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Abstract 

The	main	purpose	of	this	article	is	to	prove	that,	under	certain	assumptions	in	a	linear	
prediction	setting,	optimal	methods	based	upon	model	reduction	and	even	an	optimal	
predictor	can	be	provided.	The	optimality	is	formulated	in	terms	of	the	mean	square	
prediction	error.	The	optimal	model	reduction	turns	out,	under	a	certain	assumption,	to	
correspond	to	the	statistical	model	for	partial	least	squares	discussed	by	the	author	
elsewhere,	and	under	certain	specific	conditions,	a	partial	least	squares	type	predictor	is	
proved	to	be	good	compared	to	all	other	predictors.	In	order	to	prove	some	of	the	results	of	
this	article,	techniques	from	quantum	theory	are	used.	Thus,	the	article	is	based	upon	a	
synthesis	of	three	cultures:	mathematical	statistics	as	a	basis,	algorithms	introduced	by	
chemometricians	and	used	very	much	by	applied	scientists	as	a	background,	and	finally,	
mathematical	techniques	from	quantum	theory	to	complete	some	of	the	proofs.	

 

1. Introduction 

There	exists	a	large	number	of	different	statistical	methods	for	the	linear	prediction	of	a	
single	variable	𝑦	from	𝑝	variables	𝑥!, . . . , 𝑥".	The	user	of	statistics	is	often	left	to	choose	the	
method	that	is	familiar	to	him	or	her,	or	the	method	for	which	he/she	has	access	to	the	
relevant	software.	When	𝑝	is	small,	multiple	linear	regression	is	the	method	to	choose,	but	
in	many	practical	applications,	𝑝	is	large,	often	larger	than	the	number	𝑛	of	units	where	
data	is	available.	

For	this	situation,	partial	least	squares	(PLS)	regression	is	a	method	that	is	emerging	and	
recommended	also	by	some	statisticians.	The	method	was	developed	by	chemometricians	
and	has	grown	popular	among	very	many	applied	researchers.	It	was	linked	to	a	statistical	
model	by	Helland[1],	see	also	Helland[2][3],	Næs	and	Helland[4],	and	Helland	and	Almøy[5].	
The	model	was	generalized	to	the	case	of	multivariate	𝑦	and	tied	to	Dennis	Cook’s	envelope	
model	in	Cook	et	al.[6].	More	recently,	Cook	and	Forzani[7]	have	studied	the	asymptotics	of	
PLS	regression	as	𝑛	and	𝑝	tend	to	infinity	and	have	given	strong	evidence	that	this	should	
be	the	method	of	choice	in	the	case	of	abundant	regression,	where	many	of	the	
predictors	𝑥# 	contribute	information	about	the	response	𝑦.	
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For	the	present	article,	the	motivation	for	PLS	regression	and	related	methods	that	is	
advocated	in	Helland	et	al.[8]	is	particularly	relevant.	Here	the	random	𝑥	model	is	the	point	
of	departure,	and	a	reduced	model	is	approached	through	the	group	of	rotations	of	the	
eigenvectors	for	the	𝑥-covariance	matrix	together	with	scale	transformations	for	the	
regression	coefficients.	Below,	this	group	and	the	orbits	of	the	group	will	play	a	
fundamental	role.	

A	completely	different	area	where	multiple	linear	regression	may	be	one	of	the	building	
blocks	is	machine	learning,	an	important	part	of	artificial	intelligence.	There	is	a	large	
literature	on	machine	learning	and	also	a	growing	literature	on	the	connections	between	
artificial	intelligence	and	statistical	modeling.	Of	special	interest	for	the	present	article	is	
that	there	recently	have	been	several	investigations	related	to	links	between	machine	
learning	and	quantum-mechanical	models,	see	the	review	article	by	Dunjko	and	Briegel[9].	
Given	these	investigations	and	the	strong	link	between	machine	learning	and	statistics,	it	is	
strange	that	there	has	up	to	now	been	very	little	published	research	on	possible	links	
between	statistical	modeling	and	quantum	mechanics.	It	is	one	purpose	of	the	present	
article	to	discuss	such	a	link.	See	also	parts	of	the	book	by	Helland[10].	

After	that	book	was	finished,	I	have	written	several	articles	on	the	foundation	of	quantum	
theory,	and	some	of	these	have	been	published	in	leading	physics	journals.	My	final	
approach	towards	the	foundation	is	now	given	in	Helland[11][12][13].	This	is	also	part	of	the	
basis	for	the	present	article.	

The	plan	of	the	article	is	as	follows:	In	Section	2,	I	summarize	the	theory	proposed	in	
Helland[11],	giving	an	alternative	foundation	of	quantum	theory.	In	the	rest	of	the	article,	
this	is	used	in	a	statistical	setting.	In	Section	3,	a	corresponding	brief	introduction	to	
statistical	inference	is	sketched,	a	setting	where	statisticians	have	the	choice	between	two	
model	reductions,	as	specified	by	the	parameters	𝜃	and	𝜂.	In	Section	4,	the	setting	is	
specified	to	linear	prediction,	and	a	specific	model	reduction	𝜃	is	defined	in	relation	to	a	
chosen	dimension	𝑚,	the	model	reduction	which,	according	to	my	earlier	articles	on	this	
topic,	gives	the	statistical	model	corresponding	to	partial	least	squares	(PLS)	regression.	
This	model	is	elaborated	on	in	Section	5,	where	it	is	shown	to	correspond	to	a	concrete	
quantum-mechanical	setting,	giving	an	operator	𝐴$ 	corresponding	to	𝜃,	an	operator	
defined	on	a	Hilbert	space	𝒦.	

A	main	aim	of	this	paper	is	to	show	that	the	PLS	model	is	optimal	in	a	very	concrete	sense,	
and	for	this	purpose,	a	general	model	reduction	𝜂	with	dimension	𝑚	is	defined	in	
Subsection	5.2.	Then,	in	Section	6,	the	first	optimality	theorem,	Theorem	6,	is	stated,	
interpreted,	and	proved.	Section	7	discusses	estimation	under	the	model	which	under	
certain	assumptions	is	proved	to	be	optimal.	In	Section	8,	a	quantum	theory	for	data	is	
presented.	In	Section	9,	a	possible	basis	for	discussing	the	optimality	of	PLS-type	
regression	compared	to	other	methods	like	ridge	regression	is	discussed.	The	discussion	is	
completed	by	giving	concrete	criteria	in	Sections	10	and	11,	and	in	Section	12,	some	
concluding	remarks	are	given.	

Readers	who	are	only	interested	in	the	optimality	properties	of	partial	least	squares	
regression	may	concentrate	on	the	theorems	of	the	last	few	sections.	



2. On quantum foundation 

The	fundamental	notion	in	my	approach	towards	quantum	foundations	is	that	of	a	
theoretical	variable	connected	in	a	given	context	to	an	observer	or	to	a	communicating	
group	of	observers.	In	Helland[11][12][13],	these	variables	were	mostly	physical	variables.	
Later	in	the	present	article,	they	will	be	statistical	parameters	or	observables	relative	to	
some	model.	The	essence	of	the	theory	turns	out	to	be	the	same.	

Theoretical	variables	are	divided	into	accessible	and	inaccessible	variables.	In	Helland[11],	a	
physical	variable	was	said	to	be	accessible	if	the	observer(s)	in	principle	in	some	future	can	
obtain	as	accurate	values	of	this	variable	as	he/she/they	wish	to.	In	this	article,	I	will	first	
let	the	variables	be	statistical	parameters,	and	let	the	inaccessible	variables	be	parameters	
that	are	too	extensive	to	be	estimable	with	the	available	data,	and	the	accessible	variables	
be	parameters	that	can	be	estimated.	Again,	the	theory	from	Helland[11]	can	be	adapted.	
From	a	mathematical	point	of	view,	I	require	that	if	𝜆	is	an	accessible	variable	and	𝜃 =
𝑓(𝜆)	for	some	function	𝑓,	then	𝜃	is	also	accessible.	

One	strong	postulate	from	Helland[11],	however,	is	crucial	for	the	theory	there.	I	assume	
that	there	is	a	big	inaccessible	variable	𝜙,	varying	in	a	space	𝛺% ,	and	I	assume	that	all	
accessible	variables	can	be	seen	as	functions	of	this	𝜙.	In	the	present	article,	the	
inaccessible	parameter	𝜙	will	be	given	a	very	concrete	definition.	

Given	this	postulate	in	Helland[11],	the	theory	is	completely	rigorous	from	a	mathematical	
perspective.	The	following	two	theorems	are	then	derived:	

Theorem	1.	Consider	a	context	where	there	are	two	different	related	maximal	accessible	
variables	𝜃	and	𝜂.	Assume	that	both	𝜃	and	𝜂	are	real-valued	or	real	vectors,	taking	at	least	
two	values.	Make	the	following	additional	assumptions:	

(i)	On	one	of	these	variables,	𝜃,	there	can	be	defined	a	transitive	group	of	actions	𝐺	with	a	
trivial	isotropy	group	and	with	a	left-invariant	measure	𝜈	on	the	space	𝛺$ .	

(ii)	There	exists	a	unitary	multi-dimensional	representation	𝑈(⋅)	of	the	group	behind	the	
group	actions	𝐺	such	that	for	some	fixed	|𝜃&⟩	the	coherent	states	𝑈(𝑔)|𝜃&⟩	are	in	one-to-one	
correspondence	with	the	values	of	𝑔	and	hence	with	the	values	of	𝜃.	

Then	there	exists	a	Hilbert	space	ℋ	connected	to	the	situation,	and	to	every	(real-valued	or	
vector-valued)	accessible	variable	there	can	be	associated	a	symmetric	operator	on	ℋ.	

For	conditions	under	which	a	symmetric	operator	is	self-adjoint/	Hermitian,	see	Hall[14].	

Theorem	2.	Assume	that	the	functions	𝜃(⋅)	and	𝜂(⋅)	are	permissible	with	respect	to	a	
group	𝐾	acting	on	𝛺% .	Assume	that	𝐾	is	transitive	and	has	a	trivial	isotropy	group.	Let	𝑇(⋅)	be	
a	unitary	representation	of	𝐾	such	that	the	coherent	states	𝑇(𝑡)|𝜓&⟩	are	in	one-to-one	
correspondence	with	𝑡.	Then	for	any	transformation	𝑡 ∈ 𝐾	the	operator	𝑇(𝑡)'𝐴$𝑇(𝑡)	is	the	
operator	corresponding	to	𝜃′	defined	by	𝜃′(𝜙) = 𝜃(𝑡𝜙).	

In	addition,	if	𝜃	and	𝜂	are	different,	but	related	through	a	transformation	𝑘	of	𝛺% ,	there	is	a	
unitary	operator	𝑆(𝑘)	such	that	𝐴( = 𝑆(𝑘)'𝐴$𝑆(𝑘).	



The	two	theorems	require	some	definitions.	

Definition	1.	The	accessible	variable	𝜃	is	called	maximal	if	the	following	holds:	If	𝜃	can	be	
written	as	𝜃 = 𝑓(𝜓)	for	a	function	𝑓	that	is	not	surjective,	the	theoretical	variable	𝜓	is	not	
accessible.	In	other	words:	𝜃	is	maximal	under	the	partial	ordering	defined	by	𝛼 ≤ 𝛽	iff	𝛼 =
𝑓(𝛽)	for	some	function	𝑓.	

Definition	2.	Let	𝜃	and	𝜂	be	two	maximal	accessible	variables	in	some	context,	and	let	𝜃 =
𝑓(𝜙)	for	some	function	𝑓.	If	there	is	a	transformation	𝑘	of	𝛺%	such	that	𝜂(𝜙) = 𝑓(𝑘𝜙),	we	say	
that	𝜃	and	𝜂	are	related	(relative	to	this	𝜙).	If	no	such	𝑘	can	be	found,	we	say	that	𝜃	and	𝜂	are	
non-related	relative	to	the	variable	𝜙.	

Definition	3.	The	accessible	variable	𝜃	is	called	permissible	with	respect	to	the	
group	𝐾	acting	on	𝛺%	if	the	following	holds:	𝜃(𝜙!) = 𝜃(𝜙))	implies	𝜃(𝑡𝜙!) = 𝜃(𝑡𝜙))	for	all	
group	elements	𝑡 ∈ 𝐾.	

The	point	of	Definition	3	is	that	when	𝜃(⋅)	is	permissible,	it	can	be	shown[15]	that	𝐾	induces	
a	group	𝐺	on	𝛺$ 	such	that	𝑘 ∈ 𝐾	is	mapped	to	𝑔 ∈ 𝐺	by		

𝑔𝜃(𝜙) = 𝜃(𝑘𝜙).  (1)	

This	mapping	between	groups	is	a	homomorphism.	

From	these	two	theorems,	much	of	the	formalism	of	quantum	theory	follows.	Some	of	the	
discussion	in	Helland[11]	is	concentrated	on	the	case	where	the	accessible	variables	take	a	
finite	number	of	values,	where	it	is	indicated	that	the	groups	𝐺	and	𝐾	and	the	
transformation	𝑘	can	be	explicitly	constructed.	As	a	consequence,	we	find	from	the	
assumed	model:	

• Every	accessible	variable	has	a	self-adjoint	operator	connected	to	it.	
• The	set	of	eigenvalues	of	the	operator	is	equal	to	the	set	of	possible	values	of	the	

variable.	
• An	accessible	variable	is	maximal	if	and	only	if	all	eigenvalues	of	the	corresponding	

operator	are	simple.	
• The	eigenvectors	can,	in	the	maximal	case,	be	interpreted	in	terms	of	a	question	

together	with	its	answer.	Specifically,	this	means	that	in	a	context	with	several	
variables,	a	chosen	maximal	variable	𝜃	may	be	identified	with	the	question	‘What	
will	𝜃	be	if	we	measure	it?’	and	a	specific	eigenvector	of	𝐴$ ,	corresponding	to	the	
eigenvalue	𝑢	may	be	identified	with	the	answer	‘𝜃 = 𝑢’.	

• In	the	general	case,	eigenspaces	have	the	same	interpretation.	
• The	operators	of	related	variables	are	connected	by	a	unitary	similarity	

transformation.	

For	the	discussion	of	the	present	article,	it	is	sometimes	interesting	to	let	the	accessible	
variables	be	continuous	parameters,	real-valued	or	vector-valued.	Then	𝐺,	𝐾	and	𝑘	need	to	
be	defined.	However,	continuous	parameters	may	be	approximated	by	finite-valued	
parameters.	



Going	back	to	the	physical	theory,	two	examples	of	continuous	maximal	accessible	
variables	are	the	position	and	momentum	of	a	particle.	They	are	maximal	by	Heisenberg’s	
inequality.	In	general,	different	maximal	accessible	variables	are	also	called	-	following	
Niels	Bohr	-	complementary.	Complementary	variables	play	a	major	role	in	Helland[10].	

The	general	mathematical	quantum	theory	of	continuous	variables	is	complicated.	Most	
textbooks	concentrate	on	the	case	of	discrete	variables.	In	Helland[10],	the	quantum	theory	
of	position	and	momentum	is	approached	by	first	discretizing	the	theoretical	variable	
position,	and	such	an	approach	is	always	possible.	This	approach	can	also	be	used	when	
considering	the	probabilities	of	quantum	mechanics,	as	given	by	Born’s	formula.	

So	consider	two	discrete	theoretical	variables	𝜃	and	𝜂,	and	let	these	both	be	thought	of	as	
maximal	accessible	variables	for	some	observer	𝐶.	For	simplicity,	let	𝜃	and	𝜂	take	a	finite	
number	of	values.	Then	by	Theorem	1,	we	can	find	self-adjoint	operators/	
matrices	𝐴$ 	and	𝐴( 	connected	to	these	variables,	and	possible	state	vectors	are	
eigenvectors	of	these	matrices.	

Let	𝑣	be	a	normalized	eigenvector	of	𝐴$ 	corresponding	to	the	eigenvalue	𝑣.	Then	according	
to	the	theory	above,	if	𝜃	is	maximal	as	an	accessible	variable,	this	eigenvalue	is	simple,	and	
the	state	vector	𝑣	can	be	given	the	following	interpretation:	We	have	measured	the	
variable	𝜃	and	obtained	the	value	𝜃 = 𝑣.	And	by	the	maximality	of	the	variable,	this	is	the	
maximal	information	we	can	get	from	the	relevant	physical	system	at	some	given	time.	

Now	assume	that	we	later	want	to	measure	a	complementary	variable	𝜂	on	the	same	
system,	and	we	ask:	What	is	the	probability	of	obtaining	the	answer	𝜂 = 𝑢?	This	event	may	
then	be	interpreted	by	the	normed	eigenvector	𝑢	of	𝐴( 	which	corresponds	to	the	single	
eigenvalue	𝑢.	And	Born’s	formula	says:		

𝑃(𝜂 = 𝑢|𝜃 = 𝑣) =|𝑢 ⋅ 𝑣|).  (2)	

In	this	article,	a	more	general	form	of	Born’s	formula	is	sometimes	needed;	see	
Helland[13]	and	Hall[14].	Let	now	𝜃	and	𝜂	be	continuous	parameters,	varying	in	some	𝑟-
dimensional	space	𝑆.	Let	𝐴$ 	be	the	operator	in	the	Hilbert	space	ℋ	which,	according	to	
Theorem	1,	is	associated	with	the	parameter	𝜃.	Then	𝐴$ 	has	a	spectral	decomposition		

𝐴$ = L𝑣
*
𝑑𝐸$(𝑣),  (3)	

where	{𝐸$}	is	a	projection-valued	measure,	a	set	of	projection	operators	satisfying		

L𝑑
*
𝐸$(𝑣) = 𝐼,  (4)	

a	resolution	of	the	identity.	

Later	in	this	article,	I	will	work	with	Hilbert	spaces	having	a	finite	basis.	This	simplifies	the	
discussion,	and	it	corresponds	to	the	version	of	quantum	mechanics	that	one	finds	in	most	
textbooks.	From	a	statistical	point	of	view,	it	corresponds	to	parameters	having	a	discrete	



set	of	values,	which	may	seem	unusual.	It	is	useful	to	know,	however,	that	a	theory	with	
continuous	parameters	may	always	be	approximated	by	a	theory	with	discrete	parameters.	

With	a	discrete	orthonormal	basis	𝑣!, 𝑣), . ..	of	the	Hilbert	space	ℋ,	(3)	simplifies	to		

𝐴$ =R𝜃+

+!

+,!

𝑣+𝑣+
',  (5)	

assuming	that	𝐴$ 	is	orthogonal	in	this	basis	and	has	eigenvalues	𝜃- ,	the	possible	values	of	𝜃.	
And	(4)	is	just		

R𝑣+

+!

+,!

𝑣+
' = 𝐼.  (6)	

Let	us	now	assume	that	we	have	some	knowledge	of	the	parameter	𝜃,	either	in	the	form	of	
some	prior	or	posterior	distribution,	or	in	the	form	of	a	confidence	distribution	(see	
Schweder	and	Hjort[16]).	Let	the	density	of	this	distribution	be	𝑝$(𝑢).	Then,	in	the	
continuous	case,	in	the	language	of	quantum	mechanics,	this	knowledge	can	be	expressed	
in	the	form	of	a	density	operator		

𝜌$ = L𝑝$
*

(𝑣)𝑑𝐸$(𝑣).  (7)	

This	is,	in	general,	a	positive	operator	with	trace	1.	

Also,	of	course,	a	similar	definition	can	be	given	for	the	density	operator	𝜌( 	connected	to	
the	parameter	𝜂.	

The	general	Born	formula	can	now	be	given	in	the	form		

𝑃(𝜃 ∈ 𝐶|𝜌() = traceY𝜌(𝛱.$[,  (8)	

where,	for	any	Borel	set	𝐶 ⊆ 𝑆,	we	have	defined	the	projection	operator		

𝛱.$ = L𝑑
.
𝐸$(𝑣).  (9)	

As	corollaries,	we	have	the	formulas		

E(𝜃|𝜌() = traceY𝜌(𝐴$[,  (10)	

and	for	any	integrable	function	𝑓,	we	have		

E(𝑓(𝜃)|𝜌() = trace ^𝜌(𝑓Y𝐴$[_ ,  (11)	

where		

𝑓Y𝐴$[ = L𝑓
*
(𝑣)𝑑𝐸$(𝑣).  (12)	



All	these	formulas	are	easier	to	formulate	and	to	understand	from	the	point	of	view	of	
discrete	parameters.	Given	that	the	operator	𝐴$ 	is	orthogonal	in	the	basis	{𝑣+},	they	read:	

𝜌$ =R𝑝
+!

+,!

(𝜃 = 𝜃+)𝑣+𝑣+
'.  (13)	

Again,	a	similar	definition	can	be	given	for	the	density	operator	𝜌( 	connected	to	the	
parameter	𝜂,	but	then	a	different	basis	{𝑢-}	must	be	used.	

The	general	Born	formula	is	again	in	the	form		

𝑃(𝜃 ∈ 𝐶|𝜌() = traceY𝜌(𝛱.$[,  (14)	

where	we	have	defined	the	projection	operator		

𝛱.$ = R 	
+	0123	4354	6"∈8

𝑣+𝑣+
'.  (15)	

As	corollaries,	we	again	have	the	formulas		

E(𝜃|𝜌() = traceY𝜌(𝐴$[,  (16)	

and	for	any	function	𝑓,	we	have		

E(𝑓(𝜃)|𝜌() = trace ^𝜌(𝑓Y𝐴$[_ ,  (17)	

where		

𝑓Y𝐴$[ = R𝑓
+!

+,!

(𝜆+)𝑣+𝑣+
'.  (18)	

There	is	also	a	version	of	Born’s	formula	for	the	prediction	of	future	data.	Assume	
continuous	data,	that	we	have	a	statistical	model	with	density	𝑝(𝑥|𝜃),	and	define	first		

𝐴9 = L𝑝
*
(𝑥|𝑢)𝑑𝐸$(𝑢)			 a𝐴9 = R𝑝

+!

+,!

(𝑥|𝜃 = 𝜆+)𝑣+𝑣+
'b .  (19)	

Then	from	(11)	[(17)]	it	follows	that		

E$E9(𝜓(𝑥)|𝜌() = E$ cL𝜓
9

(𝑥)𝑝(𝑥|⬚|𝜃)|𝜌(e = L𝜓
9

(𝑥)trace(𝜌(𝐴9)  (20)	

for	any	integrable	function	𝜓.	

These	formulas,	in	particular	(2),	(8),	and	(14),	define	quantum	probabilities.	It	can	be	
shown	that	quantum	probabilities	do	not	satisfy	Kolmogorov’s	axioms.	The	law	of	total	
probability	does	not	hold;	there	is	an	additivity	of	probability	amplitudes	(as	expressed	by	



the	vectors	in	(2)),	not	of	probabilities.	Also,	the	probability	of	the	intersection	of	two	
events	may	depend	on	the	ordering	of	the	events.	

There	are	many	approaches	towards	the	proof	of	Born’s	formula	in	the	literature,	see	
Campanella	et	al.[17].	In	Helland[10][13],	it	is	related	to	an	observer	𝐶	who	believes	in	the	
likelihood	principle	and,	in	addition,	has	certain	ideals	that	he	looks	up	to.	These	ideals	are	
modeled	by	a	higher	concrete	or	abstract	actor	𝐷	which	is	seen	by	𝐶	to	be	perfectly	
rational,	as	expressed	by	

The	Dutch	Book	Principle.	No	choice	of	payoffs	in	a	series	of	bets	shall	lead	to	a	sure	loss	for	
the	bettor.	

The	situation	for	an	observer	𝐶	as	described	above	is	called	a	rational	epistemic	setting	in	
Helland[10].	

Theorem	3.	[10][13].	Assuming	a	rational	epistemic	setting,	the	Born	formula	holds.	The	
probabilities	can	be	thought	of	as	calculated	by	the	actor	𝐷	

It	is	shown	in	Helland[10][11][12][13]	that	a	complete	foundation	of	quantum	theory	can	be	
based	upon	the	above	3	Theorems.	

3. An addition to statistical inference theory; two statisticians 

Consider	two	different	statisticians	𝐴	and	𝐵.	For	the	purpose	of	this	article,	let	𝐵	be	a	very	
experienced	statistician,	and	let	him	be	a	Bayesian	with	a	very	open	mind.	Let	𝐴	be	some	
statistician	who	is	inspired	by	some	ideals;	without	much	loss	of	generality,	we	assume	that	
this	can	be	modeled	by	𝐵.	As	a	basis	for	their	joint	thinking,	let	there	be	a	concrete	
statistical	problem	with	a	data	set	𝒳.	We	start	with	the	problem	as	formulated	in	the	mind	
of	𝐵.	He	thinks	of	a	large	parameter	𝜙	varying	in	some	space	𝛺% .	But	instead	of	starting	
with	only	a	concrete	prior	distribution,	he	assumes	some	symmetry	in	the	space	𝛺%	as	
expressed	by	a	transitive	group	𝐾	acting	on	this	space.	For	simplicity,	he	also	assumes	
that	𝐾	has	a	trivial	isotropy	group.	Then	there	is	a	one-to-one	correspondence	between	the	
elements	𝑡 ∈ 𝐾	and	the	points	𝜙 ∈ 𝛺% .	

Under	certain	mathematical	conditions,	this	structure	induces	a	measure	𝜈	on	𝛺% .	
Concretely,	we	will	assume	that	the	group	𝐾	is	what	is	called	proper	and	locally	compact.	
Wijsman[18]	called	such	a	group	proper	if	every	inverse	image	of	compact	sets	under	the	
function	(𝑡, 𝜙) ↦ (𝑡𝜙, 𝜙)	is	compact.	He	then	proved	the	following	general	theorem	(cp.	
Theorem	1	in	Helland[11]):	

Theorem	4.	The	right-invariant	measure	𝜈	on	𝛺%	exists	if	the	action	of	𝐾	on	𝛺%	is	proper	and	
the	group	is	locally	compact.	There	also	exists	a	left-invariant	measure.	

In	fact,	in	this	situation	where	there	is	a	one-to-one	correspondence	between	𝐾	and	𝛺% ,	we	
have	a	simpler	result:	There	always	exists	a	left-invariant	Haar	measure	on	𝐾	(if	the	group	
is	a	locally	compact	Hausdorff	topological	group);	in	this	case,	we	can	let	this	be	an	
invariant	measure	on	𝛺% .	



𝐵	will	now	take	𝜈	as	his	prior.	This	may	be	an	improper	prior,	but	as	shown	by	Taraldsen	
and	Lindqvist[19],	such	priors	may,	under	some	well-defined	conditions,	give	proper	
posterior	distributions.	More	specifically,	a	necessary	and	sufficient	condition	is	
that	𝑓(𝑥) = ∫ 𝑓(𝑥|𝜙)𝜈(𝑑𝜙)	is	finite	for	(almost)	all	𝑥,	where	𝑓(𝑥|𝜙)	is	the	density	of	𝐵’s	
data	model.	

Now	𝐴	sees	𝐵	as	his	ideal,	and	he	considers	𝐵	to	be	perfectly	rational.	But,	to	him,	the	big	
parameter	space	𝛺%	is	too	extensive.	He	will	consider	a	smaller	parameter	𝜃,	a	function	
of	𝜙.	However,	in	the	initial	stage,	he	does	not	quite	know	how	to	choose	𝜃.	

Consider	a	group	𝐺	acting	on	𝜃.	In	a	similar	way	as	above,	we	can	assume	that	the	action	
of	𝐺	on	𝛺$ 	is	proper,	and	that	the	group	is	locally	compact.	Then	there	exists	a	right-
invariant	measure	𝜇	on	𝛺$ ,	and	if	necessary,	𝐴	can	take	𝜇	as	his	prior.	

In	the	next	section,	I	will	make	this	more	concrete	by	considering	a	linear	prediction	
problem	with	a	large	number	of	predictor	variables	𝑥!, . . . , 𝑥",	and	let	𝛽,	which	now	can	be	
seen	as	a	function	of	𝐵’s	large	parameter	𝜙,	be	the	theoretical	regression	parameter	with	
respect	to	all	these	variables.	

Go	back	to	the	decision	situation	for	𝐴	as	described	above.	Assume	that	he	has	the	choice	
between	two	parametric	functions	to	estimate,	𝜃	and	𝜂,	and	assume	that	both	these	are	
maximal	for	𝐴	in	the	sense	that	he	is	not	able	to	estimate	a	larger	parametric	
function	𝜉	such	that	𝜃	can	be	seen	as	a	function	of	𝜉,	say.	

4. A setting for linear prediction 

Consider	a	statistical	setting	with	a	large	number	𝑝	of	possible	predictor	variables	𝑥 =
Y𝑥!, . . . , 𝑥"[′	and	a	response	𝑦.	Assume	that	these	variables	have	a	joint	distribution,	and	
that	we	have	observed	𝑛	samples	from	this	distribution.	

This	introduces	the	following	parameters:	𝛴99 = 𝖢𝗈𝗏(𝑥),	𝜎9: = 𝖢𝗈𝗏(𝑥, 𝑦),	𝜎) = 𝖵𝖺𝗋(𝑦|𝑥) =
𝖵𝖺𝗋(𝑦) − 𝜎9:′𝛴99;!𝜎9:	and	𝛽 = Y𝛽!, . . . , 𝛽"[′ = 𝛴99;!𝜎9: .	Let	the	collection	of	these	parameters	
be	denoted	by	𝜙.	

Let	us	assume	that	we	know	a	new	vector	𝑥<=> 	with	the	same	distribution	as	𝑥,	and	want	to	
predict	the	𝑦	corresponding	to	this	vector.	By	well-known	statistical	theory,	see	Hastie	et	
al.[20],	the	best	linear	predictor,	if	𝛽	is	known,	is	given	by	𝑦v = 𝛽 ⋅ 𝑥<=> .	

Here,	without	loss	of	generality,	I	have	assumed	that	𝑦	and	all	the	vectors	𝑥	are	centered	to	
zero	expectation.	

Go	back	to	the	statistician	𝐴	from	the	previous	section.	He	has	data	𝑋, 𝑦,	consisting	
of	𝑛	samples	from	the	above	distribution,	and	wants	to	estimate	𝛽.	Since	𝑝	is	large	
and	𝑛	may	be	moderate,	the	above	set	of	parameters	may	be	too	large	for	him.	He	may	
consider	two	estimators	𝜃x	and	�̂�,	both	based	upon	parameter	reduction.	

Specifically,	the	estimator	𝜃x	is	based	on	the	following	model	reduction.	

Let	𝑑!, . . . , 𝑑"	be	the	normalized	eigenvectors	of	𝛴99 ,	and	consider	the	decomposition		



𝛽 =R𝛾-

"

-,!

𝑑- .  (21)	

In	agreement	with	the	PLS	model	in	Helland	et	al.[8]	and	the	envelope	model	of	Cook	et	al.[6],	
fix	a	number	𝑚,	and	consider	estimation/prediction	under	the	hypothesis:	

𝐻?:	There	are	exactly	𝑚	nonzero	terms	in	(21).	

There	are	two	mechanisms	by	which	this	number	of	terms	can	be	reduced:	1)	Some	𝛾’s	are	
zero	at	the	outset.	2)	There	are	coinciding	eigenvalues	of	𝛴99 ,	and	then	the	eigenvectors	
may	be	rotated	in	such	a	way	that	there	is	only	one	in	the	relevant	eigenspace	that	is	
along	𝛽.	

Considering	𝐻?	as	a	model	reduction,	it	is	shown	in	Helland[1]	and	Cook	et	al.[6]	that	it	can	
be	formulated	in	the	following	equivalent	way:	Let	𝜃 = 𝜃?	be	defined	by	the	Krylov	
set	𝜎9: , 𝛴99𝜎9: . 𝛴99) 𝜎9: , . . . , 𝛴99?;!𝜎9: ,	then	𝑚	is	the	smallest	number	such	that	𝛽	is	a	linear	
function	of	𝜃?.	

For	the	purpose	of	this	article,	however,	we	will	define	𝜃 = (𝛾!𝑑!, . . . , 𝛾?𝑑?),	with	all	𝛾# ≠
0,	and	define	the	model	under	𝐻?:		

𝛽 = 𝛽? = 𝛽(𝜃) =R𝛾-

?

-,!

𝑑- .  (22)	

Note	that	(21)	is	invariant	under	permutations	of	the	terms,	so	we	might	as	well	take	the	
non-trivial	terms	to	be	the	first	𝑚	terms.	

The	model	reduced	by	the	hypothesis	𝐻?	is	equivalent	to	the	PLS	model	of	Helland[1],	and	
is	a	special	case	of	the	envelope	model	of	Cook[21].	

It	is	interesting	that	this	model	reduction	may	be	connected	to	a	particular	group	𝐾	acting	
on	the	parameter	𝛽,	also	involving	𝛴99 ,	that	is,	a	group	on	the	parameter	space	𝛺%:	

Definition	4.	Let	the	group	𝐾	be	defined	by	orthogonal	matrices	acting	on	all	the	
vectors	𝑑- 	in	(21),	and	in	addition	separate	scale	transformations	of	the	parameters	𝛾-:	𝛾- ↦
𝑔-Y𝛾-[	for	some	bijective	continuous	functions	𝑔- 	on	the	line.	

The	first	part	is	equivalent	to	orthogonal	transformations	of	𝛴99 .	It	can	be	induced	by	
rotating	the	vector	𝑥,	and	in	addition	by	changing	the	sign	of	this	vector.	

Theorem	5.	If	and	only	if	the	bijective	continuous	functions	𝑔- 	are	such	that	𝑔-(0) = 0,	the	
orbits	of	the	group	𝐾	are	determined	by:	a	given	𝑚	and	the	hypothesis	𝐻? .	

Proof.	If	and	only	if	𝑔(0) = 0,	the	group	on	𝛾	defined	by	𝛾 ↦ 𝑔(𝛾)	has	two	orbits:	1)	the	
single	value	𝛾 = 0;	2)	the	set	of	all	𝛾	such	that	𝛾 ≠ 0.	Going	to	the	whole	group	𝐾,	this	
implies	an	orbit	where	𝑝 −𝑚	of	the	𝛾+ ’s	are	zero	and	𝑚	of	the	𝛾+ ’s	are	non-zero.	That	is,	
exactly	the	hypothesis	𝐻?.	◻	



Definition	5.	Define	the	group	𝐺	acting	on	𝜃	by	orthogonal	transformations	of	the	
vectors	𝑑- 	in	(22)	and	in	addition	separate	linear	scale	transformations	of	the	
parameters	𝛾-:	𝛾- ↦ 𝛼-𝛾- 	with	𝛼- > 0.	

Taking	into	account	that	the	changes	of	sign	𝛾- ↦ −𝛾- 	may	also	be	obtained	by	orthogonal	
transformations	of	the	𝑑# ’s,	this	implies	that	the	group	𝐺	is	transitive,	and	it	also	has	a	
trivial	isotropy	group.	The	elements	𝑔 ∈ 𝐺	are	then	in	one-to-one	correspondence	with	the	
values	of	𝜃.	

5. A quantum-mechanical setting related to the model reduction 𝜃 

5.1. The group 

Let	𝜃	in	any	case	be	a	function	of	the	nonzero	parameters	𝛾!, . . . , 𝛾?	and	the	𝛴99-
eigenvectors	𝑑!, . . . , 𝑑?,	all	normalized:	𝜃 = (𝛾!𝑑!, . . . , 𝛾?𝑑?).	The	elements	of	the	
group	𝐺	are	given	by	1)	a	matrix	𝑂	with	orthonormal	columns	such	that	(𝑑!, . . . 𝑑?) ↦
𝑂(𝑑!, . . . , 𝑑?);	2)	positive	scalars	𝛼- 	giving	scale	transformations	𝛾- ↦ 𝛼-𝛾- .	

The	(right-)invariant	measure	of	the	scale	transformation	𝛾 ↦ 𝛼𝛾	is	given	by	𝜇(𝑑𝛾) = 𝑑𝛾/
𝛾	on	{𝛾: 𝛾 > 0}.	Negative	signs	of	𝛾	may	be	tackled	through	a	sign	change	of	𝑑,	so	this	
implies	that	𝜇	can	be	extended	to	the	whole	line	except	𝛾 = 0.	The	(right-)invariant	
measure	on	the	𝑚-dimensional	rotation	group	is	given	by	the	uniform	measure	𝜎	on	the	𝑚-
dimensional	sphere	in	ℝ",	and	the	change	of	sign	by	𝜈(+) = 𝜈(−) = 1/2.	This	determines	
the	measure	𝜈	on	𝛺$ .	

Theorem	1	gives,	in	general,	a	Hilbert	space	and,	in	particular,	an	operator	𝐴$ 	on	this	
Hilbert	space	under	certain	conditions	for	the	case	when	we,	in	addition,	have	a	
complementary	parameter	𝜂.	From	the	proof	of	Theorem	1	in	Helland[11],	the	Hilbert	space	
can	be	taken	to	be	𝒦 = 𝐿)(𝛺$ , 𝑑𝜈).	One	of	the	conditions	behind	the	theorem	is	the	
existence	of	a	transitive	group	𝐺	acting	upon	𝜃.	This	can	be	taken	as	the	group	defined	
above.	

5.2. Another model reduction 

Again,	consider	a	statistical	setting	with	a	large	number	𝑝	of	possible	predictor	
variables	𝑥 = Y𝑥!, . . . , 𝑥"[′	and	a	response	𝑦.	Assume	that	these	variables	have	a	joint	
distribution	and	that	we	have	observed	𝑛	samples	from	this	distribution.	

Again,	this	introduces	the	parameters:	𝛴99 = 𝖢𝗈𝗏(𝑥),	𝜎9: = 𝖢𝗈𝗏(𝑥, 𝑦),	𝜎) = 𝖵𝖺𝗋(𝑦|𝑥) =
𝖵𝖺𝗋(𝑦) − 𝜎9:′𝛴99;!𝜎9:	and	𝛽 = Y𝛽!, . . . , 𝛽"[′ = 𝛴99;!𝜎9: .	Let	again	the	collection	of	these	
parameters	be	denoted	by	𝜙,	varying	in	some	space	𝛺% .	

There	are	many	ways	to	perform	a	model	reduction	in	a	prediction	context.	Assume	that	
the	statistician	𝐴	also	considers	another	reduction	𝜂	based	upon	the	same	inaccessible	
parameter	𝜙,	so	𝜂 = 𝜂(𝜙).	

More	specifically,	I	assume:	Fix	some	number	𝑚,	for	𝑟 = 1, . . . , 𝑚	let	𝜂@(⋅)	be	a	𝑝-
dimensional	vector	function	defined	on	𝛺% ,	and	put	𝜂(𝜙) = Y𝜂!(𝜙), . . . , 𝜂?(𝜙)[.	For	linear	



prediction,	let	the	reduced	regression	parameter	be	𝛽′? = 𝛽(𝜂, 𝜙′)	for	some	function	𝛽(⋅),	
where	𝜙′	is	chosen	so	that	(𝜂(𝜙), 𝜙′)	is	in	one-to-one	correspondence	with	𝜙.	I	will	
suppose	that	𝛽?	can	be	estimated	under	the	hypothesis	

𝐻?′:	𝛽′? = 𝛽(𝜂, 𝜙′)	is	estimable,	but	maximally	so:	If	𝜂 = 𝑓(𝜉)	for	some	function	𝑓	which	is	
not	surjective,	then	𝛽(𝜉, 𝜙′)	is	not	estimable.	

This	should	be	compared	to	the	hypothesis	𝐻?	that	was	made	in	connection	to	the	specific	
reduction	𝜃	of	Section	4.	Note	that	I	assume	that	𝜂	also,	in	relation	to	the	regression	
coefficient	𝛽,	has	just	𝑚	vector	components,	and	that	both	𝜃	and	𝜂	can	be	seen	as	maximal	
accessible	parameters	for	𝐴.	Let	𝑀	be	a	fixed	group	acting	on	𝛺%	which	transforms	such	
sets	of	𝑚	𝑝-dimensional	vectors	into	other	sets	of	𝑚	𝑝-dimensional	vectors.	

Then,	assuming	some	fixed	value	𝜃!	of	𝜃,	we	can	first	find	a	𝜙! ∈ 𝛺%	such	that	𝜃(𝜙!) = 𝜃!.	
Given	some	fixed	value	𝜂)	of	𝜂	and	a	𝜙) ∈ 𝛺%	such	that	𝜂(𝜙)) = 𝜂),	then	
either	𝜙!	and	𝜙)	lie	on	the	same	orbit	of	𝑀,	or	they	belong	to	different	orbits.	In	the	first	
case,	there	is	a	bijective	function	𝑓	such	that	𝜙) = 𝑓(𝜙!).	In	the	second	case,	there	is	an	
element	𝑘 ∈ 𝑀,	a	𝜙A ∈ 𝛺%	and	a	bijective	function	𝑓	such	that	𝜙) = 𝑓(𝜙A)	and	𝜙A = 𝑘𝜙!.	
Since	bijective	functions	in	𝛺%	imply	equivalent	model	reductions	𝜂(𝜙),	this	means	that	
one	can	without	loss	of	generality	assume	a	transformation	𝑘	such	that	𝜂) = 𝜂(𝜙)) =
𝜃(𝑘𝜙!)	while	𝜃! = 𝜃(𝜙!).	Since	𝜃!	and	𝜂)	were	arbitrarily	chosen,	this	implies	
that	𝜃	and	𝜂	are	related	as	defined	in	Definition	2.	The	crucial	assumptions	are	that	both	
parameters	have	the	same	dimension	and	are	defined	as	functions	on	the	same	space	𝛺% .	

But	this,	together	with	Theorem	7,	implies	that	the	conditions	of	Theorem	1	are	satisfied.	
There	exist	operators	𝐴$ 	and	𝐴( 	in	the	same	Hilbert	space	ℋ	corresponding	to	the	two	
model	reductions.	Note	that	in	this	case,	𝐴$ 	was	defined	as	an	operator	on	𝒦 =
𝐿)(𝛺$ , 𝜈)	already	in	Section	5.	Without	loss	of	generality,	we	can	assume	that	𝒦 ⊆ ℋ,	and	
the	operator	𝐴$ 	is	then	extended	to	ℋ	if	necessary.	

We	assume	now	that	one	set	of	assumptions	behind	Born’s	rule	is	satisfied.	But	first,	we	
just	study	the	two	parametric	functions	𝛽(𝜃)	and	𝛽(𝜂)	(strictly	speaking	𝛽(𝜂, 𝜙′))	in	
relation	to	the	true	regression	parameters	𝛽.	

5.3. Construction of the necessary operators 

By	assumption,	we	now	have	two	maximal	variables	𝜃	and	𝜂,	and	these	are	both	functions	
of	the	total	parameter	𝜙.	There	is	a	natural	group	𝐺	acting	on	𝜃.	If	we	were	able	to	
construct	a	representation	𝑈(𝐺)	with	the	properties	given	in	(iii)	of	Theorem	1	in	Section	2,	
all	the	assumptions	of	that	theorem	would	have	been	satisfied.	We	would	have	proved	the	
existence	of	a	Hilbert	space	ℋ	and	operators	𝐴$ 	and	𝐴( 	in	that	Hilbert	space	associated	
with	the	two	theoretical	variables.	

Instead,	we	will	choose	another	route.	In	Helland[11],	it	was	proved	that	in	the	case	of	finite-
valued	theoretical	variables,	the	assumptions	(ii)	and	(iii)	of	Theorem	1	are	automatically	
satisfied.	We	can	always	approximate	continuous	theoretical	variables	(even	matrix-valued	
variables	as	in	this	case)	by	variables	that	take	a	finite	number	of	values.	For	a	concrete	



such	construction,	see	Subsection	5.3	in	Helland[10].	For	variables	taking	a	finite	number	of	
values,	we	also	have	a	simpler	spectral	theorem,	which	will	simplify	our	discussion	here.	

Concretely,	I	will	approximate	𝜃	and	𝜂	by	finite-valued	
parameters	𝜃B	and	𝜂B	(taking	𝑘B	values,	say.)	This	can	always	be	done	in	such	a	way	
that	𝜃B → 𝜃	and	𝜂B → 𝜂	uniformly	as	𝑡 → ∞.	By	the	discussion	in	Helland[11],	the	
assumptions	of	Theorem	2	are	also	satisfied	for	such	finite-valued	operators,	and	the	
consequences	for	ordinary	textbook	quantum	mechanics	follow.	In	particular,	we	have	a	
spectral	decomposition		

𝐴$# =R𝜃@B

+#

@,!

⊗ �𝑣@B𝑣@B
' �,  (23)	

where	𝜃@B	and	𝑣@B	are	the	eigenvalues	and	eigenvectors	of	𝐴$# .	Here,	𝜃@B	are	the	different	
values	of	𝜃B .	A	Cartesian	product	is	needed	since	𝜃B	is	a	matrix.	From	now	on	in	this	
subsection,	I	will	drop	the	index	𝑡,	and	just	treat	the	parameters	𝜃	and	𝜂	as	finite-valued,	
say	taking	𝐾	values.	

Note	that	each	𝛾- 	can	be	seen	as	a	function	of	𝜃:	𝛾- = ��𝛾-𝑑-�
)signY𝛾-[,	where	the	sign	is	

determined	as	follows:	Since	𝛾-𝑑- = Y−𝛾-[Y−𝑑-[,	each	pair	Y𝛾- , 𝑑[	is	counted	twice	in	𝜃.	We	
can	let	one	of	these	repetitions	correspond	to	a	positive	𝛾- ,	the	other	to	a	negative	𝛾- .	

In	the	following,	we	will	not	need	a	theory	involving	𝐴$ ,	but	only	𝐴C ,	where	𝜉 =
𝜉(𝛾!, . . . 𝛾?)	is	a	scalar	function	of	the	𝛾-parameters,	thus	also	a	function	of	𝜃.	By	(18),	this	
can	be	found	to	be		

𝐴C =R𝜉
D

@,!

(𝜃@)𝑣@𝑣@
',  (24)	

	where	𝜃@ 	and	𝑣@ 	are	the	eigenvalues	and	eigenvectors	of	𝐴$ .	

6. An optimality theorem for model reduction 

In	this	Section	and	the	next	one,	we	will	go	back	to	the	case	of	continuous	parameters	
again.	

Let	us	assume	that	𝜃 = 𝜃(𝜙)	is	the	PLS	model	reduction	with	a	fixed	number	𝑚	of	relevant	
components	as	described	in	Section	4,	and	let	𝜂 = 𝜂(𝜙)	be	another	𝑚-dimensional	model	
reduction	as	described	in	Subsection	5.2.	Here,	𝜙	is	the	parameter	of	the	full	model.	
Assume	that	there	is	a	continuous	group	𝑀	acting	upon	𝛺%	which	transforms	the	specific	
sets	of	𝑚	𝑝-dimensional	vectors	into	similar	sets	of	𝑝-dimensional	vectors.	

The	purpose	of	this	Section	is	to	investigate	when	the	PLS	model	gives	the	best	model	
reduction	for	prediction	when	𝑝	is	large.	Seen	from	an	asymptotic	point	of	view,	there	are	
several	criteria	in	the	literature	for	when	PLS	regression	performs	well	in	a	prediction	
setting[5].	Cook	and	Forzani[7]	indicated	that	PLS	performs	well	in	abundant	regression	



where	many	predictors	contribute	information	about	the	response.	In	this	article,	I	will	
make	exact	computations	and	formulate	a	relatively	concrete	criterion.	

Assumption	𝐴.	Let	𝜃	with	𝑚	components	be	the	PLS	model	assumption,	let	𝜂	denote	
another	𝑚-dimensional	model	reduction,	and	let	𝛽	be	the	true	regression	coefficient.	Assume	
that,	relative	to	the	distribution	of	𝑥		

CovY�Y𝛽(𝜂) − 𝛽(𝜃)[ ⋅ 𝑥�, [(𝛽(𝜂) + 𝛽(𝜃) − 2𝛽) ⋅ 𝑥][ > 0  (25)	

Note	that	if	𝛽(𝜃)	is	close	to	the	true	regression	coefficient,	this	is	guaranteed	to	hold;	see	
later.	

I	will	prove	the	following	Theorem:	

Theorem	6.	Let	(𝑥, 𝑦)	have	a	joint	distribution	with	all	second	order	parameters	given	by	the	
parameter	𝜙.	Assume	that	all	variables	have	expectation	0	and	that	the	𝑥-covariance	
matrix	𝛴99	is	positive	definite.	Make	the	Assumption	𝐴.	Then	the	𝑚-dimensional	reduction	
of	𝜙	given	by	the	PLS-model	is	better	than	the	𝑚-dimensional	reduction	given	by	𝜂,	in	the	
sense	that	E(9,:)(𝑦 − 𝛽(⋅) ⋅ 𝑥))	is	minimized.	Conversely,	if	the	PLS	model	gives	a	better	
prediction	than	𝜂,	then	Assumption	𝐴	must	hold.	

Proof.	As	a	point	of	departure,	let	𝜂	be	any	𝑚-dimensional	model	reduction	satisfying	
Assumption	𝐴,	and	let	𝛽? = 𝛽(𝜂, 𝜙′),	where	(𝜂(𝜙), 𝜙′)	is	in	one-to-one	correspondence	
with	the	inaccessible	parameter	𝜙.	As	shown	in	Subsection	5.2,	we	can	write	𝜂(𝜙) =
𝜃(𝑘𝜙)	for	some	𝑘 ∈ 𝑀,	and	since	𝑀	is	a	continuous	group,	it	is	meaningful	to	let	𝑘	approach	
the	identity,	that	is,	let	𝜂(𝜙) → 𝜃(𝜙).	Furthermore,	looking	at	prior	distributions	in	the	
parameter	space,	the	distribution	of	𝜃	gives	a	stationary	point	for	the	distribution	of	𝜂.	

Since	the	eigenvectors	𝑑@ 	of	𝛴99	form	a	basis	for	ℝ",	we	have		

𝛽?(𝜂) =R𝛿@

"

@,!

(𝜂)𝑑@ .  (26)	

The	𝛿@ ’s	are	functions	of	𝜂,	and	may	be	seen	as	close	to	some	𝛾@ ’s	when	𝜂	is	close	to	𝜃.	Note	
that	the	terms	in	(26)	can	be	permuted,	so	without	loss	of	generality,	we	can	let	the	
first	𝑚	terms	correspond	to	the	PLS	solution	(22).	If	the	hypothesis	𝐻?	holds,	the	𝛾@ ’s	
for	𝑟 = 𝑚 + 1, . . . , 𝑝	are	zero.	

Let	𝛽(𝜂) = 𝛽(𝜃) + 𝑒(𝜙).	Define	𝜏Y𝜂(𝜙)[ = E(𝑦 − 𝛽(𝜂) ⋅ 𝑥)).	Then		

𝜏Y𝜂(𝜙)[ = E(𝑦 − 𝛽(𝜃) ⋅ 𝑥)) − 2E(𝑦 − 𝛽(𝜃) ⋅ 𝑥)(𝑒 ⋅ 𝑥) + 𝑒′𝛴99𝑒.  (27)	

The	cross-term	here	may	be	written		

𝜎9:′𝑒 − 𝛽(𝜃)′𝛴99𝑒 = Y𝛽 − 𝛽(𝜃)[′𝛴99Y𝛽(𝜂) − 𝛽(𝜃)[,  (28)	

So		

𝜏Y𝜂(𝜙)[ = 𝐸(9,:)(𝑦 − 𝛽(𝜃) ⋅ 𝑥)) + 𝐹(𝜙) = 𝜏Y𝜃(𝜙)[ + 𝐹(𝜙),  (29)	



where	𝛽(𝜃)	is	given	by	(22)	and		

𝐹(𝜙) = (𝛽(𝜂) + 𝛽(𝜃) − 2𝛽)′𝛴99Y𝛽(𝜂) − 𝛽(𝜃)[,  (30)	

where	𝛽	is	the	true	regression	vector.	Comparing	this	with	(25,	concludes	the	proof	of	
Theorem	6.	Since	all	calculations	are	exact,	there	is	an	if	and	only	if	here.	◻	

Corollary	1.	Under	the	hypothesis	𝐻?	of	Section	4,	the	PLS	regression	model	always	gives	the	
best	model	reduction	for	linear	prediction.	

Proof.	Under	𝐻?	we	have	𝛽 = 𝛽(𝜃),	and	(30)	is	positive	for	all	𝜂 ≠ 𝜃.	◻	

Corollary	2.	Assume	that	Var ^Y𝛽 − 𝛽(𝜃)[ ⋅ 𝑥_ < !
H
Var ^Y𝛽(𝜂) − 𝛽(𝜃)[ ⋅ 𝑥_.	Then	the	PLS	

model	will	give	better	linear	predictions	than	the	model	reduction	𝜂.	

Proof.	(30)	can	be	written		

𝐹(𝜙) = Y𝛽(𝜂) − 𝛽(𝜃)[′𝛴99Y𝛽(𝜂) − 𝛽(𝜃)[ − 2Y𝛽 − 𝛽(𝜃)[′𝛴99Y𝛽(𝜂) − 𝛽(𝜃)[.  (31)	

	By	a	version	of	Schwarz’	inequality,	this	is	guaranteed	to	be	positive	if	Y𝛽 − 𝛽(𝜃)[′𝛴99Y𝛽 −
𝛽(𝜃)[ < !

H
Y𝛽(𝜂) − 𝛽(𝜃)[′𝛴99Y𝛽(𝜂) − 𝛽(𝜃)[.	◻	

7. Estimation 

Let	there	now	be	data	(𝑋, 𝑦),	and	consider	an	estimator	𝛽I� = 𝛽�(𝑋, 𝑦)	of	the	regression	
vector	𝛽	under	the	hypothesis	𝐻?.	In	general,	we	will	seek	estimators	based	upon	
a	𝜃	corresponding	to	𝑎	relevant	components,	where	𝑎 ≥ 𝑚,	with	𝑚	specified	by	the	
hypothesis.	In	the	PLS	case,	this	means	that	𝛽I�	is	based	upon	𝑎	steps	in	the	PLS	algorithm.	
In	general,	it	means	that	we	can	write	𝛽I� = ∑ 𝛾@£I

@,! 𝑑@�	corresponding	to	𝛽 = ∑ 𝛾@I
@,! 𝑑@ ,	

which	holds	under	𝐻?.	

Note	that,	by	the	previous	Section,	if	𝑚	is	chosen	such	that	𝐻?	holds,	or	if	𝛽(𝜃)	is	
sufficiently	close	to	the	true	regression	parameter	𝛽,	then	the	PLS	model	is	best	in	the	
sense	of	giving	the	best	linear	prediction	among	all	𝑚-dimensional	model	reductions.	In	
this	Section,	we	will	try	to	find	estimators	based	upon	𝑎	relevant	components	that	give	as	
good	predictions	as	possible.	In	practice,	𝑎	must	be	chosen	by	cross-validation,	or	by	some	
independent	training	set	of	observations.	

The	most	common	solution	to	this	problem	is	the	sample	PLS	algorithm	
with	𝑎	components.	However,	this	can	in	principle	be	improved	somewhat	by	the	following	
argument:	The	hypothesis	𝐻?	is	characterized	in	the	parameter	space	by	an	algebraic	
condition	𝑤?J! = 0,	where	𝑤⋅	is	the	PLS	weight	vector	(see,	for	instance,	Helland[1]).	This	
also	implies	𝑤IJ! = 0	for	𝑎 ≥ 𝑚,	a	restriction	in	the	parameter	space.	The	sample	PLS	
estimator	does	not	necessarily	follow	a	similar	restriction;	in	general,	we	have	𝑤IJ!¥ ≠ 0,	
which	implies	that	the	estimator	is	outside	the	relevant	parameter	space.	



An	estimator	that	is	inside	the	parameter	space	is	the	maximum	likelihood	estimator,	first	
proposed	in	Helland[2]	and	improved	in	several	articles	by	Dennis	Cook	and	collaborators;	
see	Cook[21].	However,	this	estimator	does	not	exist	when	𝑝 > 𝑛.	

A	completely	different	approach	is	given	in	Helland	et	al.[8].	The	point	of	departure	is	a	
generalization	of	the	group	𝐺	of	Definition	5	in	Section	4	above,	seen	as	acting	on	the	
parameter	𝛽	defined	by	(21).	

Definition	6.	Define	the	group	𝐺	acting	on	𝛽	by	orthogonal	transformations	of	the	
vectors	𝑑- 	in	(21)	and,	in	addition,	separate	linear	scale	transformations	of	the	
parameters	𝛾-:	𝛾- ↦ 𝛼-𝛾- 	with	𝛼- > 0.	

In	analogy	to	Theorem	5,	it	can	be	proved	that	the	hypotheses	𝐻?	for	varying	𝑚	represent	
the	orbits	of	the	group	𝐺.	(See	Theorem	2	in	Helland	et	al.[8].)	

An	important	concept	in	connection	with	group	transformations	of	statistical	models	is	that	
of	equivariance.	This	requires	first	that	we	start	with	a	group	𝐺&	as	acting	on	the	sample	
space,	and	then	introduce	the	group	𝐺	on	the	parameter	space	𝛺$ 	by		

𝑃L$(𝐴) = 𝑃$(𝑔&;!𝐴).  (32)	

Then	an	estimator	𝛽� 	of	the	parameter	𝛽	is	equivariant	under	the	group	𝐺&	if	it	transforms	
under	the	group	in	the	same	way	as	the	corresponding	parameter:	𝑔(𝛽)¦ = 𝑔&Y𝛽�[	for	
all	𝑔& ∈ 𝐺&.	

In	the	present	case,	we	can	let	𝑑M§ 	(𝑗 = 1, . . . , 𝑝)	be	the	eigenvectors	of	the	sample	covariance	
matrix	(𝑛 − 1);!𝑋′𝑋,	define	𝛾M£ 	by	the	sum	(𝑛 − 1);!𝑋′𝑦 = ∑ 𝛾M£

"
-,! 𝑑M§ ,	and	then	define	the	

sample	group	𝐺&	acting	on	the	𝛾M£ ’s	and	the	𝑑M§ ’s	in	analogy	to	Definition	6.	

It	is	shown	in	Theorem	3	and	Theorem	4	of	Helland	et	al.[8]	that	both	the	PLS	estimator	and	
the	principal	component	estimator	with	the	usual	ordering	of	the	eigenvectors	are	
equivariant	under	the	group	𝐺.	

A	main	theorem	from	Helland	et	al.[8]	is	

Theorem	7.	In	a	statistical	model,	let	the	parameter	𝜂(𝜙)	be	estimated	by	�̂�(𝑧).	Let	the	loss	
function	be	given	by	𝐵(𝑧) ∥ �̂�(𝑧) − 𝜂(𝜙) ∥),	and	assume	that	this	loss	function	is	invariant	
under	the	parametric	group	𝐺	together	with	the	corresponding	data	group	𝐺&.	Let	𝐺	be	
transitive	with	right	invariant	measure	𝜈.	Then	the	best	equivariant	estimator	for	𝜂	in	terms	
of	expected	loss	is	given	by	the	Bayes	estimator	with	prior	𝜈	if	this	Bayes	estimator	exists.	

In	the	current	situation,	we	will	estimate	𝛽	by	some	data	vector	𝛽� ,	and	we	can,	in	principle,	
use	the	invariant	loss	function	∥ 𝛽� ∥;)∥ 𝛽� − 𝛽 ∥).	The	relevant	prior	for	𝛽	under	𝐻?	is	
found	by	first	letting	(𝑑!, . . . , 𝑑?)	have	an	invariant	distribution	under	orthogonal	
transformations,	and	then	letting	the	positive	scale	parameters	𝛾!, . . . , 𝛾?	have	a	joint	
improper	density		



1
𝛾!
. . .

1
𝛾?
.  (33)	

Unfortunately,	the	Bayes	estimator	does	not	exist	in	this	case.	The	criterion	for	existence	
given	by	Taraldsen	and	Lindqvist[19]	(see	Section	3)	is	not	satisfied:	The	relevant	integral	
involving	the	scale	parameters	as	these	parameters	tend	towards	0	is	infinite.	In	Helland	et	
al.[8]	this	is	solved	by	proposing	a	near-optimal	solution,	Bayes	PLS,	where	the	prior	
density	1/𝛾	is	replaced	by	the	density	1/(𝛾)!;N ,	where	𝜖	is	a	small	positive	number.	A	
corresponding	modified	group	𝐺,	having	such	an	invariant	measure,	is	then	discussed.	

The	near-optimal	predictor	Bayes	PLS	does	well	compared	to	other	methods,	such	as	
ordinary	PLS,	as	shown	in	a	simulation	study	by	Helland	et	al.[22].	The	main	disadvantage	is	
that	it	involves	heavy	calculation.	An	R	program	for	Bayes	PLS	has	been	written	by	Solve	
Sæbø.	

8. Quantum theory from data 

A	version	of	Born’s	formula	that	can	be	used	for	estimators	of	parameters	was	given	by	
(20)	in	Section	2.	

Go	back	to	the	statistician	𝐴.	Assume	that	he	has	done	a	statistical	analysis	on	the	
dataset	𝒳 = (𝑋, 𝑦)	and	has	found	an	estimate	𝜃x	of	the	parameter	𝜃	as	defined	in	this	article.	
Assume	that	this	estimate	is	found	by	a	partial	least	squares	procedure	like	Bayes	PLS	
with	𝑎	components.	In	this	case,	the	estimator	𝜃x	has	a	probability	distribution	depending	
on	the	parameter	𝜃	for	some	fixed	𝑚 < 𝑎	as	defined	in	this	article,	so	the	assumptions	
behind	(20)	hold	if	the	density	operator	𝜌( 	can	be	defined	and	the	assumptions	leading	to	
Born’s	formula	are	satisfied.	

Now	introduce	the	more	experienced	statistician	𝐵,	and	assume	that	he	is	interested	in	
another	model	reduction	𝜂	as	described	in	Subsection	5.2.	By	a	version	of	Theorem	1,	there	
exists	an	operator	𝐴( 	associated	with	𝜂	and	a	corresponding	resolution	of	the	identity.	
Furthermore,	assume	that	𝐵	has	a	probability	distribution	of	𝜂,	either	a	prior,	or	from	the	
dataset	a	posterior	distribution	or	a	confidence	distribution.	From	this,	one	can	construct	a	
density	operator	𝜌( 	for	𝜂,	see	Section	2.	Given	this	𝜌( ,	he	is	interested	in	1)	the	conditional	
probability	distribution	of	𝐴’s	𝜃	and	2)	the	conditional	distribution	of	𝐴’s	estimator	𝜃x.	

The	basic	assumptions	behind	Born’s	formula	must	hold:		𝐴	and	𝐵	must	believe	in	the	
likelihood	principle,	and	𝐴	must	have	ideals	that	can	be	modeled	by	what	he	considers	to	
be	a	perfectly	rational	superior	being.	This	can	be	identified	by	the	experienced	
statistician	𝐵	plus	some	theoretical	statistical	ideals	that	they	both	share.	The	probabilities	
of	Born’s	formula	must	be	seen	as	calculated	by	this	superior	being,	in	the	language	of	
Section	3,	by	the	experienced	statistician	𝐵.	

9. A first condition for optimal linear prediction by PLS 

In	the	statistical	literature,	there	are	several	methods	proposed	for	linear	prediction	of	a	
variable	𝑦	from	many	predictors,	possibly	related.	One	example	is	ridge	regression	with	
some	given	ridge	parameter.	In	this	section,	I	will	investigate,	in	principle,	when	PLS-like	



methods	are	optimal	in	some	sense	in	this	large	class	of	methods.	In	this	section,	I	will	fix	a	
number	𝑚	and	assume	that	the	hypothesis	𝐻?	(see	Section	4)	holds.	

Assume	that	we	want	to	find	a	good	predictor	of	𝑦	from	a	𝑝-dimensional	𝑥	based	
upon	𝑛	data	𝑋, 𝑦.	For	simplicity,	let	all	data	variables	be	centered	to	zero	expectation.	

In	the	Theorem	below,	I	consider	either	ordinary	PLS	regression	or	Bayes	PLS.	The	
criterion	used	is	mean	square	prediction	error,	where	we	take	expectation	over	the	
variables	in	the	data	set,	the	future	𝑥	and	𝑦	data	and	the	PLS	parameter	𝜃.	

Theorem	8.	Let	𝑝 > 𝑛,	and	let	𝛽� 	be	an	arbitrary	estimator	of	𝛽.	Then,	for	each	𝑎	such	
that	𝑚 ≤ 𝑎 < 𝑝,	letting	𝛽I�	be	constructed	from	PLS	estimation	with	𝑎	components,	assuming	
the	hypothesis	𝐻? ,	we	have	

If	𝛽� 	is	sufficiently	far	from	𝛽I�,	more	concretely	if		

E$EO,:Y𝛽� − 𝛽I�[′𝛴99Y𝛽� − 𝛽I�[ > 4E$EO,:Y𝛽 − 𝛽I�[′𝛴99Y𝛽 − 𝛽I�[,  (34)	

where	𝛽	is	the	true	regression	coefficient,	then	we	have		

E$EO,:E9,:Y𝑦 − 𝛽I� ⋅ 𝑥[
)
< E$EO,:E9,:Y𝑦 − 𝛽� ⋅ 𝑥[

)
.  (35)	

Proof.	Let	E = E$EO,:E9,: .	In	analogy	with	the	calculations	of	Section	6,	we	have		

EY𝑦 − 𝛽� ⋅ 𝑥[
)
= EY𝑦 − 𝛽I� ⋅ 𝑥[

)
+ 𝐹,  (36)	

where		

𝐹 = EY𝛽� + 𝛽I� − 2𝛽[′𝛴99Y𝛽� − 𝛽I�[  (37)
= EY𝛽� − 𝛽I�[′𝛴99Y𝛽� − 𝛽I�[− 2EY𝛽 − 𝛽I�[′𝛴99Y𝛽� − 𝛽I�[  (38)
≥ EY𝛽� − 𝛽I�[′𝛴99Y𝛽� − 𝛽I�[

− 2�EY𝛽 − 𝛽I�[′𝛴99Y𝛽 − 𝛽I�[ ⋅ EY𝛽� − 𝛽I�[′𝛴99Y𝛽� − 𝛽I�[  (39)	

by	a	variant	of	Schwarz’s	inequality.	

Inspecting	the	inequality	(39),	it	follows	that	𝐹 > 0,	and	hence	(35)	holds	if	(34)	is	
satisfied.	◻	

The	criterion	(34)	will	be	simplified	considerably	under	reasonable	assumptions	in	Section	
11.	But	first,	we	discuss	the	model	reduction	problem	further.	

10. On the optimality of the PLS model under model reduction 

Let	us	go	back	to	the	situation	with	two	different	model	reductions	𝜃	and	𝜂,	both	
corresponding	to	reductions	to	dimension	𝑚,	as	specified	with	the	hypothesis	𝐻?	of	
Section	4	and	the	hypothesis	𝐻′?	of	Subsection	5.2.	We	are	interested	in	conditions	under	
which	the	PLS	model	is	best	in	terms	of	mean	square	prediction	error.	Go	back	to	Section	6.	



Theorem	9.	Assume	that		

4E$Y𝛽 − 𝛽(𝜃)[′𝛴99Y𝛽 − 𝛽(𝜃)[ < E$Y𝛽(𝜂) − 𝛽(𝜃)[′𝛴99Y𝛽(𝜂) − 𝛽(𝜃)[.  (40)	

Then	

E$E(9,:)(𝑦 − 𝛽(𝜃) ⋅ 𝑥)) < E$E(9,:)(𝑦 − 𝛽(𝜂) ⋅ 𝑥)).  (41)	

Proof.	Repeat	the	proof	of	Theorem	6	and	of	Corollary	2	of	Section	6	with	the	expectation	
over	𝜃	taken	in	all	equations.	◻	

We	want	to	study	the	criterion	(40)	more	closely.	Since	𝛽(𝜃) = ∑ 𝛾-?
-,! 𝑑- ,	the	left-hand	side	

is	just		

4E$ R 𝛾-)
"

-,?J!

𝜆- = 4 R 𝛾-)
"

-,?J!

𝜆- ,  (42)	

assuming	that	the	𝛾- ’s	are	independent,	where	here	{𝜆-}	are	the	irrelevant	eigenvalues	
of	𝛴99 ,	those	not	affected	by	the	model	reduction	𝜃.	

The	right-hand	side	of	the	inequality	(40)	is	bounded	below	by		

RE$

?

-,!

Y𝜁- − 𝛾-[
)𝜆- ,  (43)	

where	we	have	evaluated	𝛽(𝜂)	in	terms	of	the	𝑝	eigenvectors	𝑑- 	of	𝛴99:		

𝛽(𝜂) =R𝜁-

"

-,!

𝑑- .  (44)	

Our	aim	is	to	find	a	criterion	under	which	the	PLS	model	reduction	is	better	in	some	sense	
than	any	other	model	reduction.	This	means	that	the	parameters	𝜁- 	in	(43)	are	completely	
arbitrary.	

Let	now	the	basic	parameter	𝜃	have	some	probability	distribution,	which	implies	a	
probability	distribution	of	𝛾!, . . . , 𝛾?.	Then	the	criterion	(40)	is	satisfied	over	𝜃	for	a	model	
reduction	𝜂	if		

E$RY𝜁- − 𝛾-[
)

?

-,!

𝜆- > 4 R 𝛾-)
"

-,?J!

𝜆- .  (45)	

For	each	𝑗	we	have	that	EP$Y𝜁- − 𝛾-[
) ≥ EP$Y𝜇- − 𝛾-[

),	where	𝜇- = EP$Y𝛾-[.	So,	taking	a	
lower	bound	on	the	left-hand	side	of	(45),	we	see	that	the	criterion	(40)	is	satisfied	for	
every	possible	reduction	𝜂	if		



E$RY𝛾- − 𝜇-[
)

?

-,!

𝜆- > 4 R 𝛾-)
"

-,?J!

𝜆- .-  (46)	

The	probability	distribution	of	𝜃	will	depend	on	the	situation.	As	a	first	tentative	situation,	
let	us	first	assume	a	probability	distribution	of	𝛾- 	which	is	close	to	the	right-invariant	
measure	𝜇(𝑑𝛾) = 𝑑𝛾/𝛾	under	the	group	𝐺.	(See	subsection	5.1.)	This	measure	gives	an	
improper	distribution,	and	under	a	proper	distribution	close	to	this	distribution,	the	
lefthand	side	of	(46)	can	be	made	arbitrarily	large.	This	indicates	that	under	such	
circumstances,	it	will	be	easy	to	satisfy	the	criterion	(40)	(for	any	𝑚).	

Imagine	now	a	situation	similar	to	the	one	sketched	in	Section	3:	An	experienced	
statistician	𝐵	who	is	an	open-minded	Bayesian,	and	a	younger	statistician	𝐴.	Assume	
that	𝐵	in	some	way	has	made	himself	a	joint	prior	or	posterior	of	the	parameter	𝜂,	and	we	
are	interested	in	his	conditional	distribution	of	𝜃,	given	this	distribution	of	𝜂.	We	can	think	
of	𝐴	as	connected	to	the	PLS-parameter	𝜃,	that	𝜂	is	maximally	accessible	to	𝐵,	and	𝜃	is	
maximally	accessible	to	𝐴.	These	two	parameters	are	complementary	in	this	situation.	

For	simplicity,	we	approximate	the	parameters	by	finite-valued	parameters	as	in	
Subsection	5.3.	Then	the	symmetry	conditions	of	Theorem	1	of	Section	2	are	automatically	
satisfied;	we	have	a	Hilbert	space	ℋ,	and	operators	𝐴$ 	and	𝐴( 	in	this	Hilbert	space.	There	is	
also	a	resolution	of	the	identity	connected	to	the	parameter	𝜂,	and	from	this,	a	density	
operator	𝜌( 	describing	the	information	on	𝜂	that	the	statistician	𝐵	has.	By	the	Born	
formula,	this	statistician	also	has	a	probability	distribution	of	𝐴’s	parameter	𝜃,	and	by	the	
theory	of	Section	2,	we	get	for	any	scalar	function	𝑓	of	𝜃:		

E$(𝑓(𝜃)|𝜌() = trace ^𝜌(𝑓Y𝐴$[_  (47)	

Let	now	𝑓(𝜃) = ∑ Y𝛾- − 𝜇-[
)?

-,! 𝜆- .	Considering	the	criterion	(46),	we	find	

Theorem	10.	Assume	that		

R𝜆-

?

-,!

trace ®𝜌(RY𝛾-@ − 𝜇-@[
)

D

@,!

𝑣-@𝑣-@
' ¯ > 4 R 𝛾-)

"

-,?J!

𝜆- ,  (48)	

where	the	discrete	𝜃	is	assumed	to	take	𝐾	values,	𝛾-@ 	are	the	corresponding	values	
of	𝛾- ,	𝑣-@ 	are	the	eigenvectors	of	𝐴$ ,	and	𝜇-@ = EP$%Y𝛾-@[.	Then	the	criterion	(40)	for	
optimality	of	the	PLS	model	is	satisfied,	and	(41)	holds.	

The	simplest	case	is	when	𝐵	has	a	non-informative	prior	on	𝜂.	Then	𝜌( = 𝐾;!𝐼,	and	in	the	
sum	over	𝑟	in	(48)	we	can	let	𝐾	tend	to	infinty	and	use	the	law	of	large	numbers.	

Theorem	11.	Assume	that,	as	seen	by	𝐵,	the	model	reduction	𝜂	is	non-informative,	and	
independent	of	the	model	reduction	𝜃,	and	assume	that	relative	to	the	𝛾- 	distribution	as	seen	
by	𝐵		



R𝜆-

?

@,!

EP$Y𝛾- − 𝜇-[
) > 4 R 𝛾-)

"

-,?J!

𝜆- .  (49)	

Then	the	criterion	(40)	for	optimality	of	the	PLS	model	is	satisfied,	and	(41)	holds.	

This	indicates	strongly	that	𝐻?	gives	a	good	model	reduction	when	the	relevant	
eigenvalues	of	𝛴99	are	substancially	larger	than	the	irrelevant	ones.	It	is	also	relavant	that	
the	variances	of	the	relevant	regression	coefficients	are	fairly	large.	

Note	that	the	criterion	(49)	is	only	connected	to	the	PLS	model	reduction.	If	this	criterion	is	
satisfied	for	some	𝑚,	the	PLS	model	reduction	is	better	than	all	other	model	reductions.	
Also,	note	that	the	lefthand	side	of	(49)	is	increasing	with	𝑚,	and	the	righthand	side	is	
decreasing.	Thus	it	seems	reasonable	that	the	criterion	in	most	situations	is	satisfied	if	𝑚	is	
large	enough.	

11. On optimal linear prediction by PLS 

We	are	now	ready	to	go	back	to	the	situation	of	Section	9,	where	the	Bayes	PLS	
estimator	𝛽�I	with	𝑎	steps	was	compared	with	an	arbitrary	estimator	𝛽� .	The	inequality	(34)	
has	the	same	form	as	the	inequality	(40),	and	the	discussion	from	Section	10	can	be	carried	
over.	The	following	can	be	seen	as	a	main	result	of	this	article.	

Theorem	12.	Let	𝑝 > 𝑛,	let	𝛽� 	be	an	arbitrary	estimator	of	𝛽,	and	assume	that	the	
hypothesis	𝐻?	holds	for	some	𝑚.	For	some	𝑎	such	that	𝑚 ≤ 𝑎 < 𝑝,	let	𝛽I�	be	constructed	from	
Bayes	PLS	estimation	with	𝑎	components.	Consider	a	situation	with	two	statisticians	𝐴	and	𝐵,	
where	𝐴	has	a	prior	distribution	over	the	PLS-parameter	𝜃	under	𝐻? ,	and	𝐵	has	a	
noninformative	distribution	over	the	parameters	behind	the	estimator	𝛽� .	Assume	
that	𝐴	considers	𝐵	as	a	perfectly	rational	ideal.	Then,	if	in	relation	to	the	𝛾- 	distribution	as	
seen	by	𝐵		

R𝜆-

?

@,!

EP$Y𝛾- − 𝜇-[
) > 4 R 𝛾-)

"

-,?J!

𝜆- ,  (50)	

we	conclude	that		

E$EO,:E9,:Y𝑦 − 𝛽I� ⋅ 𝑥[
)
< E$EO,:E9,:Y𝑦 − 𝛽� ⋅ 𝑥[

)
.  (51)	

Proof.	Start	with	the	criterion	in	Theorem	8,	and	follow	arguments	as	in	Section	10	using	
the	assumptions	behind	Born’s	formula.	The	relevant	operator	𝐴�$Q 	is	the	data	operator	
discussed	in	Section	8.	(Compare	equations	(19)	and	(20)	in	Section	2.)	◻	

Remarks	

The	result	here	is	formulated	for	Bayes	PLS,	since	this	method	gives	an	estimator	
for	𝜃	which	is	inside	the	parameter	space.	The	estimator	𝜃x	under	the	ordinary	PLS	
algorithm	is	not	inside	the	parameter	space	defined	by	𝐻?,	in	the	sense	that	the	algorithm	



does	not	stop	automatically	at	step	𝑎.	Simulations	by	Helland	et	al.[22]	show	also	that	Bayes	
PLS	in	general	seems	to	perform	better	than	ordinary	PLS.	

However,	the	result	should	be	seen	in	relation	to	the	discussion	of	Helland	and	Almøy[5],	
based	upon	simulations.	It	should	also	be	compared	to	the	statements	of	Cook	and	
Forzani[7]	concerning	when	PLS	is	the	best	choice.	

We	should	also	remark	the	following:	Theorem	12	is	formulated	in	a	somewhat	artificial	
setting	with	two	statisticians	𝐴	and	𝐵,	in	agreement	with	the	general	discussion	of	this	
article.	But	the	criterion	(50)	has	a	meaning	over	and	above	this	setting,	and	the	conclusion	
(51)	is	a	general	result	on	properties	of	two	different	estimators	of	𝛽.	This	indicates	that	
the	result	must	have	a	validity	also	above	this	artificial	setting.	

12. Conclusions 

One	purpose	of	this	article	has	been	to	find	arguments	connected	to	the	optimality	of	PLS	
type	regression	under	certain	conditions.	As	exact	results	on	the	properties	of	the	PLS	
algorithm	are	lacking	in	the	literature,	in	my	opinion,	all	related	results,	either	tentative	or	
building	upon	exact	calculations,	are	of	interest.	

Another	purpose	of	the	article	has	been	to	illustrate	how	recent	results	from	quantum	
theory	can	be	used	in	a	statistical	setting.	

I	conjecture	that	the	results	of	this	article	can	be	generalized	to	the	envelope	model	of	
Cook[21].	To	formulate	the	precise	theorems	and	to	construct	the	proofs	for	this	general	
case,	however,	are	open	problems.	

Finally,	I	think	that	it	may	be	of	some	value	to	use	arguments	from	different	scientific	
cultures	in	a	theoretical	statistical	context.	In	general,	communications	across	scientific	
borders	is,	as	I	see	it,	one	of	the	prerequisites	for	real	progress	in	science.	

Further	applications	of	quantum	theory	to	statistics	are	under	investigation[23].	
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