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DEeR: Deviation Eliminating and Noise Regulating
for Privacy-preserving Federated Low-rank

Adaptation
Meilu Zhu, Axiu Mao, Jun Liu*, Yixuan Yuan*

Abstract—Integrating low-rank adaptation (LoRA) with fed-
erated learning (FL) has received widespread attention re-
cently, aiming to adapt pretrained foundation models (FMs) to
downstream medical tasks via privacy-preserving decentralized
training. However, owing to the direct combination of LoRA
and FL, current methods generally undergo two problems,
i.e., aggregation deviation, and differential privacy (DP) noise
amplification effect. To address these problems, we propose a
novel privacy-preserving federated finetuning framework called
Deviation Eliminating and Noise Regulating (DEeR). Specifically,
we firstly theoretically prove that the necessary condition to
eliminate aggregation deviation is guaranteing the equivalence
between LoRA parameters of clients. Based on the theoretical
insight, a deviation eliminator is designed to utilize alternat-
ing minimization algorithm to iteratively optimize the zero-
initialized and non-zero-initialized parameter matrices of LoRA,
ensuring that aggregation deviation always be zeros during
training. Furthermore, we also conduct an in-depth analysis
of the noise amplification effect and find that this problem is
mainly caused by the “linear relationship” between DP noise and
LoRA parameters. To suppress the noise amplification effect, we
propose a noise regulator that exploits two regulator factors to
decouple relationship between DP and LoRA, thereby achieving
robust privacy protection and excellent finetuning performance.
Additionally, we perform comprehensive ablated experiments to
verify the effectiveness of the deviation eliminator and noise
regulator. DEeR shows better performance on public medical
datasets in comparison with state-of-the-art approaches. The code
is available at https://github.com/CUHK-AIM-Group/DEeR.

Index Terms—Low-rank Adaptation, Federated Learning,
Parameter-efficient Tuning, Foundation Models.

I. INTRODUCTION

With the advent of the big data era and advances in compu-
tation [1], large foundation models (FMs), such as CLIP [2],
BiomedCLIP [3], SAM [4], have been developed, demonstrat-
ing unprecedented generalization performance across various
medical tasks [5], [6]. However, these foundation models usu-
ally focus on general representation learning and still require
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Fig. 1. Directly combining FL and LoRA to finetune FMs brings two
challenges, i.e., aggregation deviation and noise amplification effect.

further finetuning for downstream tasks [7], [8]. To avoid the
computational burdens caused by finetuning entire foundation
models, various parameter-efficient finetuning (PEFT) meth-
ods [9]–[11] have been proposed. One of the most widely
used PEFT methods is low-rank adaptation (LoRA) [9], which
adds a parallel branch of trainable adapters with parameters
A and B to compute the model update ∇W. The ranks of A
and B are much smaller than the pretrained model parameters
W. When applying LoRA for finetuning, only A and B are
updated while the entire W is frozen, thereby significantly
reducing GPU memory consumption [12].

Finetuning pretrained FMs with LoRA still requires suf-
ficient training data for adaptation to specific downstream
tasks [13], [14]. Nevertheless, data within a single institution
tend to be limited [15], [16], particularly in medical scenarios.
Directly gathering data from different institutions is typically
unrealistic due to growing privacy concerns and legal restric-
tions [17]–[19]. An alternative approach is to adopt federated
learning (FL) [20], a decentralized learning paradigm, as train-
ing framework to collaboratively finetune FMs with LoRA.
The FL paradigm [20], [21] allows participating institutions
(referred to as clients) to share their model gradients or
parameters for the model aggregation at a trustworthy center
(known as server), without leaking local raw data. Meanwhile,
differential privacy (DP) techniques [22]–[24] can be further
employed to provide theoretical privacy guarantees against
attacks and prevent local private information from being leaked
during the communication process.

Recently, some methods [12], [14], [25]–[29] have tried to
integrate LoRA with FedAvg [20] in different applications.
These methods finetune LoRA modules using local data of

ar
X

iv
:2

41
0.

12
92

6v
1 

 [
cs

.C
V

] 
 1

6 
O

ct
 2

02
4

https://doi.org/10.32388/I8WGTH



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

clients and then send the updated modules to the server. The
server averages all received LoRA modules to obtain a global
LoRA, and distributes it to all clients as the initialization
of the next round. Despite the promising performance, these
approaches neglect two key issues, as shown in Fig. 1. Firstly,
the naive averaging of local LoRA modules leads to the
aggregation deviation at the server side. In the FedAvg setting
with LoRA, the local updates ∆W of a client are decomposed
into two low-rank matrices A and B, ∆W = BA. If A and
B of all clients are aggregated independently, we will obtain
a biased global update ∆Wg =

∑
B
∑

A. Theoretically,
the true global update should be computed via ∆W∗

g =∑
∆W =

∑
BA. Obviously, there exists a mathematical

deviation ∆Wg ̸= ∆W∗
g , which would severely impede the

convergence of a federation system.
The second problem, i.e., noise amplification effect, lies

in the client side and arises from the intrinsic “quadratic” ar-
chitecture of LoRA. Differential privacy (DP) is a commonly-
used technique in FL to provide privacy guarantee by adding
noise (e.g., Gaussian noise) to client gradients against training
data leakage from the shared model [30]. When the (Gaussian)
noises ξA and ξB are injected into A and B of local LoRA
modules, the “quadratic” architecture of LoRA would lead
to the noise items BξA, ξBA and ξBξA. In experiments,
we observe that the noise intensities of the items BξA and
ξBA would be continuously amplified during training. The
third term no longer follows a Gaussian distribution and also
increases as the privacy budget of DP decreases. The noise
amplification effect will hinder the model convergence when
applying DP into a federated finetuning system with LoRA.

To overcome these problems, we propose a novel privacy-
preserving federated finetuning (FedFT) framework called
Deviation Eliminating and Noise Regulating (DEeR). The
goal of DEeR is to adapt pretrained FMs to downstream
medical tasks via LoRA in FL with client-level DP guarantees.
Specifically, we firstly theoretically prove that the necessary
condition to eliminate aggregation deviation is guaranteing
the equivalence between LoRA parameters of clients. With
the theoretical insight, we design a deviation eliminator at
the server side, which utilizes the alternating minimization
algorithm to iteratively optimize the parameters A and B of
LoRA, ensuring that aggregation deviation always be zeros
during training. Moreover, we also conduct an in-depth analy-
sis of the noise amplification effect and find that this problem
is mainly caused by “linear relationship” between DP noise
and LoRA parameters. To suppress the noise amplification
effect, we propose a noise regulator that exploits two regulator
factors to decouple the relationship between DP and LoRA,
thereby achieving robust privacy protection and excellent
finetuning performance. The main contributions of this work
are summarized as follows:

• This work in-depth analyzes the challenges of a privacy-
preserving FedFT system with LoRA. To the best of our
knowledge, it represents the first effort to adapt different
pretrained FMs to various downstream medical tasks via
FedFT with LoRA.

• We propose a deviation eliminator that utilizes the alter-
nating minimization algorithm to optimize the parameters

of LoRA to avoid aggregation deviation.
• We present a noise regulator that can exploit two regulator

factors to decouple relationship between DP and LoRA
to suppress the noise amplification effect.

• Extensive experiments are conducted on public datasets.
The results demonstrate the superior performance of the
proposed DEeR over state-of-the-arts and the efficacy of
different components.

Roadmap. The rest of the paper is organized as follows. In
Section II, we review previous methods focusing on PEFT and
federated finetuning with LoRA. Some preliminary knowledge
is presented in Section III. In Section IV, the proposed DEeR
framework is introduced in detail. We describe implementation
details, experimental settings and results in Section V. Finally,
the paper is closed with the conclusion in Section VI.

II. RELATED WORK

We introduce existing methods about parameter efficient
fine tuning and federated finetuning with LoRA in this section.

A. Parameter Efficient Fine Tuning (PEFT)

Parameter efficient fine tuning enables efficient adaptation
of foundation models to various downstream tasks without
the need to finetune all parameters of FMs. It only optimizes
a small subset of parameters and thus results in significant
reductions in computation and storage costs. Existing PEFT
methods can be broadly divided into three main categories.

The first category is dedicated to designing task-related
Adapters [31], [32]. For example, VL-Adapter [31] inserts
trainable adapter modules into a fixed CLIP model and fine-
tunes only the adapters for vision-language tasks. SAN [32]
presents a decoupled structure to reduce computational costs
for semantic segmentation, i.e., introducing an adapter network
as the side branch of FMs. Prompt tuning falls into the second
category. The prompt tuning [33] originally treats the prompts
in NLP as task-specific continuous vectors and only optimizes
them during finetuning, while visual prompt tuning [10] uses
a set of continuous embeddings as visual prompts to pad
the patch embeddings. However, both Adapter and Prompt
tuning-based approaches introduce extra parameters and result
in inference latency [34].

To solve this problem, the third type of works focus on
reparameterization techniques, the most famous of which is
the LoRA series [34]. The vanilla LoRA [9] optimizes rank
decomposition matrices and re-parameterize the pretrained
weight matrices. Numerous studies [35]–[39] have further de-
veloped and applied LoRA to various scenarios. For instance,
considering that prespecifing a rank for all layers neglects the
importance of different layers, AdaLoRA [36] dynamically
allocates the rank for different layers by importance scoring.
Additionally, LoRA Dropout [36] observes that finetuning
LoRA-series models also face the risk of overfitting and
thus introduces dropout technique to randomly drop rows and
columns from tunable low-rank parameter matrices. Recent
initiatives [38], [39] mainly focus on the composition of
separate trained LoRAs to amplify performance across various
tasks. For example, MOLE [38] treats each layer of trained



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

LoRAs as a distinct expert and learns a gating function to get
composition weights to fuse these experts. Differing to existing
approaches [35]–[39], this paper represents the first effort to
develop LoRA into medical domain in a decentralized learning
setting, aiming to achieve privacy-preserving federated PEFT.

B. Federated Finetuning with LoRA
The above PEFT approaches generally assume that training

data comes from a data warehouse. In practice, however, data
is often owned by multiple parties and is often prohibited
from being shared with others, especially in medical domain.
Recently, interest in the intersection of PEFT and FL has
notably increased, forming a new research topic called FedFT.
FedPETuning [26] provides a holistic empirical study of
representative PEFT methods in FL. The experimental results
show that the LoRA-based FedFT technique achieves a very
promising performance and inference speed. Next, we review
the existing LoRA-based FedFT methods.

Among current LoRA-based FedFT methods, a common
solution is directly combining LoRA with FL to finetune
FMs for various scenes, such as speech-to-text tasks [27] and
personalized FL [25]. Nevertheless, this native way presents
slow a convergence speed and leads to costly communication
expenses. SLoRA [14] and FeDeRA [40] attribute the problem
to random initialization of low-rank matrices. To this end, they
use the singular value decomposition (SVD) to obtain better
initialization from the pretrained full matrix. Besides, there
is another problem that different layers of all client models
should share varying ranks due to heterogeneous resources
and data distributions. SA-FedLora [41] defines a scheduler
function to adaptively adjust rank with communication round.
In HETLORA [28], all clients first start from a global rank and
then self-prune their respective ranks based on the magnitude
of the model parameters. FlexLoRA [40] encourages clients
to use different ranks during local training and upload full-
size LoRA to a server. The server uses SVD to decouple the
aggregated full-size matrix and distributes different sizes of
LoRA to the clients. thereby achieving heterogeneous LoRA.

Apart from the above problems, FFA-LoRA [13] finds that
the “quadratic” structure of LoRA incurs aggregation bias
and introduces quadratic DP noise. To break the “quadratic”
structure, FFA-LoRA fixes the randomly initialized non-zero
matrices and only finetunes the zero-initialized matrices. How-
ever, freezing non-zero matrices will hinder the model from
converging to a good local minimum, since random initializa-
tion is nearly impossible to produce optimal parameters for
downstream tasks [42], [43]. This strategy makes FFA-LoRA
very sensitive to different initialization. A bad initialization can
degrade the model performance. Experiments in the previous
method [44] and our paper also show the limited performance
of FFA-LoRA. In addition, FFA-LoRA neglects the effect of
linear noises. In this paper, we provide a more comprehensive
study about these issues and an in-depth analyze the conditions
to solve these problems.

III. PRELIMINARIES

In this section, we present some background knowledge
about LoRA, federated finetuning (FedFT) with LoRA, and

differential privacy.
LoRA. As one of the most promising PEFT methods in the

central setting, the key idea of LoRA [9] is decomposing the
update ∆W ∈ Rm×n of target module into low-rank matrices:

W0 +∆W = W0 +BA, (1)

where W0 ∈ Rm×n denotes the pretrained weight matrix.
B ∈ Rm×r and A ∈ Rr×n are the low-rank decomposition
of ∆W, such that ∆W = BA. Typically, r is the rank of
∆W, B, A, and significantly smaller than m and n. During
the finetuning phase, the model optimizes matrices B and A
instead of directly updating W0, thus achieving the substantial
reduction in GPU memory and storage usage. Additionally, to
ensure the stable convergence, B and A use zero and random
Gaussian initialization respectively, so that ∆W = BA is
zero at the beginning of training.

FedFT with LoRA. Current LoRA-based FedFT methods
[12], [25]–[29] follow a standard FL setting, i.e., FedAvg [20].
These methods collaboratively unite local LoRA modules of
K clients to learn a global LoRA (Bg, Ag) as the global
change ∆Wg, enabling the pretrained knowledge W0 to adapt
downstream tasks via multiple rounds of communication:

Wg = W0 +∆Wg = W0 +BgAg, (2)

where Bg and Ag are obtained via the aggregation of local
LoRA modules as follows,

Bg = 1/K
∑

k∈[K]
Bk, Ag = 1/K

∑
k∈[K]

Ak. (3)

The updated Bg and Ag are distributed back to clients as the
initialization of local LoRA modules in the next round.

Differential Privacy Differential privacy (DP) is a popular
manner to provide theoretical guarantees against training data
leakage from the model in federated learning [22]. This work
focuses on the client-level DP, aiming to ensure information
security for any clients.

Definition 1. (Client-level DP) A randomized algorithmM is
(ε, δ)-DP if for any two adjacent datasets D, D′ constructed
by adding or removing all records of any client, and every
possible subset of outputs S in the range of M satisfy the
following inequality:

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ. (4)

where the parameter ε is called the privacy budget and a
smaller ε means a stronger privacy protection guarantee. The
parameter δ defines the probability of failing to guarantee the
differential privacy bound for any two adjacent datasets. At
each round, each client first clips the local gradient with a
norm constraint C. After clipping, we add Gaussian noise to
the gradient before uploading it to the server [45], as follows:

∆W = ∆W ∗min(1,
C

∥∆W∥2
) +N (0, σ2C2 · Id/K) (5)

where σ is noise variance.

IV. METHODOLOGY

We first exhaustively analyze the challenges faced by FedFT
with LoRA. Then, the overall framework and its submodules
are introduced.
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Fig. 2. The norm changes of linear noise items with communication round:
(a) ∥ξBk Ak∥F , (b)∥Bkξ

A
k ∥F . (Best viewed in color.)

A. Problem Formulation

The native way to integrate LoRA and FedAvg in ex-
isting FedFT methods [12], [25]–[29] neglects the impact
of “quadratic” architecture of LoRA. It would incur two
intractable issues and hinder convergence of a federation
system [13].

Aggregation Deviation. The first issue is aggregation devia-
tion at the server side. Theoretically, the expected global model
update ∆Wg in Eq. (2) should be calculated by averaging the
uploaded updates {∆Wk}Kk=1 of clients [20]:

∆Wg =
1

K

∑
k∈[K]

∆Wk =
1

K

∑
k∈[K]

BkAk. (6)

However, according to Eq. (3), existing approaches [12], [25]–
[29] aggregate B and A parts separately. Obviously, there
exists an aggregation deviation as follows:

∆Wg =
1

K

∑
k∈[K]

Bk
1

K

∑
k∈[K]

Ak ̸= 1

K

∑
k∈[K]

BkAk.

(7)
Essentially, the deviation comes from the contradiction be-
tween model averaging in FL and the “quadratic” architecture
of LoRA. In next section, we theoretically analyze that the
deviation becomes larger when the data of clients are more
heterogeneous.

Noise Amplification Effect. Another problem is that the
“quadratic” architecture of LoRA would amplify DP noise. For
the convenience of discussion, we omit the gradient clipping
step and focus on one round of training. Generally, after local
training of client k, the noise ξk ∈ Rm×n is sampled from
Gaussian distribution and added to the local update ∆Wk ∈
Rm×n to ensure client-level DP as follows:

W̃k = Wk + ξk = W0 + (∆Wk + ξk), (8)

where W̃k is the local model after adding noise. However, in
FedTF with LoRA, we exploit LoRA to replace ∆Wk and
upload parameters B and A to the server. Therefore, we need
to add Gaussian noise ξBk ∈ Rm×r and ξAk ∈ Rr×n to Bk

and Ak instead of ∆Wk:

W̃k = W0 + (Bk + ξBk )(Ak + ξAk )

= W0 +BkAk +Bkξ
A
k + ξBk Ak + ξBk ξAk ,

(9)

where we call the third and fourth terms as linear noises, the
final term as quadratic noise. FFA-LoRA [13] has shown that

Algorithm 1 The proposed DEeR algorithm for federated low-
rank adaptation.
1: Server executes:
2: for each communication round t do
3: for each client k = 1, 2, ...,K do
4: Downloading A

(t)
g to update A

(t−1)
k to A

(t)
k and freezing it.

5: B
(t+1)
k ← ClientUpdate B(W0,A

(t)
g ,B

(t)
k ).

6: end for
7: Aggregating B: B(t+1)

g ←
∑K

k=1 B
(t+1)
k .

8: for each client k = 1, 2, ...,K do
9: Downloading B

(t+1)
g to update B

(t)
k to B

(t+1)
k and freezing it.

10: A
(t+1)
k ← ClientUpdate A(W0,A

(t)
k ,B

(t+1)
g ).

11: end for
12: Aggregating A: A(t+1)

g ←
∑K

k=1 A
(t+1)
k .

13: end for
14: Client executes:
15: ClientUpdate B(W0,A

(t)
g ,B

(t)
k ):

16: for each epoch e = 1, 2, ..., E do
17: B

(t+1)
k ← argminBk

fk(W0,A
(t)
g ,B

(t)
k ).

18: end for
19: Based on Theorem 2, adding the modulated Gaussian noise into

B
(t+1)
k before uploading it.

20: ClientUpdate A(W0,A
(t)
k ,B

(t+1)
g ):

21: for each epoch e = 1, 2, ..., E do
22: A

(t+1)
k ← argminAk

fk(W0,A
(t)
k ,B

(t+1)
g ).

23: end for
24: Based on Theorem 2, adding the modulated Gaussian noise into

A
(t+1)
k before uploading it.

the quadratic noise becomes larger with the smaller privacy
budget ε and hinders the convergence of the federated system.

Yet, FFA-LoRA neglects the impact of linear noises. To
reveal the characteristics of linear noises ξBk Ak and Bkξ

A
k ,

we implement a baseline version of FedFT with LoRA [12],
[25]–[29] on an endoscopic dataset, i.e, Kvasir-v2 [46], where
the number of clients is 12 and the pretrained model is
BiomedCLIP [3]. We randomly select one layer of LoRA in a
client model and plot the Frobenius norm changes of its linear
noises with the communication round, under different privacy
budgets ε ∈ {1, 3, 6}, as shown in Fig. 2 (a) and (b). We can
observe that: (1) The noise norms ∥Bkξ

A
k ∥F and ∥ξBk Ak∥F

continuously increase with the communication round for any
privacy budgets; (2) The increase rates of ∥Bkξ

A
k ∥F and

∥ξBk Ak∥F are greater when the privacy budget ε becomes
smaller. These observations confirm that the “quadratic” archi-
tecture of LoRA can enlarge the original DP noise for a given
privacy budget. This leads to the privacy guarantee shrinking
since we need to increase the privacy budget to ensure model
convergence.

B. Overview

We present Deviation Eliminator and Noise Regulator
(DEeR), a privacy-preserving federated finetuning framework
to adapt pretrained foundation models to downstream medical
tasks via LoRA. Similar to previous works [12], [25]–[29],
DEeR follows the standard FL setting, i.e., FedAvg [20],
and collaborates K clients to finetune a pretrained foundation
model with the frozen parameters W0 and trainable LoRA
parameters A and B, as shown in Fig. 3. Each client holds a
local medical dataset Dk = {(xk

i ,y
k
i )}, where xk

i denotes a
training sample with the label yk

i . At the beginning of training,
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Fig. 3. The overview of the proposed DEeR framework for federated finetuning with LoRA (Best viewed in color). DEeR is equipped with a deviation
eliminator at the server side and a noise regulator at the client side. The deviation eliminator exploits alternating minimization algorithm to optimize the
parameters A and B of LoRA for mitigating aggregation deviation. The noise regulator introduces two regulator factors to suppress noise amplification effect.

the server sends the parameters W0, A and B to clients.
During the overall training process, W0 is fixed and only the
parameters A and B are updated and uploaded to the server
for aggregation. A and B have low communication costs since
they are low-rank matrices. DEeR equips every client with
a noise regulator to suppress the noise amplification effect
caused by the “quadratic” architecture of LoRA during local
training. Meanwhile, a deviation eliminator on the server side
is used to schedule the optimization process of A and B to
avoid the aggregation deviation. In addition, we provide the
pseudocode to show the workflow of DEeR in Algorithm 1.

C. Deviation Eliminator

Although LoRA is favored by FedFT since its low-rank
property and “quadratic” architecture result in the low com-
munication costs and relatively low computational burdens, it
also introduces the new challenge i.e., aggregation deviation,
as shown in Eq (7). To tackle this dilemma, we present
a deviation eliminator that exploits alternating minimization
algorithm to decouple the “quadratic” architecture of LoRA
and achieve the robust optimization of the parameters A and
B, as demonstrated in Fig. 3.

To quantify the overall deviation O owing to LoRA aggre-
gation on the server side, we define the deviation term based
on Eq. (7) as below:

O =

∣∣∣∣ 1

K2

∑
k∈[K]

Bk

∑
k∈[K]

Ak −
1

K

∑
k∈[K]

BkAk

∣∣∣∣ .
(10)

We theoretically show that the overall deviation O can be
eliminated when A or B of all clients are equivalent.

Theorem 1. Given a collection of K clients, let Bk, Ak and
Bk′ , Ak′ be the LoRA parameters of any two clients k and
k′, respectively. The overall aggregation deviation O will be
zero when Bk and Bk′ or Ak and Ak′ are equivalent in a
FedTF system with LoRA.

Proof of Theorem 1.

O =

∣∣∣∣ 1

K2

∑
k∈[K]

Bk

∑
k∈[K]

Ak − 1

K

∑
k∈[K]

BkAk

∣∣∣∣
=

∣∣∣∣ 1

K2
(
∑

k∈[K]
Bk

∑
k∈[K]

Ak −K
∑

k∈[K]
BkAk)

∣∣∣∣
=

∣∣∣∣ 1

K2

[∑
k′∈[K]

(
Bk′

∑
k∈[K]

Ak −
∑

k∈[K]
BkAk

)]∣∣∣∣
=

∣∣∣∣ 1

K2

[∑
k′∈[K]

(∑
k∈[K]

Bk′Ak −
∑

k∈[K]
BkAk

)]∣∣∣∣
=

∣∣∣∣ 1

K2

[∑
k′∈[K]

∑
k∈[K]

(Bk′ −Bk)Ak

]∣∣∣∣
//Using the similar derivation process.//

=

∣∣∣∣ 1

K2

[∑
k∈[K]

∑
k′∈[K]

Bk(Ak′ −Ak)

]∣∣∣∣ . □

We can find that the deviation O will be zero when B or A of
all clients are equivalent. Additionally, data heterogeneity has
a significant impact on O, since it increases the divergence
between (A, B) of different clients.

With the insight of Theorem 1, we introduce a constraint
condition into the optimization objective of a FedFT system
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to ensure the equivalence between A or B of any two clients:

min
Ag,Bg

1

K

∑
k∈[K]

fk(W0,Ag,Bg),

s.t.
∑

k∈[K]

∑
k′∈[K]

(Bk −Bk′)(Ak −Ak′) = 0,
(11)

where fk is the loss function of the client k. The global Ag
and Bg are obtained by Eq. (3). The objective in Eq. (11) is
equivalent to minimizing the following loss function for any
client k as follows:

min
Ak,Bk

fk(W0,Ak,Bk), s.t.,
∑

k′∈[K]

(Bk −Bk′)(Ak −Ak′) = 0.

(12)
Eq. (12) cannot be directly optimized because (A, B) of
each client are unavailable to each other during local training.
To enable the optimization objective to be separable across
clients, we employ the generalized Alternating Minimization
(gAM) optimization algorithm [47]. Specifically, at the t-th
round, we firstly update (A(t−1)

k , B(t−1)
k ) to (A(t)

k , B(t)
k ) using

the global (A(t)
g , B(t)

g ) downloaded from the server, and then
freeze A

(t)
k and only optimize B

(t)
k as follows:

B
(t+1)
k ← argmin

Bk

fk(W0,A
(t)
g ,B

(t)
k ). (13)

Since A(t) of all clients equal to A
(t)
g , the constraint condition

are satisfied in Eq. (12). Next, the obtained {B(t+1)
k }Kk=1 are

delivered to the server and aggregated to get B
(t+1)
g , which

is distributed back to all clients to update B
(t)
k to B

(t+1)
k . We

fix B
(t+1)
k and only optimize A

(t)
k as follows:

A
(t+1)
k ← argmin

Ak

fk(W0,A
(t)
k ,B(t+1)

g ). (14)

Similarly, B(t+1) of all clients are equivalent, so the constraint
condition is also satisfied in Eq. (12).

The proposed deviation eliminator can exploit the gAM
optimization algorithm to ensure the equivalence between
A or B of any two clients for each round of aggregation.
Therefore, the overall aggregation deviation O is always zero,
thereby guaranteing the stable convergence of the model.
Notably, FFA-LoRA [13] fixes randomly-initialized A and
only optimizes B during the overall training process, which
can be regarded as a special case of our method. However,
randomly-initialized A is not certainly optimal and limits
model convergence. In contrast, our approach optimizes A
and B through gAM algorithm and is therefore more likely to
converge to a better local optimum.

D. Noise Regulator

Differential privacy (DP) techniques provide more stringent
privacy protection to a FedFT system against potential privacy
leaks. However, when directly introducing DP into a LoRA-
based FedFT system, the “quadratic” architecture of LoRA
would amplify DP noise, showing a significant negative impact
on the model convergence and final finetuning performance.
To suppress the noise amplification effect, we propose a novel
noise regulator that uses two regulator factors to decouple
the relationship between DP and LoRA, thereby ensuring

robust privacy protection while maintaining superior finetuning
performance, as illustrated in Fig. 3.

As we discussed earlier about the noise amplification effect,
LoRA transfers the original DP noise into two types, i.e.,
linear noises and quadratic noise, as demonstrated in Eq. (9).
Because the “quadratic” structure of LoRA has been decoupled
by the proposed deviation eliminator, the quadratic noise is
eliminated [13]. Concretely, after optimizing A and B via
Eq. (13) and Eq. (14) respectively, we inject DP noise into
them before sending them to the server as follows:

W0 + (Bk + ξBk )Ak = W0 +BkAk + ξBk Ak, (15)

W0 +Bk(Ak + ξAk ) = W0 +BkAk +Bkξ
A
k , (16)

where we omit the superscript t for convenience. In Eq. (15),
Ak = Ag, and Bk = Bg in Eq. (16). Although the quadratic
noise disappears, the linear noises ξBk Ak and Bkξ

A
k are

amplified with the communication round and still affect the
learning of Ak and Bk.

Next, we conduct an in-depth analysis of ξBk Ak and Bkξ
A
k .

With a given privacy budget ε, we can obtain the corre-
sponding Gaussian noise distribution by privacy composition
rules [48]. Theoretically, if we sample DP noises ξBk ∈ Rm×r

and ξAk ∈ Rr×n from the distribution, their norm values do
not change significantly during the training process. Hence,
the amplification of ξBk Ak and Bkξ

A
k is only related to

Ak and Bk, respectively. Next, we theoretically prove that
the amplification effect can be removed by introducing two
regulator factors.

Theorem 2. Assuming that Bk ∈ Rm×r and Ak ∈ Rr×n are
LoRA parameters of the client k. Let ξW ∈ Rm×n be DP
noise sampled from a Gaussian distribution. AT

k(AkA
T
k)

−1

and (BT
kBk)

−1BT
k are two regulator factors. Imposing the

noises ξWAT
k(AkA

T
k)

−1 and (BT
kBk)

−1BT
kξ

W to Bk and
Ak respectively can mitigate the noise amplification effect and
ensure robust privacy protection.

Proof of Theorem 2. Given the specific Gaussian distribution
for the privacy budget ε, the noise terms ξBk Ak ∈ Rm×n

and Bkξ
A
k ∈ Rm×n are expected to follow this distribution.

To obtain ξBk and ξAk satisfying the condition, we solve the
following least-squares problems:

min
ξB
k

∥ξBk Ak − ξW∥2; min
ξA
k

∥Bkξ
A
k − ξW∥2;

s.t.,Bk, ξ
B
k ∈ Rm×r,Ak, ξ

A
k ∈ Rr×n, ξW ∈ Rm×n,

(17)

where ξW ∈ Rm×n is sampled from the Gaussian dis-
tribution. Considering that Bk and Ak are singular matri-
ces, we can compute their pseudo-inverses via the singular
value decomposition (SVD) [49] and obtain final solutions
to the above problems [50]: ξBk

⋆
= ξWAT

k(AkA
T
k)

−1 and
ξAk

⋆
= (BT

kBk)
−1BT

kξ
W. Here, we refer to AT

k(AkA
T
k)

−1

and (BT
kBk)

−1BT
k as regulator factors. We apply ξBk

⋆ and
ξAk

⋆ into Eq. (15) and Eq. (16), respectively:

W0 +
[
Bk + ξWAT

k(AkA
T
k)

−1
]
Ak = W0 +BkAk + ξW,

W0 +Bk

[
Ak + (BT

kBk)
−1BT

kξ
W
]
= W0 +BkAk + ξW,

(18)
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where AT
k(AkA

T
k)

−1Ak = Bk(B
T
kBk)

−1BT
k = I ∈ Rm×n.

Since ξW does not undergo significant change during training,
the amplification of linear noises is suppressed. □

In Fig. 2, we demonstrate the norms of noise terms
∥Bkξ

A
k ∥F and ∥ξBk Ak∥F for our method in different commu-

nication rounds. It can be observed that the noise norms have
slight fluctuations and do not present an increasing trend for
any privacy budgets. Therefore, the noise amplification effect
is removed with the synergy between the proposed deviation
eliminator and noise regulator.

V. EXPERIMENTS

To investigate the effectiveness of the proposed DEeR, we
evaluate it on two medical classification datasets (OCT-C8 [51]
and Kvasir-v2 [46]) and two medical segmentation datasets
(M&MS [52] and polyp segmentation [53]).

A. Datasets

1) OCT-C8: OCT-C8 [51] contains 24000 retinal OCT
images, which belong to eight categories, i.e., age related
macular degeneration, choroidal neovascularisation, diabetic
macular edema, drusen, macular hole, diabetic retinopathy,
central serous retinopathy and one for healthy class. Based
on the official division, 18400 images are used for training,
2800 images for validation, and 2800 images for testing.

2) Kvasir-v2: We collect 8000 endoscopic images of the
gastrointestinal tract from Kvasir-v2 dataset [46]. These sam-
ples are divided into eight classes according to the types of
anatomical landmarks and phatological findings. We use the
ratio of 7 : 1 : 2 to randomly partition these samples into
training, validation, and test sets.

3) M&MS: We gather 317 cardiac magnetic resonance
scans from different patients from M&MS [52]. These scans
were scanned in clinical centers in three countries (Spain,
Germany and Canada) using four different scanner vendors
(Siemens, General Electric, Philips and Canon). Each scan is
segmented into background area, left ventricular myocardium,
left and right ventricle blood pools. We divide these scans into
four clients based on the vendor type. The scans of each client
are randomly partitioned into training, validation, and test sets
with a ratio of 7 : 1 : 2. All 3D volumes are sliced into images
with the axial plane.

4) Polyp Segmentation Dataset: The data are collected
from four public datasets, CVC-ClinicDB [54], CVC-
ColonDB [55], ETIS [56] and Kvasir [57]. Following the
study [53], we adopt the 900 and 550 images from ClinicDB
and Kvasir datasets as the training set. The remaining 64
images of ClinicDB dataset and 100 images of Kvasir dataset
belong to the test set. In addition, ETIS and CVC-ColonDB
datasets contain 380 images and 196 images, respectively,
which are totally divided into the test set to verify the
generalization ability of a model. We randomly and evenly
divided training images into four clients.

B. Experiment Setup

1) Implementation Details: The proposed DEeR and com-
parison methods are implemented with PyTorch library. For

classification datasets, BiomedCLIP [3] is regarded as the
foundation model. The number K of clients is set to 12. We
keep the total communication rounds to 50 and the local steps
to 5. The total batch-sizes are set to 128 and 512 for Kvasir-
v2 and OCT-C8, respectively. We use Dirichlet distribution
on label ratios to simulate Non-IID settings. The Dirichlet
parameter β defaults to 0.1. For segmentation datasets, we use
SAM-Med2D [58] as the foundation model and box as prompt.
We keep the total communication rounds to 50 and the local
steps to 3. The total batch-size is set to 32 for M&MS dataset
and 128 for polyp segmentation dataset. For all datasets, we
use the SGD optimizer and choose the best learning rate
from [0.1, 0.01, 0.001] by FedAvg with LoRA. Both the rank
r and scaling factor α default to 8. For privacy parameters,
the privacy failure probability δ = 1

K . The privacy budget ε
defaults to 3 for Kvasir-v2 and 0.1 for OCT-8 and M&MS.
We use the privacy accountant from Opacus [59] to calculate
the noise scale σ in all experiments. The clipping threshold C
is selected by grid search from set [0.1, 0.2, 0.3, 0.4, 0.6].

2) Evaluation Metrics: Two commonly-used metrics, ac-
curacy, and F1-score, are used to measure the classification
performance. To evaluate segmentation performance, we adopt
two commonly-used metrics of Dice similarity coefficient
and mean intersection over union (IoU) of foreground and
background. In all the experiments, we conduct three trials for
each setting and present the mean and the standard deviation.

C. Comparisons with State-of-the-Art Methods

We compare DEeR with three baselines on different medical
tasks. (1) LoRA: We implement the original LoRA [9] based
on FedAvg [20]. (2) FFA-LoRA [13]: It freezes A and only
finetunes B of LoRA in FedAvg. (3) DP-DyLoRA [60]: it
adjusts the rank r of LoRA layers randomly during training,
in the range of r ∈ [rmin, rmax]. During testing, we reported
the best results among these ranks.

1) Evaluation on Medical Classification Tasks: To ver-
ify efficiency of DEeR for medical classification tasks, we
compare performance of DEeR and baseline methods, under
different privacy budgets ε ∈ [1.0, 3.0, 6.0] for Kvasir-v2
dataset and ε ∈ [0.1, 0.5, 1.0] for OCT-8 dataset, as shown in
Table I. For Kvasir-v2 dataset, LoRA yields the second-best
performance and undergoes a severe performance degradation
as ε becomes smaller, especially F1-score with a decrement of
4.17%. Although FFA-LoRA presents relatively stable perfor-
mance against varying privacy budgets, it obtains the lowest
accuracy and F1-score. By comparison, DEeR implements
the highest accuracy and F1-score and also shows consistent
performance for different privacy budgets. In experiments,
we also observe that recall scores of all cases in DEeR are
higher than 80%. Significant difference is found in LoRA
and DEeR for ε = 1.0 (P -value < 0.005) and ε = 6.0
(P -value < 0.05). For OCT-8 dataset, both LoRA and FFA-
LoRA present the high sensitivity to ε. For instance, when
the budget ε decreases from infinity (without DP) to 0.1, they
have enormous performance drops with decrements of 49.92%
and 53.5%, 28.65% and 32.58% in accuracy and F1-score,
respectively. Noticeably, DEeR merely suffers from a slight
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TABLE I
THE PERFORMANCE COMPARISON OF DIFFERENT METHODS ON TWO CLASSIFICATION DATASETS.

Datasets Priv. Budget LoRA FFA-LoRA DP-DyLoRA DEeR

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

OCT-8

Without DP 92.07± 1.24 92.09± 1.23 84.86± 2.07 84.87± 2.14 92.67± 1.38 92.66± 1.37 92.93± 0.82 92.95± 0.82
ε = 1.0 80.92± 2.42 79.77± 3.11 76.91± 4.15 76.65± 4.17 79.26± 3.89 77.72± 5.07 92.33± 0.55 92.35± 0.55
ε = 0.5 83.39± 3.88 82.30± 5.03 74.53± 4.39 72.57± 5.54 61.70± 1.89 58.36± 4.24 91.20± 0.95 91.21± 0.97
ε = 0.1 42.15± 2.88 38.59± 3.60 56.20± 4.63 52.29± 6.10 23.55± 4.61 19.30± 3.40 84.28± 3.74 83.20± 4.59

Kvasir-v2

Without DP 85.46± 1.39 85.18± 2.00 80.73± 1.08 79.90± 1.56 76.10± 5.59 74.15± 6.92 86.29± 0.65 86.11± 0.65
ε = 6.0 84.58± 0.57 84.25± 0.58 79.23± 0.87 78.14± 1.03 78.85± 3.92 77.57± 5.50 87.00± 0.87 86.84± 0.91
ε = 3.0 84.85± 0.86 84.51± 0.86 79.21± 0.62 77.94± 0.80 76.93± 1.40 75.17± 2.68 86.90± 0.75 86.70± 0.85
ε = 1.0 82.00± 0.82 81.01± 1.11 79.06± 1.35 77.90± 1.51 76.37± 2.45 73.69± 3.86 86.56± 0.53 86.33± 0.63

TABLE II
THE PERFORMANCE COMPARISON OF DIFFERENT METHODS ON CARDIAC IMAGE SEGMENTATION DATASET.

Priv. Budget Clients LoRA FFA-LoRA DP-DyLoRA DEeR

IoU Dice IoU Dice IoU Dice IoU Dice

ε = 1.0
Canon 73.73± 1.77 82.99± 1.57 76.00± 0.78 84.72± 0.80 74.87± 1.43 84.19± 1.40 77.22± 1.32 85.63± 1.21

GE 73.32± 1.59 82.89± 1.61 74.98± 0.85 83.83± 0.76 73.90± 1.06 83.52± 0.98 76.37± 1.39 84.97± 1.33
Philips 75.54± 0.34 84.83± 0.36 77.28± 0.69 86.03± 0.61 74.40± 0.18 84.02± 0.13 78.83± 0.04 87.31± 0.11

Siemens 75.15± 1.03 83.91± 1.06 77.26± 1.19 85.47± 1.19 73.71± 0.58 82.96± 0.24 78.45± 1.06 86.51± 1.03

ε = 0.1
Canon 69.65± 0.77 79.94± 0.57 76.41± 1.56 84.96± 1.48 70.02± 1.31 80.37± 1.21 77.52± 1.68 85.87± 1.49

GE 69.18± 1.90 79.82± 1.69 74.83± 1.81 83.78± 1.70 70.08± 1.25 80.73± 1.31 75.37± 1.72 84.33± 1.41
Philips 70.62± 0.81 81.04± 0.56 77.02± 0.23 85.94± 0.17 72.22± 0.58 82.10± 0.42 78.02± 0.25 86.65± 0.18

Siemens 69.75± 1.25 79.97± 1.36 76.72± 0.73 85.11± 0.89 71.03± 1.48 80.96± 1.20 78.18± 0.84 86.43± 0.78

TABLE III
THE PERFORMANCE COMPARISON OF DIFFERENT METHODS ON POLYP

SEGMENTATION DATASET UNDER DIFFERENT PRIVACY BUDGETS.

Methods
ε = 1.0 ε = 0.1

IoU (%) Dice (%) IoU (%) Dice (%)

LoRA 78.83± 0.08 87.17± 0.03 75.98± 0.62 85.44± 0.31
FFA-LoRA 80.96± 0.04 88.60± 0.03 79.91± 0.18 87.84± 0.07

DP-DyLoRA 73.84± 1.00 83.90± 0.43 75.00± 1.01 84.69± 0.43
DEeR 81.50± 0.22 88.92± 0.13 80.60± 0.15 88.38± 0.04

drop (8.65%) and (9.75%) and outperforms LoRA and FFA-
LoRA (P -value < 0.0005 for ε = 0.1 and P -value < 0.005
for ε = 1.0). DP-DyLoRA can perform well without DP noise,
but performs poorly once imposing noise and also presents
a higher sensitivity to ε than DEeR. Although DP-DyLoRA
presents relatively stable performance as DEeR against varying
privacy budgets, it obtains low accuracy and F1-score. The
results on two datasets prove that DEeR can achieve superior
finetuning performance while providing stronger privacy guar-
antees than existing methods for medical classification tasks.

We further visualize the confusion matrices of the previous
methods and our DEeR on the endoscopy dataset, as shown
in Fig. 4. We can observe that DP-DyLoRA, LoRA and FFA-
LoRA misclassify 97.5%, 67.5% and 66.5% the class 1 into
the class 0 due to the narrow intra-class distance, respectively.
Meanwhile, they also have high errors for the class 5 and 6. By
comparison, DEeR achieves higher precision in these classes,
especially for the class 1. The experimental results can confirm
the effectiveness of the proposed finetuning method.

2) Evaluation on Medical Segmentation Tasks: We com-
pare DEeR with baseline methods on M&MS and polyp
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Fig. 4. The confusion matrices of different methods on Kvasir-v2.

segmentation datasets with privacy budgets ε ∈ [0.1, 1.0]. For
M&MS in Table II, it is observed that the performance of
LoRA is fragile for the budget ε, since its IoU and Dice
on all clients suffer from remarkable decreases when ε de-
clines from 1 to 0.1. Different from classification tasks, FFA-
LoRA outperforms LoRA on segmentation tasks. One possible
reason is that the segmentation model is more sensitive to
noise. Compared with LoRA, FFA-LoRA is not affected by
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Fig. 5. Visualization of segmentation results for different methods on M&MS
dataset. The columns (1)-(3) correspond to ε = 0.1 and columns (4)-(5)
correspond to ε = 1.0.

“quadratic” noise. Nonetheless, it is still inferior to DEeR in
terms of performance for different privacy budgets ε since
it neglects the impact of “linear” noise. The comparison
results of polyp segmentation are demonstrated in Table III.
LoRA and DP-DyLoRA [60] show the limited performance
for different privacy budget ε, since they ignore aggregation
deviation and noise amplification effect problems. In contrast,
FFA-LoRA exploits a simple freezing strategy to address these
problems and achieves the better performance. Notably, DEeR
outperforms FFA-LoRA for any ε and yields approximating
90% of dice scores. These results confirm the priority of DEeR
for medical segmentation tasks in contrast to the state-of-the-
art methods.

Furthermore, we visualize the segmentation results of DEeR
and the state-of-the-art methods under different privacy bud-
gets ε, as shown in Fig. 5. The simple case of the 1-st
column is accurately segmented by all methods. Noticeably,
our method obtains higher performance since it has a su-
perior capacity to detect boundaries. Although some object
regions are small (2-nd column), discontinuous (3-rd column),
or irregular (4-th and 5-th columns), DEeR can also more
accurately segment them than LoRA and FFA-LoRA. We also
visualize the polyp segmentation results of DEeR and previous
methods, as shown in Fig. 6. We can find that DEeR can more
accurately segment various polyps than LoRA and FFA-LoRA.
These qualitative results further illustrate the effectiveness of
our DEeR.

D. Ablation Analysis

We perform a comprehensive evaluation on Kvasir-v2 and
OCT-8 to investigate the efficacy of different modules in DEeR
and the impact of some critical factors, i.e., data heterogeneity
β, rank r, communication budget and client number.

1) Evaluation of Different Modules: The deviation elimi-
nator and noise regulator are two indispensable components
for DEeR to improve the finetuning performance. To evaluate
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Fig. 6. Visualization of segmentation results for different methods on polyp
segmentation dataset.

their contributions, we individually remove them to observe
the performance of DEeR. As illustrated in Table IV, DEeR
experiences significant performance decline once we remove
deviation eliminator (w/o Deviation Eliminator), with decre-
ments of 48.5% from 92.33% to 43.83% on OCT-8 (ε = 1.0)
and 14.57% from 87.00% to 72.43% on Kvasir-v2 (ε = 6.0)
in accuracy. The decrements are further magnified to 68.39%
and 20.63% when the budgets ε on two datasets shrink to
0.1 and 1.0, respectively. Moreover, we can observe that
discarding noise regulator (w/o Noise Regulator) leads to a
slight performance drop when the privacy budget is high on
Kvasir-v2 (ε = 6.0) and OCT-8 (ε = 1.0). Nonetheless, severe
performance degradation is triggered by a lower budget, espe-
cially on Kvasir-v2. The best results are obtained when DEeR
is equipped with deviation eliminator and noise regulator,
which can corroborate the effectiveness of the two modules.

2) Impact of Data Heterogeneity: Based on the analysis of
Theorem 1, the data heterogeneity can exacerbate aggregation
deviation. To investigate its effect, we use the default privacy
budget ε and change the heterogeneity parameter β to observe
the performance of different methods in Table V. The results
show that LoRA and FFA-LoRA undergo more considerable
performance drop with decreasing β compared with DEeR.
For example, on OCT-8, as β decreases from 10.0 to 0.1,
F1-scores of LoRA and FFA-LoRA drop from 70.69% to
38.59% with a decrement of 32.10%, and 86.19% to 52.29%
with a decrement of 33.90%, respectively. Noticeably, the
decrement of F1-score for DEeR is merely 11.66%. We can
find significant difference in DEeR and the second-best FFA-
LoRA with P -value < 0.005 for all β. Besides, DEeR achieves
better performance than LoRA, FFA-LoRA and DP-DyLoRA
on two datasets for different β. The performance advantage
can prove that DEeR is more robust against data heterogeneity
than existing methods and further confirms the effectiveness
of the proposed noise regulator.

3) Impact of Rank r: The rank r can be regarded as
LoRA parameter budget. A larger r indicates more trainable
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TABLE IV
THE PERFORMANCE OF THE PROPOSED FEDERATED FINETUNING FRAMEWORK WITH DIFFERENT MODULES.

Datasets Priv. Budget w/o Deviation Eliminator w/o Noise Regulator DEeR

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

OCT-8
ε = 1.0 43.83± 5.05 35.18± 4.47 86.25± 3.77 85.78± 4.25 92.33± 0.55 92.35± 0.55
ε = 0.5 34.44± 7.65 25.37± 6.80 82.61± 5.43 81.53± 6.26 91.20± 0.95 91.21± 0.97
ε = 0.1 15.89± 3.95 10.25± 4.64 69.44± 4.36 67.45± 6.14 84.28± 3.74 83.20± 4.59

Kvasir-v2
ε = 6.0 72.43± 5.29 68.93± 5.31 85.77± 0.43 85.46± 0.35 87.00± 0.87 86.84± 0.91
ε = 3.0 72.16± 3.03 67.91± 2.62 84.81± 0.30 84.49± 0.48 86.90± 0.75 86.70± 0.85
ε = 1.0 65.93± 1.00 60.98± 1.95 78.56± 1.68 77.01± 2.46 86.56± 0.53 86.33± 0.63

TABLE V
THE PERFORMANCE COMPARISON OF DIFFERENT METHODS UNDER DIFFERENT DATA HETEROGENEITY.

Datasets Heterogeneity
LoRA FFA-LoRA DP-DyLoRA DEeR

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

OCT-8

β = 10.0 71.16± 1.58 70.69± 2.11 86.21± 0.25 86.19± 0.29 33.94± 2.32 29.83± 2.16 94.85± 0.08 94.86± 0.08
β = 1.0 69.51± 0.16 68.48± 0.71 83.27± 1.65 83.17± 1.62 32.86± 1.85 28.25± 2.27 94.82± 0.28 94.81± 0.28
β = 0.5 66.67± 1.76 66.41± 1.80 81.29± 2.17 81.22± 2.11 32.76± 2.30 30.28± 3.00 94.16± 0.28 94.16± 0.28
β = 0.1 42.15± 2.88 38.59± 3.60 56.20± 4.63 52.29± 6.10 23.55± 4.61 19.30± 3.40 84.28± 3.74 83.20± 4.59

Kvasir-v2

β = 10.0 91.00± 0.33 90.99± 0.34 86.54± 1.18 86.52± 1.17 88.54± 0.51 88.50± 0.54 91.48± 0.52 91.47± 0.51
β = 1.0 89.98± 0.46 89.95± 0.46 86.06± 0.44 86.04± 0.44 88.29± 0.26 88.29± 0.23 90.38± 0.20 90.37± 0.21
β = 0.5 89.00± 0.67 88.94± 0.70 84.54± 0.51 84.45± 0.54 86.60± 2.02 86.35± 2.27 90.27± 0.46 90.25± 0.49
β = 0.1 84.85± 0.86 84.51± 0.86 79.21± 0.62 77.94± 0.80 76.93± 1.40 75.17± 2.68 86.90± 0.75 86.70± 0.85

TABLE VI
THE PERFORMANCE COMPARISON OF DIFFERENT METHODS WITH DIFFERENT RANKS OF LORA.

Datasets LoRA Rank LoRA FFA-LoRA DP-DyLoRA DEeR

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

OCT-8

r = 16 46.77± 5.07 41.53± 5.74 56.85± 4.21 54.70± 5.70 30.28± 4.00 22.81± 2.13 87.50± 1.99 87.31± 2.16
r = 8 42.15± 2.88 38.59± 3.60 56.20± 4.63 52.29± 6.10 23.55± 4.61 19.30± 3.40 84.28± 3.74 83.20± 4.59
r = 4 35.34± 4.38 29.33± 2.48 66.32± 6.56 64.61± 8.29 21.54± 5.43 16.38± 6.33 78.09± 3.26 76.21± 4.21
r = 2 23.07± 1.81 17.28± 0.18 63.55± 4.84 60.25± 5.32 19.95± 1.84 12.80± 2.11 61.28± 3.69 57.11± 5.35

Kvasir-v2

r = 16 83.39± 1.04 82.81± 1.16 76.75± 0.68 75.50± 0.95 81.97± 1.28 81.15± 1.34 86.81± 0.75 86.67± 0.78
r = 8 84.85± 0.86 84.51± 0.86 79.21± 0.62 77.94± 0.80 76.93± 1.40 75.17± 2.68 86.90± 0.75 86.70± 0.85
r = 4 84.43± 0.40 84.14± 0.36 79.56± 0.38 78.40± 0.13 75.10± 4.65 71.37± 7.37 87.42± 0.38 87.25± 0.45
r = 2 79.35± 0.77 77.97± 1.38 79.68± 0.70 78.58± 0.70 72.16± 2.27 69.26± 3.44 84.83± 1.15 84.61± 1.27

TABLE VII
THE PERFORMANCE COMPARISON OF DIFFERENT METHODS WITH DIFFERENT CLIENT NUMBER.

Datasets LoRA Rank LoRA FFA-LoRA DP-DyLoRA DEeR

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

OCT-8

K = 16 52.71± 3.13 49.48± 3.39 64.01± 2.51 62.52± 2.65 32.60± 4.72 27.39± 5.72 88.57± 1.34 88.34± 1.46
K = 12 42.15± 2.88 38.59± 3.60 56.20± 4.63 52.29± 6.10 23.55± 4.61 19.30± 3.40 84.28± 3.74 83.20± 4.59
K = 8 30.57± 3.84 21.94± 3.35 54.42± 2.17 49.91± 2.04 22.08± 3.96 16.58± 2.51 88.13± 0.79 87.89± 0.82
K = 4 25.91± 1.03 19.77± 2.31 42.16± 6.02 34.99± 7.88 22.30± 1.21 15.32± 2.67 76.39± 4.74 73.39± 6.41

Kvasir-v2

K = 16 85.58± 0.26 85.46± 0.34 82.27± 1.88 82.15± 1.89 84.75± 1.45 84.50± 1.58 87.70± 0.69 87.61± 0.66
K = 12 84.85± 0.86 84.51± 0.86 79.21± 0.62 77.94± 0.80 76.93± 1.40 75.17± 2.68 86.90± 0.75 86.70± 0.85
K = 8 81.75± 1.48 80.81± 2.02 79.64± 1.62 78.83± 2.42 75.81± 0.40 73.67± 1.20 86.95± 0.83 86.79± 0.91
K = 4 69.72± 1.44 64.71± 1.13 68.66± 1.45 64.37± 1.61 59.66± 2.90 52.83± 4.28 78.47± 2.19 75.16± 2.93

parameters. We fix the privacy budget ε as well as the
heterogeneity parameter β, and compare the performance of
different methods with various r ∈ [2, 4, 8, 16]. As presented
in Table VI, FFA-LoRA achieves the best performance with
63.55% in accuracy and 60.25% in F1-score on OCT-8
when r = 2. As r increases from 2 to 16, DEeR exhibits
promising performance improvement to 87.50% and 87.31%
with increments of 26.22% and 30.20% in accuracy and

F1-score respectively, while accuracy and F1-score of FFA-
LoRA decrease to 56.85% and 54.70% (P -value < 0.005 for
r = 8 and P -value < 0.002 for r = 16), and DP-DyLoRA
always present extremely poor performance. For Kvasir-v2,
all methods do not show huge performance fluctuations as
r changes. It is worth mentioning that DEeR exceeds LoRA
and FFA-LoRA by a huge margin for different r. Particularly,
DEeR with the fewest parameters (r = 2) can obtain better
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performance than the second-best method (LoRA) with the
most parameters (r = 16). Significant difference is presented
in DEeR and the second-best LoRA for r = 2 (P -value
< 0.01) and r = 4 (P -value < 0.005). DP-DyLoRA shows
not only bigger performance fluctuations as r changes but also
lower performance than DEeR.

4) Impact of Communication Budget: In DEeR, different
variants of gAM optimization algorithm lead to different
communication budgets, as shown in Fig. 7(a). We assume
that the communication budget is 100% when one round of
training includes both A and B, while it is 50% if one round
only contains A or B. Fig. 7(b)-(c) present performance of
different variants on OCT-8 and Kvasir-v2, respectively. In
Fig. 7(b), even though we reduce the communication budget
from 100% to 50%, model still maintains a good and stable
performance for big privacy budgets (ε = 0.5 or 1.0) on OCT-8
dataset. Fig. 7(c) demonstrates that 75% of the communication
budget can achieve similar performance as 100% of the budget
for all privacy budgets on Kvasir-v2 dataset. Moreover, the
best performance from 100% of the communication budget
indicates the importance of optimizing both A and B for each
round.

5) Impact of Client Number: To compare the performance
of different methods across different numbers of clients, we
fix the privacy budgets ε, the data heterogeneity β and the
rank r of LoRA layers, and divide the training data of OCT-8
and Kvasir-v2 datasets into K clients, respectively. As shown
in Table VII, for OCT-8 dataset, all existing methods yield
limited classification performance for various client numbers.
DEeR exceeds the second-best method FFA-LoRA by large
margins, such as 34.23% (P -value < 0.002) and 24.56% (P -
value < 0.05) in Accuracy for K = 4 and 16, respectively.
Meanwhile, DEeR also significantly outperforms these meth-
ods for any K on Kvasir-v2 dataset. For both two datasets,
DEeR shows a lower sensitivity to the client number K than
previous methods. The performance gap of these methods
between K=4 and 16 surpasses 20% in terms of Accuracy and
F1-score, while the gap of DEeR is around 10%. Therefore,
these results illustrate that DEeR is more robust against the
number of clients than existing approaches.

VI. CONCLUSION

In this paper, we propose a novel FedFT framework named
DEeR, which exploits LoRA to adapt pretrained foundation
models to downstream medical tasks in FL with client-level
DP guarantees. We first delve into two challenges of FedFT
with LoRA, i.e., aggregation deviation and noise amplifica-
tion effect. Afterwards, a deviation eliminator is proposed
to utilize the alternating minimization optimization algorithm
to iteratively optimize the parameters of LoRA for avoiding
aggregation deviation. Besides, we present a noise regulator at
the client side that introduces two regulator factors to suppress
the noise amplification effect. The comprehensive experiments
on two classification and two segmentation datasets validate
the effectiveness of DEeR. The results show DEeR achieves
superior performance than state-of-the-art methods. The ab-
lated experiments verify the importance of key modules in
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Fig. 7. The impact of communication budgets in different variants of gAM
optimization algorithm.

DEeR, investigate the impact of data heterogeneity, rank r,
the communication budget and client number.

The proposed DEeR has achieved promising performance
on various medical tasks, yet there are several limitations: (1)
In DEeR, gAM algorithm is exploited to optimize the param-
eters of LoRA for avoiding aggregation deviation. However,
the alternating optimization strategy will increase the training
time. Although we have explored different variants of gAM
algorithm to reduce communication frequency, they fail to
achieve the same performance as 100% of the communica-
tion frequency for different privacy budgets. (2) DEeR may
undergo data security risk during the communication process.
Although our method does not share the raw data of clients and
protects client-level privacy by DP, local client models might
be stolen by intruders and competitors for the reconstruction
of training data [23]. For this problem, we are able to apply
existing homomorphic encryption techniques [23] to encrypt
client models and the global model.
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