

https://github.com/Cross-Innovation-Lab/GAF-FusionNet.git.

Corresponding author: Feng Liu, lsttoy@163.com

1. Introduction

Electrocardiogram (ECG) analysis stands at the forefront of modern healthcare, serving as a critical

tool in the diagnosis and management of cardiovascular diseases, which remain the leading cause of

mortality worldwide[1][2][3][4]. The ability to accurately interpret and classify ECG signals has

profound implications for patient outcomes, early disease detection, and the advancement of

personalized medicine. However, despite decades of research and technological progress, the

challenge of precise and reliable ECG classi�cation persists, driven by the complex, non-stationary

nature of cardiac electrical activity and the subtle variations that distinguish di�erent cardiac
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conditions[5]. Traditional approaches to ECG classi�cation, ranging from manual expert

interpretation to rule-based algorithms, have shown limitations in scalability, consistency, and the

ability to capture subtle patterns indicative of cardiac abnormalities[6]. Recent advancements in

machine learning and deep learning have opened new avenues for automated ECG interpretation,

demonstrating promising results in various cardiac diagnostic tasks[7][8][9][10].

However, these approaches often treat ECG analysis as a unimodal problem, potentially overlooking

rich, complementary information embedded in di�erent representations of the signal. In this paper,

we introduce GAF-FusionNet, a novel multimodal framework that revolutionizes ECG classi�cation by

synergistically integrating time-series and image-based representations of ECG signals. At the core of

our approach is the innovative application of Gramian Angular Fields (GAF)[11]  to ECG signals, a

technique that transforms one-dimensional time series into two-dimensional images, preserving

temporal dependencies while enabling the application of powerful computer vision techniques. This

transformation bridges the gap between time series analysis and image processing, unlocking new

possibilities for feature extraction and pattern recognition in ECG data. To e�ectively leverage this

dual representation, we introduce a sophisticated dual-layer cross-channel split attention module.

Inspired by recent advancements in attention mechanisms[12], this module adaptively weights the

contributions of temporal and spatial features, facilitating nuanced integration of complementary

information. Our approach transcends simple concatenation or averaging of features, instead learning

complex, context-dependent relationships between modalities to enhance classi�cation accuracy. We

rigorously evaluate GAF-FusionNet on three diverse and widely recognized ECG datasets: ECG200,

ECG5000, and the MIT-BIH Arrhythmia Database. These datasets encompass a wide spectrum of

cardiac conditions and recording scenarios, providing a comprehensive benchmark for our approach.

Our results demonstrate signi�cant improvements over state-of-the-art methods.

The primary contributions of this work can be summarized as follows:

We introduce a novel dual-layer cross-channel split attention module, facilitating adaptive fusion

of temporal and image-based modalities in ECG classi�cation.

We demonstrate substantial improvements over State-Of-The-Art methods in classi�cation

accuracy and robustness across multiple ECG datasets, setting a new benchmark for multimodal

ECG analysis.
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We apply time series imaging algorithm to ECG signals to extract rich multi-dimensional features

from one-dimensional time series.

2. Related Work

2.1. ECG Analysis and Multimodal Learning

The �eld of ECG analysis has witnessed signi�cant advancements with the application of machine

learning and deep learning techniques. Traditional approaches using Support Vector Machines (SVM)

and Random Forests have been largely superseded by deep learning models, which have demonstrated

superior performance in capturing complex ECG patterns[6]. Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs) have emerged as powerful tools for automated ECG

interpretation.

Hannun et al.[7]  developed a deep neural network that achieved cardiologist-level performance in

detecting a wide range of heart arrhythmias, marking a signi�cant milestone in automated ECG

analysis. Building on this work, Ribeiro et al.[13]  proposed a novel approach using deep neural

networks for 12-lead ECG classi�cation, achieving high accuracy across multiple cardiac conditions.

These advancements have paved the way for more sophisticated ECG analysis techniques. Recent

research has focused on developing more e�cient and accurate models. Satria et al.[14]  introduced a

lightweight deep learning model for real-time ECG classi�cation on mobile devices, addressing the

need for computational e�ciency in practical applications. However, these approaches often treat ECG

signals as unimodal data, potentially overlooking important cross-modal relationships.

Multimodal learning has emerged as a promising paradigm in healthcare, enabling the integration of

diverse data types for more comprehensive analysis[15][16][17][18]. In the context of cardiovascular

health, Micah et al.[19]  demonstrated the e�ectiveness of combining ECG data with patient

demographics and medical history for improved prediction of cardiovascular outcomes. Madeline et

al.[20]  explored the fusion of ECG and phonocardiogram (PCG) signals for heart disease detection,

highlighting the potential of multimodal approaches in cardiology.

Despite these advancements, many multimodal methods rely on simple concatenation or averaging of

features from di�erent modalities, which may not capture complex inter-modal relationships
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e�ectively. This limitation presents an opportunity for more sophisticated fusion techniques in ECG

analysis.

2.2. Signal Processing and Attention Mechanisms

Gramian Angular Fields (GAF) have gained prominence in time series analysis due to their ability to

encode temporal dependencies in a visual format. Wang and Oates[11] introduced GAF as a novel time

series imaging technique, demonstrating its e�ectiveness in various classi�cation tasks.

The application of GAF to ECG signals, however, remains largely unexplored. This gap in the previous

studies presents an opportunity to leverage GAF’s unique properties for capturing complex temporal

patterns in cardiac electrical activity, potentially enhancing ECG classi�cation accuracy.

Attention mechanisms have revolutionized deep learning across various domains, including natural

language processing and computer vision. The seminal work by Vaswani et al.[12]  introduced the

Transformer architecture, demonstrating the power of self-attention in capturing long-range

dependencies. In the medical �eld, Wei et al.[21]  applied attention mechanisms to electronic health

records for improved patient diagnosis.

For ECG analysis speci�cally, Garcia et al.[6]  proposed an attention-based CNN for arrhythmia

detection, showing improved performance over non-attention models. Wang et al.[22]  introduced a

multi-scale attention mechanism for ECG classi�cation, demonstrating the e�ectiveness of capturing

features at di�erent temporal scales. However, these approaches typically focus on attention within a

single modality or do not fully exploit the potential of cross-modal attention in ECG analysis. This

limitation suggests a need for more advanced attention mechanisms that can e�ectively integrate

information from multiple ECG representations.

While the existing methods demonstrate signi�cant progress in ECG analysis, multimodal learning,

and attention mechanisms, several limitations persist.

First, the predominance of unimodal approaches in ECG analysis overlooks the potential bene�ts of

integrating multiple signal representations. Second, existing multimodal techniques often employ

simplistic fusion methods that may not capture complex inter-modal relationships. Third, the

application of advanced signal processing techniques like GAF to ECG data remains underexplored.

Lastly, current attention mechanisms in ECG analysis are primarily focused on single-modality data,

neglecting the potential of cross-modal attention.
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Our proposed GAF-FusionNet addresses these limitations by introducing a novel multimodal

framework that seamlessly integrates GAF imaging, sophisticated attention-based fusion, and

advanced classi�cation techniques. By combining these elements, we provide a comprehensive

solution that advances the state-of-the-art in ECG classi�cation. Our approach not only leverages the

complementary strengths of time series and image-based representations of ECG signals but also

introduces a powerful mechanism for adaptive feature fusion through our dual-layer cross-channel

split attention module. This innovative methodology has the potential to uncover subtle patterns

crucial for accurate classi�cation of cardiac conditions, thereby addressing the identi�ed gaps in

current ECG analysis research.

3. Methodology

Our proposed GAF-FusionNet framework integrates multimodal learning, Gramian Angular Field

(GAF) imaging, and advanced attention mechanisms to enhance ECG classi�cation. This section

details the key components of our methodology: ECG signal preprocessing, GAF transformation,

multimodal neural network architecture, feature fusion and classi�cation approach. Our model

work�ow is illustrated in detail in Figure 1.
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Figure 1. Overview of GAF-FusionNet.

3.1. ECG Signal Preprocessing

Let   denote a raw ECG signal of length  . We apply the following preprocessing

steps:

1. Bandpass Filtering: To remove baseline wander and high-frequency noise, we apply a

Butterworth bandpass �lter with cuto� frequencies   and  :

where   is the impulse response of the Butterworth �lter, and   denotes convolution.

X = { , , . . . , }x1 x2 xT T

fl fh

= H(X) ∗ XXfiltered (1)

H(X) ∗
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2. Normalization: We normalize the �ltered signal to zero mean and unit variance:

where   and   denote mean and standard deviation, respectively.

3. Segmentation: We segment the normalized signal into �xed-length windows of size   with an

overlap of  :

where   represents the  -th segment.

This preprocessing pipeline ensures that our model receives clean, standardized input segments for

both time series and GAF image analysis.

3.2. Gramian Angular Field Transformation

We transform each preprocessed ECG segment into a Gramian Angular Field (GAF) image using the

following steps:

Rescaling

The normalized segment   is rescaled to the interval  :

where   and   are the lower and upper bounds of the rescaled interval.

Angular Encoding

The rescaled values are encoded as angular cosine values:

GAF Matrix Computation

The Gramian Angular Field is computed as:

This results in a symmetric matrix    that captures the temporal correlations in the

original signal segment.

=Xnorm

−μ( )Xfiltered Xfiltered

σ( )Xfiltered

(2)

μ(⋅) σ(⋅)

w

o

= { |j ∈ [i(w − o) + 1, i(w − o) + o]}Si xj (3)

Si i

Si [−1, 1]

= +x~j
( − min( ))( − )xj Si u~ l

~

max( ) − min( )Si Si

l
~

(4)

= −1l
~

= 1u~

= arccos( ), −1 ≤ ≤ 1, ∈ [0,π]ϕj x~j x~j ϕj (5)

GA = cos( + )Fj,k ϕj ϕk (6)

GAF ∈ R
w×w
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3.3. Multimodal Architecture

Our GAF-FusionNet architecture consists of two parallel branches: a temporal branch processing the

original ECG time series, and a spatial branch processing the GAF images. These branches are then

combined using a novel dual-layer cross-channel split attention module.

Time Series Processing Branch

The temporal branch employs a 1D Convolutional Neural Network (CNN) followed by a Bidirectional

Long Short-Term Memory (BiLSTM) network. Let   be the input segment to this branch. The

1D CNN consists of   layers, each applying the following operation:

where   and   are the weights and biases of the  -th layer,   denotes the convolution operation, and

ReLU is the recti�ed linear unit activation function. The output of the CNN is then fed into a BiLSTM

network:

where   and   are the forward and backward LSTM cells, respectively. The �nal temporal

feature representation   is obtained by applying global average pooling to the BiLSTM output.

Image Processing Branch

The spatial branch processes the GAF images using a 2D CNN. Let   be the input to this

branch. The 2D CNN applies the following operation at each layer:

where    and    are the 2D convolutional weights and biases of the  -th layer. The �nal spatial

feature representation    is obtained by applying global average pooling to the output of the

last convolutional layer.

Dual-Layer Cross-Channel Split Attention Module

We introduce a novel dual-layer cross-channel split attention module to adaptively fuse information

from both branches. This module consists of two layers: intra-modality attention and cross-modality

∈Si R
w×1

L

= ReLU( ∗ + )hl Wl hl−1 bl (7)

Wl bl l ∗

ht
→

ht
←

ht

= ( , )LSTMf xt ht−1

−→−

= ( , )LSTMb xt ht+1

← −−

= [ , ]ht
→

ht
←

(8)

(9)

(10)

LSTMf LSTMb

∈Ft R
dt

∈GAFi R
w×w

= ReLU( ∗ + )Hl Wl Hl−1 Bl (11)

Wl Bl l

∈Fs R
ds
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attention.

Layer 1: Intra-modality Attention

For each modality, we compute self-attention weights:

where   and   are linear projections of   and  , respectively.

Layer 2: Cross-modality Attention

We then compute cross-modality attention:

where  . The �nal attended features are computed as:

where LayerNorm denotes layer normalization. This dual-layer attention mechanism allows for

adaptive weighting of features both within and across modalities, enabling the model to focus on the

most relevant information for classi�cation.

3.4. Feature Fusion

The attended features from both branches are concatenated and passed through a multi-layer

perceptron (MLP) for �nal feature fusion:

where   denotes concatenation.

3.5. Classi�cation Approach

The fused features    are used for ECG classi�cation. We employ a softmax classi�er for multi-

class classi�cation:

At

As

= softmax( )
QtK

T
t

dt
−−

√
Vt

= softmax( )
QsK

T
s

ds
−−

√
Vs

(12)

(13)

, ,Qt Kt Vt , ,Qs Ks Vs Ft Fs
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Cs
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QtK
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s
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√
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(15)

d = min( , )dt ds
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t
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s

= LayerNorm( + + )Ft At Ct

= LayerNorm( + + )Fs As Cs

(16)

(17)
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where   and   are the weights and biases of the classi�cation layer, and   represents the predicted

class probabilities. We train the entire GAF-FusionNet end-to-end using the cross-entropy loss:

where    is the number of samples,    is the number of classes,    is the true label, and    is the

predicted probability for the  -th class of the  -th sample. We optimize the model parameters using

the Adam optimizer[23] with a learning rate schedule:

where   is the initial learning rate,   is a decay factor, and   is the current training step.

4. Experiments and Results

In this section, we present a comprehensive evaluation of our proposed GAF-FusionNet framework for

ECG classi�cation. We conduct extensive experiments on three widely used ECG datasets, comparing

our method with state-of-the-art approaches and performing detailed ablation studies to validate the

e�ectiveness of each component in our model.

4.1. Experimental Setup

Datasets

We evaluate GAF-FusionNet on three diverse ECG datasets:

ECG200: A binary classi�cation dataset containing 200 ECG samples, each with 96 time points[24].

ECG5000: A �ve-class dataset with 5,000 ECG samples, each consisting of 140 time points[24].

MIT-BIH Arrhythmia: A comprehensive dataset containing 48 half-hour excerpts of two-channel

ambulatory ECG recordings, with 109,446 beats from 15 di�erent heartbeat types[25].

Table 1 summarizes the key characteristics of these datasets.

= softmax( + )ŷ WcFfused bc (19)

Wc bc ŷ

L = − log( )∑
i=1

N

∑
j=1

C

yi,j ŷ i,j (20)

N C yi,j ŷ i,j

j i

= ⋅ηt η0
1

1 + βt
− −−−−

√
(21)

η0 β t
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Dataset Classes Samples Length Freq (Hz) Train/Test Split

ECG200 2 200 96 180 100/100

ECG5000 5 5,000 140 125 4,500/500

MIT-BIH 15 109,446 360 360 87,554/21,892

Table 1. Summary of ECG datasets used in the experiments

Implementation Details

We implement GAF-FusionNet using PyTorch 2.0.0. The model is trained on an NVIDIA RTX 4090 GPU

with 128GB memory. We use the Adam optimizer with an initial learning rate of 0.001 and a batch size

of 64. The learning rate is adjusted using a cosine annealing schedule. We use Resnet34, pre-trained

by ImageNet, as backnone of the feature extraction layer. Then, we train the model for 100 epochs and

select the best-performing model based on validation performance.

Evaluation Metrics

We evaluate the performance of our model using the following metrics:

Accuracy: The proportion of correct predictions among the total number of cases examined.

F1-score: The harmonic mean of precision and recall, providing a balanced measure of the model’s

performance.

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): A measure of the model’s

ability to distinguish between classes.

For multi-class datasets (ECG5000 and MIT-BIH), we report the macro-averaged F1-score and AUC-

ROC.

4.2. Comparative Analysis

Comparison with State-of-the-Art Methods

We compare GAF-FusionNet with several methods are common in time series classi�cation tasks:
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DNN[7]: This method employs deep neural network directly on the raw ECG time series. It has

shown remarkable performance in detecting a wide range of cardiac arrhythmias, achieving

cardiologist-level accuracy in some cases.

LSTM-FCN[26]: This approach combines Long Short-Term Memory (LSTM) networks with Fully

Convolutional Networks (FCN). It leverages the ability of LSTMs to capture long-term

dependencies in time series data, while FCNs extract local features e�ectively.

Informer[27]: This is a novel long sequence time-series forecasting model that uses a ProbSparse

self-attention mechanism to e�ciently handle long-range dependencies. Although originally

designed for forecasting, it has shown promise in various time-series classi�cation tasks,

including ECG analysis.

Attention-based CNN[6]: This method integrates attention mechanisms into convolutional neural

networks. It allows the model to focus on the most relevant parts of the ECG signal, potentially

improving classi�cation performance, especially for arrhythmia detection.

Multi-Scale CNN[22]: This approach uses convolutional neural networks at multiple scales to

capture both local and global features in ECG signals. It is particularly e�ective in detecting

patterns that occur at di�erent temporal resolutions.

Table 2 presents the performance comparison on all three datasets.

Method

ECG200 ECG5000 MIT-BIH

Acc.(%) F1(%) AUC Acc.(%) F1(%) AUC Acc.(%) F1(%) AUC

DNN 88.5 88.3 0.889 93.2 93.0 0.951 95.7 94.8 0.979

LSTM-FCN 91.0 90.8 0.915 94.1 93.9 0.945 96.3 95.5 0.971

Informer 91.5 91.3 0.926 94.8 94.6 0.958 97.1 96.4 0.973

Attention-CNN 92.0 91.8 0.931 95.3 95.1 0.960 97.5 96.8 0.981

Multi-Scale CNN 92.5 92.3 0.935 95.7 95.5 0.962 97.8 97.1 0.985

GAF-FusionNet 94.5 94.3 0.957 96.9 96.7 0.989 99.6 99.5 0.997

Table 2. Performance comparison with state-of-the-art methods
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As shown in Table 2, GAF-FusionNet consistently outperforms all baseline methods across all datasets

and metrics. The performance gain is particularly signi�cant on the ECG200 dataset, where our

method achieves a 2.0% improvement in accuracy over the best-performing baseline. On the larger

and more complex MIT-BIH dataset, GAF-FusionNet demonstrates its superiority with a 0.8%

increase in accuracy and a 0.9% improvement in F1-score compared to the state-of-the-art Multi-

Scale CNN.

Ablation Studies

To validate the e�ectiveness of each component in GAF-FusionNet, we conduct ablation studies by

removing or replacing key components of our model. Table 3 presents the results of these studies on

the MIT-BIH dataset.

Model Variant Accuracy(%) F1-score(%) AUC-ROC

GAF-FusionNet (Full) 99.6 99.5 0.997

w/o Dual Attention 97.8 97.2 0.995

w/o Cross-Channel 98.1 97.5 0.996

Single Modality (Time Series) 97.0 96.3 0.992

Single Modality (GAF) 97.5 97.8 0.989

Table 3. Ablation study results on the MIT-BIH dataset

The ablation results demonstrate the importance of each component in our framework:

Replacing the dual-layer attention with simple concatenation (w/o Dual Attention) results in a

1.8% decrease in accuracy, emphasizing the e�ectiveness of our attention mechanism.

Removing the cross-channel component (w/o Cross-Channel) causes a 1.5% reduction in accuracy,

demonstrating the importance of inter-modality feature interactions.
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Using only a single modality (either time series or GAF) signi�cantly degrades performance. This

not only con�rms the bene�ts of our multimodal architecture, but also highlights the value we

complement with image modality.

5. Conclusion

In this paper, we presented GAF-FusionNet, a novel multimodal framework for ECG classi�cation that

synergistically integrates time-series analysis and image-based representation through Gramian

Angular Fields. Our approach demonstrates signi�cant improvements over state-of-the-art methods

across multiple datasets, showcasing the potential of multimodal learning in biomedical signal

analysis.

While demonstrating promising results, has certain limitations. The experiments were conducted on

public datasets, which may not fully capture the complexity of real-world clinical ECG data.

Furthermore, the computational demands of GAF-FusionNet may limit its applicability in resource-

constrained environments.

Future research directions include validating the model on more diverse clinical datasets and

exploring optimization techniques to enhance computational e�ciency. Additionally, investigating

the interpretability of model decisions could provide valuable insights for clinicians, potentially aiding

in the understanding and treatment of psychiatric disorders.

In conclusion, GAF-FusionNet represents a step forward in ECG classi�cation, utilizing multimodal

learning and attention mechanisms. Further re�nement of this approach may contribute to

advancements in cardiovascular diagnostics and patient care.
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