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Abstract

Networks where each node has one or more associated numerical
values are common in applications. This work studies how summary
statistics used for the analysis of spatial data can be applied to non-
spatial networks for the purposes of exploratory data analysis. We fo-
cus primarily on Moran-type statistics and discuss measures of global
autocorrelation, local autocorrelation and global correlation. We in-
troduce null models based on fixing edges and permuting the data or
fixing the data and permuting the edges. We demonstrate the use of
these statistics on real and synthetic node-valued networks.

1 Introduction

This paper studies networks where some numerical data is observed at ev-
ery node. For example, diffusion processes [32], representing the spread of
rumors [19], information [47], disease [38] and so on, are often studied us-
ing the SIR model and quantities like activation potentials or probability of
infection have values at every node. Other representative examples of node
data include: population counts [24] or destination ‘attractiveness’ [34] when
nodes represent locations; number of posts [8] or their sentiment[43, 25, 40],
when nodes represent users in a social network or more abstract measures,
like relevance scores of skills for jobs [2].
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In the network science literature these node-valued networks have received
somewhat less attention than node-attributed networks. In particular, the
use of node attributes to inform or improve community detection algorithms
has been extensively studied, see the reviews [11, 12]. Node attributes are
generally categorical. For example, the famous US political blog network [1]
has a binary (conservative/liberal) attribute at each node. Citation networks
often have an attribute which labels the topic or words used in the text
corresponding to each node [42, 45]. This work concerns networks with real
numbers associated with each node. I will refer to these as node-valued
networks to distinguish them from node-attributed networks, however there
is a close link between the two. For example, by applying topic modelling,
[28] associates a 10-dimensional vector with real number components to each
node. One could use each component of the vector as a node-value or one
could take the topic with the largest component as the node attribute.

More formally, we have network with N nodes and E edges together with
an N dimensional vector x which has the value xi on node i. The aim of
this work is to use simple summary statistics to characterise the relationship
between ‘nearby’ values of x - the autocorrelation - as well as the relationship
between two vectors, x and y, representing different variables defined on the
same network - the correlation. The difficulty will be to properly account for
and incorporate the underlying network structure into the summary statistic
and its distribution.

Along the same lines as the above, Coscia [15] defines a correlation mea-
sure that incorporates information about the network into the correlation
score between two variables measured at the nodes (see also [21]). [15] notes
the similarity between their correlation measure and Moran’s I [33]. Moran’s
I is a measure of spatial autocorrelation. It quantifies the extent to which
similar values of x are close to each other. Moran’s I is given by

I =
N

|W |

∑N
ij (xi − x̄)wij(xj − x̄)∑N

i (xi − x̄)2
(1)

Where x̄ is the mean of x. The weight matrix W has elements wij and
|W | =

∑
ij wij. In spatial analyses the weight matrix is often the row-

normalised adjacency matrix of the network constructed by taking the regions
i as nodes and adding edge ij if j borders i [18]. Alternatively, as in [15], a
distance decay function is sometimes used e.g. wij = e−cdij for some constant
c where dij is the spatial distance between regions.
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Here, we simply note that spatial statistics, like Moran’s I and others
to be discussed later, can be computed for any network. There is nothing
in Equation 1 requiring W to be planar. Furthermore, I, and the other
spatial statistics to be discussed, impose no strong restrictions, like positive
definiteness [16], on the interaction matrix W . As long as it provides a
reasonable description of the relationships between the nodes we can use
it. In particular, the adjacency matrix or a distance decay matrix like e−cdij

should work and the value of I will, as in the spatial case, reflect the degree to
which similar values of x are close to each other, where close means connected
by short paths. While some networks may be quite similar to spatial maps, for
example transport networks, other types, like social networks, can have small
world effects [44], modular structure [36] and scale free degree distributions
[37] which spatial networks usually lack. Understanding how to interpret
Moran’s I and other spatial statistics on non-spatial networks is the aim of
this work.

We will summarise distributions using one-sided p-values - the probability
that the observed value or greater would be observed by chance under a null
model. P-values can be estimated by randomly permuting the values on the
network and comparing the observed statistics against the distribution of
the statistic evaluated on permuted networks. This is the standard approach
in spatial statistics [41] and we will refer to this as the ‘data-permutation’
null. When the nodes represent physical locations it makes sense to view
the underlying network as fixed and vary the measurements. When we have
a non-spatial network it is also possible for the links to vary, as in a social
or contact network. In these cases it might be more appropriate to consider
a null model where the node values are fixed and the network edges are
varied. While there are many possible null models we could use, since the
degree distribution is usually a key factor in explaining network structure
[37] we will use the configuration model to construct an ensemble of networks
with the same degree-distribution as the observed network to generate a test
distribution for the ‘configuration’ null.

We will first study global autocorrelation using Moran’s I, comparing the
different null models described above in Section 2. We then introduce ‘Local
Indicators of Spatial Association’ (LISA) statistics [3] for finding clusters
of interesting values and generalise these to ‘Node Indicators of Network
Association’ (NINA) statistics in Section 3. We discuss correlation of two
different variables observed on the same network and generalise a definition
of network correlation, Lee’s L [31], to arbitrary networks in Section 4. We
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then introduce the idea of distance class and the correlogram in Section 5 in
order to study how clustering behaviour changes as we consider next-nearest
neighbours and beyond. Finally, in Section 6 we analyse a small but realistic
network constructed from Wikipedia articles, using the tools we develop to
perform an exploratory data analysis of page views and other measurements.

2 Global Autocorrelation

2.1 Definition

Although many other measures of spatial autocorrelation exist [13] we will
primarily focus on Moran’s I. This measure can be better understood by
rewriting Equation 1. First let

zi = (xi − x̄)

then, borrowing terminology from spatial data analysis, define the (right)
lagged-vector as

z̃i =
N∑
j

wijzj

Equation 1 can be written in vector form as

I =
N

|W |
z · z̃
|z|2

(2)

For the weight matrix W we will mostly use the row normalised adjacency
matrix A. In this case

∑
j Aij = 1 for every j and therefore |W | = |A| = N ,

cancelling out the constant factor in front.
When W is the row-normalised adjacency matrix, z̃i has a simple in-

terpretation as the average value of z over the neighbours of i. Therefore,
Moran’s I is a global comparison of values observed at the nodes with the
average value of each node’s neighbours. For a row normalised weight ma-
trix, Moran’s I generally gives values in the range [−1, 1], the max and min
are set by the largest eigenvalues of W . The row normalisation makes W a
stochastic matrix so the largest eigenvalue has absolute value 1, though there
are some cases, e.g. isolated nodes, which result in values outside this range,
see [20] for more details. Generally, I will be larger when similar values of zi
are frequently connected via W and close to zero for randomly distributed
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data [13]. To distinguish the quantity evaluated on an arbitrary network
from the spatial measure we will refer to this number as the network Moran
Index.

A similar quantity to I is the assortativity coefficient [35],∑
x,x′ xx′(exx′ − axbx′)

σaσb

(3)

The sums are over all observed values; exx′ is the fraction of edges that join
values x and x′; ax and bx′ are the row and column sums of exx′ and σa, σb

are the standard deviations of the distributions ax and bx′ . There are also
local versions of assortativity defined in the literature [39] which we will not
discuss in detail. The assortativity is usually computed for discrete data and
real valued data is frequently binned in order to calculate exx′ [27]. If data
is not binned exx′ will likely equal the adjacency matrix, since all the values
observed will likely be distinct. In this case Equation 3 becomes∑

i,j xiAijxj − xi
kikj
2E

xj

σ2
k

(4)

where σ2
k is the variance of the node degree and 2E =

∑
ij Aij. The first term

in the numerator is similar to the numerator of the Moran index, apart from
the mean subtraction. In fact this is the numerator of another closely re-
lated spatial statistic called the Getis-Ord statistic [26]. Just like the Moran
Index, xi

∑
j Aijxj compares the value at the node with the average value at

the neighbours. In contrast to Getis-Ord and Moran statistics, the assorta-
tivity coefficient is normalised by the variance of the node degree rather than
the variance of the data, reflecting an emphasis on the connectivity of the
network.

The second term in the numerator has the adjacency matrix replaced
by kikj/2E, which is proportional to the expected number of connections
between i and j, fixing the node degrees. This is form is similar to the
modularity function [36] used in community detection, but with each edge’s
contribution weighted by the values of the nodes it links instead of a commu-
nity indicator function. The expected value of Aij under the configuration
null is kikj/2E, so assortativity values close to zero imply no clustering of x
beyond what would be expected given the node degrees.

While assortativity has been widely used to assess similarity of node val-
ues, I offers some advantages. First, it uses centred data and is normalised by
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the variance of the data rather than the variance of the node degree, which
makes it invariant to rescaling and shifts in the values of x. It is flexible
with respect to the definition of neighbour, so alternative weight matrices
like wij = e−dij or wij = Ak

ij can be used, as we will see in Section 5. Unlike
assortativity, the Moran index does not incorporate the null model into its
definition, giving more flexibility in how the null is specified, in particular we
can apply the ‘data-permutation’ null from spatial statistics. Lastly, from
the definition of I it is apparent that the index can be computed straightfor-
wardly, without requiring any rounding or binning.

2.2 Examples

We will show examples on small networks for clarity. I is quite fast to
compute, the main cost being the sparse matrix-multiplication required to
obtain z̃. Randomising the data or the network hundreds of times to compute
a testing distribution can be time consuming, though for the relatively small
networks considered here only takes a few seconds on a single core. To
build intuition we generate autocorrelated data on a network using the value
propagation algorithm described in [15]:

• Choose a node to be the source and assign the value xsource = 1, with
the other values set to xi = 0 initially.

• Update the values of xi → 1
ki

∑
j∈nbr(i) xj. Where ki is the degree of i

and nbr(i) is the set of nodes that are connected to i. This is equivalent
to xi →

∑
j Aijxj.

• The source node value is fixed at 1.

• Repeat this M times.

• Add a random number to each of the xi where the random number is
drawn from a Gaussian distribution with mean 0 and variance σ2.

Figure 1 shows three networks: an LFR benchmark network [30], the
karate club network [46] and an Erdős-Renyi graph [23]. The node data
is generated by the value propagation process described above. This and
subsequent network values are coloured such that high values are red, low
values are blue. The LFR and karate club networks have obvious community
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Figure 1: Left: LFR benchmark network, Middle: Karate club, Right: Erdős-
Renyi graph. Top: Force directed layout, node colours indicate node values
initialised as described in the text with M = 10 for LFR and Karate club
and M = 30 for ER and σ = 0.1 for all three. Bottom: Distribution of values
from random permutations of the data, and configuration model.
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structure where the value propagation happens readily inside the source com-
munity, but values do not easily propagate outside. This results in positively
autocorrelated data: nodes in the source community have high values, nodes
outside the source community have low values. We compute significance un-
der the two null models discussed. Randomly permuting the data gives the
distribution Pd(I) and p-value pd. The configuration model, randomly swap-
ping the edges of the network while keeping the node degrees and values,
xi, fixed gives Pc(I) and p-value pc. The p-value is vanishingly small under
both nulls and the network Moran Index is relatively large for both LFR and
karate club networks, indicating significant positive autocorrelation.

The same process on the ER network does not result in a large or signif-
icant autocorrelation under either null model. When a large fraction of the
nodes in a network are connected, this results in low autocorrelation. This
is both because the value propagation algorithm has to average over a large
number of low value nodes and is also an intrinsic property of I. In the limit
of a clique, using the row normalised adjacency matrix as the weight matrix
Ai ̸=j =

1
N−1

implies

N∑
ij

ziAijzj =
1

N − 1

(
N∑
i

zi

)2

so I = 1
N−1

, which is small for large N. From this we infer that when the
network is very densely connected, I may not be a useful metric. Simply,
paths are so short that everything is a near neighbour of everything else and
the sum

∑
j Aijzj averages over a large fraction of the network for every i,

resulting in little variation across the nodes.
However, sparse networks with modular structure are common in practice.

In this case I can be a useful indication of data autocorrelation, or clustering
of similar values. An interesting question is how individual nodes contribute
to the autocorrelation. A node can make a large contribution to I due to a
large zi value at the node or by that node having many neighbours making
contributions with the same sign, i.e. large z̃i =

∑
j Aijzj. This brings us to

the idea of a ‘local indicator’, which we discuss in the next section.
Before turning to this we briefly note that the principle of homophily says

that nearby nodes will influence each other to have similar values, which
suggests that positive autocorrelation is more likely in practice. However
negative autocorrelation is possible. For example, a bipartite network with
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all the values xi = 1 in one part and xi = 0 in the other will result in a large,
negative, value of I.

3 Local Indicators

3.1 Definition

Anselin [3] introduced the idea of a ‘Local Indicator of Spatial Association’
(LISA) statistic. These are local functions of the data Λi = f(xi, {xj, j ∈
nbr(i)}) that are designed so that the sum of local indicators gives a global
indicator Λ up to a constant:

∑
i Λi ∝ Λ. The prototypical example is the

local Moran statistic

Ii =
zi∑
j z

2
i

∑
j

wijzj =
ziz̃i
|z|2

(5)

Up to scaling, Ii is simply the product of the observed and lagged data at
i and

∑
i Ii ∝ I. Again, we can compute this on any network and assess

significance against null models where the data is varied or the network is
varied. To vary the network we will use the configuration model as before.
To vary the data, as in [3] we use conditional randomisation: to compute
the significance of Ii, zi is fixed while data at the other nodes is permuted.
To distinguish the network version from the spatial version we refer to ‘Node
Indicators of Network Association’ (NINA) statistics and the statistics above
as the node Moran Indices.

An assessment of the local/node Moran index is often paired with a Moran
scatter-plot [5], a plot of zi against z̃i. The slope of this line is equivalent
to the Moran index. Examining the four quadrants of the plot (high-high,
high-low, low-high, low-low) gives information about areas of the map, or
network, which are positively and negatively autocorrelated and can be very
useful in interpreting local indices.

3.2 Examples

Figure 2 shows the karate club network where the propagation process starts
from node labelled 1 and is run for M = 10 iterations. Node 1 is directly
connected to the leader of one ‘faction’ but not the other. The upper right
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Figure 2: Center shows the Moran scatter plot. The nodes in each quadrant
are labelled in the corresponding network diagram.
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quadrant shows the high-high associations i.e. high x values that are neigh-
bours of high x values. Nodes in this quadrant are close neighbours of the
source. The low-low quadrant identifies the other faction. These nodes are in
the other community and so values do not easily propagate from the source
to these nodes. The off diagonal quadrants are also interesting, they identify
low nodes which are neighbours of high nodes (upper left) and high nodes
which are neighbours of low ones (bottom right). In this case, the bottom
right nodes represent a kind of transitional zone across which values change
from high to low.

Figure 3 shows a histogram of the node Moran index, where ‘significant’
values (p < 0.01) are identified using either conditional randomisation of the
data or the configuration model. A similar but non-identical set of nodes are
identified under both nulls. Note that it is not simply high values of Ii that
are significant. The clusters are a small group of nodes around the source
which have unusually high values, and a number of nodes close to the leader
of the other faction with unusually low values. In general the node Moran
index is useful to find these small, dense clusters, as we will see in Section 6.

Because we test every node, using a naive significance level α runs into
the problem of multiple comparisons. Standard approaches are selecting
a very low significance threshold (as here), Bonferroni correction or False
Discovery Rate, as described in [3]. Following best practice in spatial analysis
[3, 4], we do not recommend uncritical application of any simple threshold for
significance. Rather, values of Ii which are unusual under the null suggest
subsets of interesting nodes [22]. Thus any reasonably low threshold can
be used to identify nodes which should be investigated in more detail by
e.g. looking at other node statistics (degree, centrality etc.); using other
node metadata or looking at nodes in the context of mesoscopic structure
(community, core-periphery etc.).

4 Bivariate Correlation

4.1 Definition

Coscia in [15] develops a measure of association between two different vari-
ables measured on the nodes of the same network. For simplicity assume the
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Figure 3: Local network statistics. Left: Data-permutation null. Right:
Configuration model null. Top: Network with ‘interesting’ nodes under the
corresponding null models labelled. Bottom: Histograms of node Moran
index, bins containing significant values are coloured orange.
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data x and y have had their mean subtracted, then the definition in [15] is

ρG(x, y) =

∑
ij wijxiyj√∑

ij wijxixj

√∑
ij wijyiyj

(6)

Problems arise from the denominator, namely, for arbitrary W the terms
under the square root need not be positive [16]. Indeed, using the notation
of Section 2.1, the term under the square root is∑

ij

wijxixj = x · x̃ (7)

which is the the numerator of I and can certainly be 0 or negative.
Another problem not discussed by [16] but similar to issues discussed

by [31], is the fact that there is only one factor of W in the numerator of
Equation 6. Summing over the j index, the correlation is a dot product
between the data x and the lagged data y. Thus only the y data ‘sees’ the
network in the comparison. This lack of symmetry is potentially problematic
if, for example, x is strongly autocorrelated but y is not. Using the ‘network
variance’, equation 7, in the denominator could mitigate this but introduces
the problems with positive definiteness mentioned.

Lee [31] provides an alternative approach. Define

L =
N∑

i

(∑
j wij

)2 x̃ · ỹ
|x||y|

(8)

For a row normalised W the constant factor in front disappears. L uses the
magnitude of the data in the denominator, which is a sum of squares so there
is no issue with negative roots. L is a normalised dot product between the
lagged x and lagged y data, so both datasets are influenced by the network
structure. It is worth noting that if the usual weight/adjacency matrix is
used, where Aii = 0, then the value of xi interacts with the value at yi only
through the neighbours of i. To account for this we could add self loops or
use a distance matrix and kernel function like wij = e−dij . For simplicity
when computing L we set Aii = 1 so that the values at xi and yi interact
directly in the ith term of the sum.
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Figure 4: Different propagation processes on the same LFR network. The
network Moran index is shown for each data set. All I values are highly
statistically significant.

ρpearson ppearson L pd pc
u,v -0.04 0.66 -0.03 0.96 0.99
u, t 0.10 0.13 0.14 < 0.01 < 0.01
v, t 0.49 < 0.01 0.13 < 0.01 < 0.01

Table 1: Pearson and Lee correlation for data shown in Figure 4. Interesting
observations (low p-values) are highlighted in bold.
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4.2 Examples

Figure 4 shows three data sets defined on the same LFR network with 100
nodes. The u and v data are generated by running the value propagation
algorithm starting at different source nodes, M = 5 and σ = 0.1. The t data
starts with the same source as u, runs for M = 5 steps, swaps the source
to the same position as v, runs for another M = 5 steps and then adds
Gaussian noise with σ = 0.1. This produces three weakly but significantly
autocorrelated datasets. Their Pearson and Lee correlations are shown in
Table 1.

The main result here is that the correlation between u and t is low and
non-significant (for any reasonable threshold) when measured with the Pear-
son coefficient. However it is highly significant, under both null models,
when using L. Since t is just u with some additional steps of value propaga-
tion elsewhere in the network, we would expect some correlation between the
datasets, which is captured by L but not ρ. This is because the random noise
component is quite strong, and it requires the neighbour averaging performed
by L to make the ‘hidden’ correlation visible. The correlation between v and
t is significant under both metrics, however the absolute value of L is quite
low. Again this seems to be a better reflection of the data, since in three of
the four communities the data are only very weakly related and there is a
fairly strong noise component in the fourth.

5 Correlograms

5.1 Definition

The last concept we introduce is the network correlogram, which can be
constructed by making the weight matrix a function of ‘distance class’. In
the case where W is the adjacency matrix there is a quite natural mapping
where wij(d) = 1 if the shortest path between i and j has length d otherwise
the elements are zero. Then for any statistic the corresponding correlogram
is obtained by substituting W (d) into the definition in place of W . For
example, the Moran correlogram is

I(d) =
N

|W (d)|

∑N
ij (xi − x̄)wij(d)(xj − x̄)∑N

i (xi − x̄)2
(9)

15



Figure 5: Left: LFR network. Right: Moran Correlogram I(d). Solid blue
points have p-value (under the data permutation null) < 0.01, open points
are above this threshold.

Statistical significance is assessed using a data-permutation or configuration
model null. Since there is a test for every value of d, again one must be
wary of the multiple comparisons problem and the same approaches as for
the local indices (low α, Bonferroni Correction, False Discovery Rate) can be
implemented, though again, uncritical application of statistical significance
is not recommended and significance should be interpreted as an indication
of potentially interesting behaviour rather than a definitive ‘finding’.

5.2 Example

Figure 5 shows an LFR network with 500 nodes. Value propagation is run
for M = 250 steps with σ = 0.1. The Moran correlogram, I(d), decays as
a function of distance class. The modular structure of the network means
that nodes separated by paths longer than 2 have very weak clustering of
node values, because the value propagation is largely restricted to the source
module. I(d > 3) is negative but the values are not statistically significant.
Note also that the average shortest path in the network is ≃ 3.7, so there are
fewer and fewer edges in the weight matrix for d > 3 and the largest values
of d have many isolated nodes,

∑
j w(d)ij = 0.
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6 Wikipedia Network Analysis

The online user-contributed encyclopedia Wikipedia has long been a subject
of study for network science [9, 48], with the aim to understand how rela-
tionships between different topics are encoded in the network of hyperlinks
between pages. In this section we will analyse a portion of the Wikipedia
network. Although of some intrinsic interest, the main purpose is to show
how the methods described above can be applied in the exploratory data
analysis of a realistic dataset.

We construct the EgoMinusEgo network [17] of the Wikipedia page for
Network science1 using MediaWiki Links API2. This means:

• We obtain all the outgoing links from the Network science page (N =
433 at time of access) to get the list of pages of interest V .

• For every page in V we find all of its links.

• The network is constructed by considering only links between the nodes
in V .

Though hyperlinks are intrinsically directional, for simplicity we consider
an undirected network, so for a hyperlink between pages i and j in either
direction we add a link ij. We also use the row normalised adjacency matrix
as the weighting matrix W .

There are a number of possible data associated with a Wikipedia page:
page length, number of edits, number of watchers, length of the corresponding
Talk page etc. We will primarily consider the number of page views. Using
the Massviews API3 we collect the number of views for all pages connected
to Network science in the month of April 2024. We remove one page with 0
page views, this is from a link to a page that has not been created. Because
of the huge range of page views spanning from over 3 million for the most
popular page4 to just 4 for the least popular5 we use the (base 10) log of the
view count as the node data.

1https://en.wikipedia.org/wiki/Network_science Accessed 03/05/24
2https://www.mediawiki.org/wiki/API:Links Accessed 03/05/24
3https://pageviews.wmcloud.org/massviews/ Accessed 03/05/24
4https://en.wikipedia.org/wiki/YouTube Accessed 03/05/24
5https://en.wikipedia.org/wiki/Search_engine_spammer Accessed 03/05/24
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Figure 6: Network science EgoMinusEgo network. Nodes coloured by log of
page views.
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Figure 7: Network science EgoMinusEgo network. Large communities de-
tected by Louvain algorithm.
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Figure 6 shows the network with the nodes coloured by page views. Com-
munity detection is straightforward, and the Louvain algorithm [10] identi-
fies the 4 communities implied by the force directed layout and two small
communities consisting of the outlying nodes which we will largely ignore.
Modularity Q = 0.55. The communities shown in Figure 7 are labelled
by their most viewed page. Broadly: the YouTube community consists of
pages about social networks, the Computer network community has techni-
cal material about network science, the Ontology community has pages about
organising information and the Artificial intelligence community consists of
a number of pages about topics where network science methods have been
applied.

The network Moran index of the page view data is

I = 0.174

with vanishing p-value under both null models. This indicates weak but
significant clustering of page views. We will set the significance threshold
to α = 0.01 throughout, but again note we are not advocating a standard
hypothesis testing framework, rather we use this threshold only to highlight
‘interesting’ data in this exploratory analysis. The correlogram (not shown)
indicates significant, but very small, autocorrelation at d = 2, I(2) = 0.029
while I(d ≥ 3) are not significant. The average shortest path is ≃ 2.3 and
for d ≥ 3 we have fewer and fewer edges in W (d). This suggests that page
views are not clustered using next-nearest neighbours and beyond so we can
restrict our analysis to nearest neighbours.

The Moran scatter plot is shown in Figure 8. This indicates that the
Artificial Intelligence community is a high-high cluster, popular pages con-
nected to other popular pages. The other 3 communities are split between
low-low and high-low, suggesting a mixture of popular and unpopular pages
in the YouTube, Ontology and Computer Network communities. There are a
small number of low-high pages i.e. unpopular pages connected to popular
ones. These are not associated with one particular community and consist of
a number of biographies and relatively obscure topics of marginal relevance
to Network science, which only touch on some of the central topics in the
subject.

The analysis of the Moran scatter plot is complemented by plotting the
node Moran index, as shown in Figure 9. While there is no obvious pattern
in the value of Ii, when assessing the significance under either null model
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Figure 8: Moran scatter plot for Network science EgoMinusEgo network.
Nodes in each quadrant are shown in the inset network figures. The slope of
the dotted line equals Moran’s I.
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Figure 9: Left: Node colour indicating Ii, node Moran value (darker red is
higher). Right: Node color indicating p-value of Ii under the data permuta-
tion null (configuration null is quite similar). Values less than 0.01 are dark
green, higher values are very light green.

many nodes in the Artificial Intelligence community are significant, indicat-
ing clustering of (high) page views in that community. Here, popular topics
are preferentially connected, which is not the case for the other communities.

Figure 10 shows a number of other statistics for each page in the network
obtained from the corresponding ‘info’ page6. The three quantities shown
are:

• The number of watchers, that is, Wikipedia users who have chosen to
be notified when that page is edited.

• The page length, in bytes.

• The total number of edits made to the page since its creation.

As with page views these quantities span a very large range, so we have
logged the values. While edits and watchers are autocorrelated, indicating
clustering, length is not, implying that we cannot predict the length of a page
based on the length of its neighbours.

6e.g. https://en.wikipedia.org/wiki/Network_science?action=info Accessed
03/05/24
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Figure 10: Same network with nodes coloured according to other data values.
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ρ L
Page views,watchers 0.87 0.27
Page views,length 0.67 0.17
Page views,edits 0.80 0.22

Table 2: Pearson and Lee correlation of page views with other page metrics.
All values are significant at α = 0.01. Note the L statistic is computed with
1s on the diagonal of the adjacency matrix as mentioned in Section 4.

Table 2 shows the Pearson and Lee correlation between the page view data
and the data from Figure 10. All Pearson and Lee correlations are significant
here, however the values are quite different. Generally autocorrelation of
either or both datasets inflates the Pearson correlation and the value and
quoted significance cannot be trusted see [14] or more recent work in [7]. The
Lee correlation mitigates this and indicates a modest degree of correlation
between page views and the other variables.

Finally, Figure 11 shows the Moran scatter plot for page views once more,
this time with outliers highlighted. Some examples here are illuminating:

• A high-high outlier is the article for the Internet Movie Database IMDb.
The IMDb is a key example in many network science papers and books.
However the IMDb article does not discuss network science, but does
mention YouTube, the most viewed page in the network.

• A low-high outlier is the article Cognitive network. This mentions a
few general, high-traffic topics like Artificial intelligence and Network
management. This is an article about computer science more than
network science and so is only linked to Network science via general,
popular articles.

• A low-low outlier is the article about the Army Research Laboratory.
This is a low traffic page that is only connected to a couple of other
topics related to this laboratory.

• A high-low outlier is the page for the Law of Mass Action, a relatively
popular page about a principle in chemistry that is only marginally
related to network science.

In different applications, or with different data, the importance and interpre-
tation of outliers might be different. Here all the outliers seem to be quite
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Figure 11: Moran scatter plot for page view data with outliers highlighted.
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peripheral topics, perhaps not worth including in the main article about
network science. For application to Wikipedia, this kind of analysis could
be used to detect inappropriate links or malicious edits [29]. Looking at
the other variables could give interesting insights for editors, for example
anomalous page lengths could indicate articles in need to improvement, but
we leave this for future work.

7 Discussion

This paper shows how spatial summary statistics and methods of exploratory
spatial data analysis can be applied to complex networks. We have focused on
Moran-type statistics, which use dot products of the data with the neighbour
averaged data to give global and local measures of data clustering, and related
tools like the Moran scatter plot and correlogram.

We have presented a number of illustrative examples on real and syn-
thetic data. These show that data clustering on networks is related to but
distinct from community structure. The Wikipedia network had four strong
communities but page views were only significantly clustered in one of them,
and page length was not clustered at all. We also suggest that correlation
between different data observed on the same network should not be measured
with Pearson correlation. This is for essentially the same reason that causes
problems in spatial and time series analysis - value and significance inflation
due to autocorrelation [14]. We suggest Lee correlation instead, which seems
to perform better in accounting for autocorrelation.

The extension of the above to weighted networks or other distance func-
tions is obvious, consisting of the replacement of wij with the corresponding
matrix. The values of the various statistics will change substantially and thus
interpretation might not be as straightforward, however the basic framework
of significance testing introduced will still be valid. In that respect the most
novel feature of the present work is the applying the configuration model to
these statistics. For a spatial network this is less likely to be useful, but for
a network of social contacts or hyperlinks, looking at summary statistics in
the context of changing network structure seems very apt.

We note that there are a large number of spatial statistics with a similar
purpose to Moran’s I. The most prominent are probably Geary’s C [4] and
Getis-Ord statistics [26]. Similar analyses could be performed with these
statistics, though we omit this for the sake of brevity. Statisticians have also
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expended much effort on analytical calculations of the variance of Moran’s
I and other spatial statistics [13]. With modern computers, permutation
and resampling methods are preferred [6], however for very large networks
sampling from the configuration model or permuting data (especially the
conditional permutation required for the node Moran index) is quite time
consuming and analytical approximations would be useful.

We hope that researchers studying data on complex networks find this
exposition interesting and can use these statistics in their own work. Im-
plementations of all the Moran-type statistics discussed here, and more,
are available in spatial analysis tool kits like GeoDa [6] and PySAL[41].
However, for the benefit of practitioners working within common software
frameworks for complex networks we offer implementations in Python https:

//github.com/rudyarthur/network_correlation using the NetworkX li-
brary [27]. We include Geary’s C, Getis-Ord statistics and a number of others
in this package for completeness.
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[32] Dunia López-Pintado. Diffusion in complex social networks. Games and
Economic Behavior, 62(2):573–590, 2008.

[33] Patrick AP Moran. Notes on continuous stochastic phenomena.
Biometrika, 37(1):17–23, 1950.
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