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Abstract

Optimization is a fundamental idea of mathematics, yet it is not that much in the focus of widespread digital teaching

tools. The paper first explores the relevance of optimality and then shows how the idea is supported in the FeliX

dynamic geometry online system. The idea is to include optimality statements together with equality statements as

means to describe geometric scenes. Some reports from teaching experiences are discussed as well.
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Introduction

Optimization problems are central in mathematics; for example, there are several scientific journals that are devoted

exclusively to optimization, such as Optimization, Journal of Optimization Theory and Applications, Applied Mathematics &

Optimization, Open Journal of Mathematical Optimization. However, in mathematics education, their role is much less

prominent. Of course, there are a lot of high school problems that can be solved by an application of differential calculus,

and there is also literature on solving optimality problems by means of inequalities, e.g. (Schupp, 1992), but many others

miss the connection, e.g., OECD (2016). Some research has investigated certain cognitive aspects of solving optimization

problems (e.g., Malaspina & Font, 2010). Moreover, there is some research investigating optimization with technology,

e.g., Bushmeleva et al. (2018). And, of course, there are lots of GeoGebra applets showing solutions to specific

optimization problems. However, in these approaches, optimization is not used directly as a modelling tool; i.e.,

technology does not mediate between the context and the solution but between a modified problem description and the

solution. Therefore, in this paper, we show how optimization can be built directly into a dynamic geometry environment. It

is not meant to say that other approaches are not sensible, but that the integration shown here widens the didactical
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repertoire in teaching optimization.

Theory

Bruner (1960) put forth the idea of fundamental ideas. Vohns (2016) has investigated the reception of this idea in

mathematics education and reports that at least some researchers include optimization in the list of fundamental ideas of

mathematics, e.g., Schreiber (1979). Of course, there are plenty of arguments to justify this judgement:

Optimality is used in the characterization of many concepts, e.g., the integer divisor as the largest integer making a

product not exceed a given number, the least common multiple, greatest common divisor, derivative as slope of the

locally best fitting linear function, integration as approximating functions by step functions, mean value of numbers as

the number with minimal square distance, regression, line segments as shortest paths between two points in the

Euclidean plane.

Many fundamental mathematical objects that are (typically) not characterized by optimality properties nevertheless

have optimal properties, e.g., the square as the rectangle with the greatest area given a fixed circumference.

Optimization problems have been around since the earliest days of mathematics; consider e.g., Dido’s problem or the

problem of the Brachistochrone.

Optimization is a large domain with many subdomains, such as constraint optimization, linear optimization, discrete

optimization, and geometric optimization, and optimization appears in most disciplines of mathematics and many fields

of applied mathematics (e.g., operations research).

Optimality is a concept that allows one to coin concepts in many applied disciplines; e.g., in physics, one can derive the

equations of mechanics, electrodynamics, general relativity as minimizers of certain functionals, and the quantum

versions of these theories as variations around this classical solution, and Mill’s moral theory renders the choice of the

morally adequate action as an optimization problem.

Regarding school mathematics, one may hold the view (e.g., Klein) that functions and functional thinking are central.

There are three basic operations one can do with a single function with values in an ordered set:

1. Evaluation: Given an input, one determines the value of the function.

2. Solving: Find an input that produces a certain output, e.g., a zero.

3. Optimization: Find a minimum or maximum.

These three operations can be understood in a wide sense. Calculation of function values includes e.g., all formulas

calculated in spreadsheets, the determination of the position of a constructed element in a dynamic geometry environment

(which is, essentially, a spreadsheet with a different user interface), programs in a functional programming language.

Solving and optimization in this wider sense can be achieved in Excel by the plug-in called “Solver” and in dynamic

geometry by guided dragging (Arzarello et al., 2002) to a position that fulfills some property. However, the standard mode

of working of these tools is by function evaluation.
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Note that additional operations (additions, composition, etc.) occur when more than one function comes into play, but I will

ignore this further complexification. Instead, I will cross these operations with Kieran’s activities in algebra (Kieran, 2004).

She distinguished generational activities, transformational activities, and global/meta-level activities. Crossing relations

with the three operations given above are displayed in Table 1.

 Evaluating Solving Optimization

Generational Setting up an expression Setting up an equation
Setting up an optimization
problem

Transformational Equivalent expressions, e.g., simplification Equivalent transformation of equations  

Global/meta
e.g., structural investigations (being symmetric in
variables)

e.g., classification by types of solutions
(algebraic)

 

Table 1. Kieran’s activities and operations with functions

The two cells left blank in Table 1 indicate that the relevant topics are usually not taught in school. It is not meant to say

that there is nothing to fill into these cells – quite to the contrary. Transformational activities for optimization include the

following: An extremum is not affected by applying a strictly monotonic increasing function. This includes the special cases

of adding a constant, multiplying by a positive constant, taking squares, square roots, or logarithms. Applying a decreasing

function exchanges minima and maxima. Or the composition rule: f(g(x)) has a maximum in x0 if f has a maximum in y0

 and∃x0:y0 = g(x0). All these could be dealt with in school, including the discovery and justification of these transformation

rules. Global and meta-activities could center around the number of maxima or the question under which conditions one

may conclude that between two maxima there exists a minimum. Moreover, the relevance of convexity for optimization

could be reflected.

By now, it should be clear that in typical math curricula, operations with optimization are neglected in comparison to the

other two operations. Correspondingly, most digital tools used in school mathematics do not support optimization very

well. For optimization problems in one variable, GeoGebra can, of course, plot graphs and automatically find minima and

maxima. More advanced computer algebra systems offer implementations of numerical (and sometimes symbolic)

optimization algorithms that can often also include constraints set by equations or inequalities. For example, the classical

problem of what cylinder with 1000cm3 volume has the least surface area (and thus – up to some idealization – least use

of material) can be solved in Mathematica by the command FindMinimum[{2*Pi*r^2+2*Pi*r*h, Pi*r^2*h==1000}, {{r,1},

{h,1}}]

and in Maxima by:

fmin_cobyla(2*%pi*r^2+2*%pi*r*h, [r, h], [1,1], 

 constraints= [%pi*r^2*h=1000]);

These tools are very flexible and powerful, and teaching should aim to educate students who are both competent in using

them and in understanding them (e.g., knowing how their way of working implies certain limitations). However, to develop
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a more intuitive understanding of the meaning and properties of optimization, it seems desirable to have tools at hand that

allow for a more direct interaction with the optimization problem. The current paper presents a possible implementation of

optimization within a relational dynamic geometry environment.

The FeliX-Systems

FeliX is an algebraic relational dynamic geometry environment that exists in various versions (Oldenburg, 2007;

Oldenburg, 2022). There are versions built on top of Mathematica, and they provide some advanced symbolic analysis

tools, but here I restrict to two versions that are available online. The first is a realization in JavaScript that is available

online via https://myweb.rz.uni-augsburg.de/~oldenbre/jsfelix/F2d/jxfelix.html. Its user interface consists of three main

components (see Figure 1): A geometry view of the Euclidean plane with a Cartesian coordinate system, a table that

shows all points and their current coordinates, and an equation table that may, in fact, take equations, inequalities, and

expressions that are built up from the coordinate variables of the points.

Figure 1. The FeliX window

For a point P, the variables Px and Py refer to its Cartesian coordinates. The equations and inequalities that are entered

into the equation list are respected while dragging. For example, if one has three points A, B, C and enters the equations

2*Bx=Ax+Cx and 2*By=Ay+Cy, then B will be the midpoint of A and C. Still, all three points can be dragged with the
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mouse. There is no distinction between free points and constructed points, and neither the order of object creation nor the

order of equations has an effect on the dragging behavior: There is just a set of objects and a set of equations. For

convenience, there are functions to calculate the length of segments and angles between them, but of course, all this

could be achieved by using the standard formulas learned in high school explicitly. The same holds for the green buttons

that automate the process of entering equations that let certain lines be parallel or orthogonal. Besides equations and

inequations, the equation editor can also hold expressions. By default, they have no influence on the dragging behavior;

their value is calculated and displayed in the table. If, however, one activates the checkbox “valid” for an expression, then

this expression will be minimized. Applications will be shown later.

The second realization, GGBFeliX, of FeliX that shall be discussed here is built on top of GeoGebra and is available under

https://myweb.rz.uni-augsburg.de/~oldenbre/GGB/ggbFelix.html. Its user interface (see fig. 2) consists of an unmodified

GeoGebra applet that is controlled by a JavaScript layer. Equations are entered into a single text field with multiple

equations separated by semicolons. Simple test cases are to enter Ax=Bx or Ax>2*By or the like. While coordinates of

points, equations, and inequalities work exactly as in FeliX, there is a difference regarding segments and angles. If there is

a segment named x, then the variable Sgx represents the segment's length, and Sgxang represents the segment's angle

with respect to the x-axis. Thus, one can make right angles either by using the expression for dot products or by setting

e.g. Sgeang= Sgfang+pi/2 to set segments e and f orthogonal. Expressions to be minimized have to be given inside a

mini(…) function. Figure 2 shows an example: First, a quadrilateral has been drawn from four segments, and this has been

turned into a parallelogram by setting opposite sides to have the same length. This parallelogram is restricted to become a

rectangle by setting one of the angles to 90°. Finally, its area is fixed to 25 by Sgf*Sgi=25, and it is asked to minimize the

circumference by adding mini(Sgf+Sgi+Sgg+Sgh). This gives, of course, a rigid square that can still be dragged around.

Figure 2. The GGBFeliX window. The full text in the box is:

Sgi=Sgg; Sgf=Sgh; Sgiang=Sghang+pi/2; Sgf*Sgi=25; mini(Sgf+Sgi+Sgg+Sgh)
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Examples of optimizations

The example from Fig. 2 showed already a first use case. Here, some further easy examples shall demonstrate how the

tool can be used to investigate optimality conditions. In Fig. 3 (left), three points A, B, C have been created and set to be

fixed. The segments to a fourth point D are constructed, and by dragging D around and watching the sum of the lengths of

these segments, one may get the idea that there is a unique point that minimizes this sum of distances. This is, in fact,

true (it is the Fermat-Torricelli point), and the command mini(Sgf+Sgg+Sgh) moves D directly to the optimal position. In

the FeliX versions not based on GeoGebra, one may still drag the points A, B, C and observe where the point lies, and

this might also give support to the hypothesis that the angles between the three segments are always 120°. Minimizing

the sum of squared lengths, i.e., by mini(Sgf^2+Sgg^2+Sgh^2), one gets the center of the triangle.

Figure 3. The Fermat-Point of a triangle (left) and the center (right) of a triangle

Figure 4 (left) gives a physical application: A swing consisting of two massless strings f, h of length 4 that are fixed at two

points A, B and a wooden beam g of length 2. At rest, the swing will hang in such a way that the potential energy of the

beam is minimized. This potential energy is minimal if the center of mass, which lies in the point 

1
2Cx +

1
2Dx,

1
2Cy +

1
2Dy ,

is as low as possible, thus it suffices to minimize Cy+Dy. The whole model is given by Ax=1;Ay=5;Bx=6;By=5; Sgg=2;

Sgf=4; Sgh=4; mini(Cy+Dy).

Another physical example shows the refraction of light: Points A and C are fixed, and the time required for a ray to travel

from A to C is to be minimized, assuming that the speed in the part below the x-axis is only half as high as above. This

situation can be modelled by the description Ax=1;Ay=3; By=0; Cx=3;Cy=-3; mini(Sgf+2*Sgg), which results in the

configuration of Fig. 4 (right). Again, in versions other than that based on GeoGebra, the points A and C can be moved to

see the dynamics of the solution.

( )
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Figure 5 shows a discrete hanging chain. Points A and E are fixed (recall that they still can be moved explicitly with the

mouse), and B, C, D are unrestricted points. The segments s1, s2, s3, s4 between AB, BC, CD, DE are all set to have

length 3. Their midpoints F, G, H, I are constructed, and the expression Fy+Gy+Hy+Iy that corresponds to the potential

energy of the chain is minimized. It is interesting how natural the chain behaves when, e.g., E is raised further or moved

horizontally.

Figure 4. A swing and light refraction

Figure 5. Discrete hanging chain

Teaching experiences
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So far, the FeliX versions with built-in optimization have only been used with teacher students at the university. Students

were introduced to the possibilities of optimization, and they had to solve certain problems such as finding the Fermat-

Torricelli point. It turned out that no specific problems occurred: Specifying an optimality condition seemed as natural to

students as constraining a construction by equations or inequations. However, occasionally students got stuck when they

entered an expression to be minimized that was not bounded from below, and hence the minimization process did not

converge. However, such situations can be used to discuss questions of existence and uniqueness of optimizers, and this

can give insights that are valuable beyond the use of this specific tool.

Conclusion

The position of points in Euclidean geometry can be fixed by calculating their coordinates from certain functions (that may

correspond to classical geometric rules-compass-constructions), as is done in dynamic geometry systems, by solutions of

certain equations, as is done in relational geometry systems such as parametric CAD programs, or, last but not least, by

optimality conditions. This work has shown that it is indeed possible to realize a dynamic geometry system that allows

optimality conditions as means to specify configurations. It is yet an open question if this can be successfully used by

younger students, and thus further research is necessary. However, experience with students suggests that this might be

an adequate way to enrich the possibilities to interact with mathematical concepts.
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