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Introduction

It is a curious fact that the indeterminacy relation,
despite its fundamental significance for the characteris-
tic behaviour of quantum systems, do not play a foun-
dational role in the various mathematical formulations
of non-relativistic quantum mechanics. In e.g. Dirac’s
transformation theory [1], where quantum states are rep-
resented as complex-valued vectors in a Hilbert space,
and Feynman’s integrals over space-time paths [2], it is
the superposition principle which takes the center stage.

This paper intend to describe a new formulation which
consider the indeterminacy relation as the foundational
principle on which the quantitative theory should be
built. This formulation was inspired by the concept of
distinguishability between pairs of states as it appears
in quantum information theory. There, a useful physical
measure for distinguishability is given by the quantum
fidelity, which is physically interpreted as the probability
that the pair are mistaken for each other by an observer
upon measurement.

The mathematical framework employed in the formu-
lation is symplectic topology. This is due to the roles
played by the Gromov non-squeezing theorem [3] and the
concept of symplectic capacity [4] in representing the in-
determinacy relation [5] [6]. The role of symplectic topol-
ogy in the foundations of non-relativistic quantum me-
chanics is, in our opinion, under-developed and deserve
more attention from the physics community. This paper,
despite a significant drawback concerning the appear-
ance of complex-valuedness on phase space, will hopefully
add some valuable original ideas on the interpretation of
probability and superposition in quantum mechanics.

The quantum fidelity between pairs of states is the ab-
solute square of the complex-valued overlap of the sym-
plectic capacities of the pair. The probability that the
identity of the state preparation is mistaken for a mem-
ber of its quantum ensemble, i.e. the set of states with
which it cannot be completely distinguished, is given by
the absolute square of the linear sum of complex-valued
contributions, one from each alternative overlap of sym-

∗ andreas.henriksson@skole.rogfk.no

plectic capacities. This is the superposition principle in
the symplectic topological formulation.

Finite distinguishability

In classical mechanics, it is assumed that the state of
the system can be specified with infinite precision. There
is no uncertainty in the state. An observer is infinitely
able to specify the physical degrees of freedom for the
state. Consider any given pair of classical systems. The
states of the systems at some time t = 0 are given by
ψ and φ. This define the initial condition for the pair
of systems. Due to the infinite ability of the observer to
distinguish between states, the pair of systems can either
be identified to be identical, i.e. ψ = φ, or, completely
distinct, i.e. ψ 6= φ. These are the only two possibili-
ties. Since states in classical mechanics are represented
as infinitesimal points on phase space, the systems are
identical if the points coincide and distinct if there is
a finite distance between them. The Liouville theorem
state that the physical distinctions between the pair of
systems is conserved in time [7]. In other words, if ψ
and φ are initially distinguishable, and their distinctions
conserved, then their evolutionary paths are not allowed
to diverge or converge anywhere on phase space, such
that they would become indistinguishable, see Fig.1. The
Hamiltonian flow of a classical system is thus incompress-
ible and the volume of a given set of states is conserved
in time.

In statistical mechanics, the observer is not infinitely
able to specify the state of the system. This is not due
to an inherent property of the system. It is entirely due
to the difficulty of the observer to keep perfect track of
the large number of degrees of freedom. Due to the un-
certainty in the state of the system, the ability of the
observer to distinguish between states decrease exponen-
tially over time, as stated by the second law of thermo-
dynamics, until the system has reached statistical equi-
librium where all states are indistinguishable.

In quantum mechanics, due to the indeterminacy re-
lation, there exist a universal finite upper bound on the
ability of the observer to distinguish between the states
of any given pair of systems. To state the indetermi-
nacy relation in the language of symplectic topology, it
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FIG. 1. The pair of initial conditions ψ and φ, defining the
distinct states of a pair of classical systems, converge at the
point (q0, p0), thus becoming indistinguishable. This violate
the Liouville theorem and is therefore not allowed in classical
mechanics.

is first necessary to mathematically define the notion of
quantum state within symplectic topology.

Squeezed coherent states

Due to finite distinguishability, it is impossible to phys-
ically define, in the sense of observation, the notion of the
state as given by an infinitesimal point. In other words,
the geometry of phase space is pointless. To obtain a
picture of the notion of state on a pointless phase space,
consider an N−particle system, in d spatial dimensions,
at some given time t = 0. Let it be assumed that the state
of the system, denoted by ψ, is known, at this time, with
maximum precision. Such a state is referred to as being
saturated. It is further assumed that all conjugate pairs
of degrees of freedom for the system, i.e. the coordinate
and momenta pairs (qk, pk), with k ∈ {1, 2, ..., n} where
n = d ·N , are known to the same level of maximum pre-
cision. These symmetric states are the coherent states
[8–10]. The state of the system at time t = 0, ψ(t = 0),
occupy the 2n-dimensional ball B(ε) defined by

n∑
k=1

{
(qk − ak)2 + (pk − bk)2

}
= ε2, (1)

with radius ε and origin (ak, bk). This define the initial
condition of the system. Due to the spherical symme-
try in the initial condition, the orthogonally projected
area Akψ(t = 0) of the ball onto any given conjugate pair
(qk, pk), see Fig.2, is given by

Akψ(t = 0) = πε2 ∀k ∈ {1, 2, ..., n}. (2)

FIG. 2. The projected area Akψ of the phase-space ball B(ε)
onto the conjugate pair (qk, pk), at time t = 0, is given by the
minimum uncertainty area πε2.

The projected area πε2 represent the maximum level
of precision by which the state of the system can be
known for each conjugate pair. In other words, the ra-
dius ε quantify the greatest resolution available to the
observer. Upon the identification of the resolution ε with
the Planck constant h according to

ε ≡
√

h

2π
, (3)

the minimum uncertainty area of the projection of the
ball B(

√
h/2π) onto the conjugate plane k is given by

Akψ(t = 0) =
h

2
∀k ∈ {1, 2, ..., n}. (4)

The ball B(
√
h/2π) is thus a representation for the

coherent state ψ. More generally, the saturated ini-
tial condition ψ can have its minimum uncertainty non-
symmetrically distributed between the position and mo-
menta. These states are the squeezed coherent states
[10–13]. In the limit that h → 0, the coherent, squeezed
or not, state ψ collapse into an infinitesimal point. This is
the classical approximation, valid at large scales relative
to h/2.

The appearance of complex-valuedness in quantum
mechanics is a major mystery. In the present arti-
cle, it is later shown that in order to reproduce the
Schrödinger equation it is necessary that the interior of
the coherent state, as represented by the interior of the
ball B(

√
h/2π), is complex-valued. This condition state

that the position and momentum degrees of freedom can-
not be considered as real-valued measurable quantities at
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scales lower than h/2. But what does it mean to say that
the phase space of quantum systems is complex-valued
below a certain scale? This condition appear strange and
difficult to physically interpret. However, it seems to be
that the very notion of state loses its physical meaning
below this scale due to the impossibility of the observer
to gain additional information about the physical distinc-
tions characterizing the system.

Indeterminacy relation

The coherent states, squeezed or not, are the states
which can be distinguished to greatest resolution. There-
fore, the projected area Akξ (t) for an arbitrary state ξ, at
any given time t, onto the conjugate plane (qk, pk), is
either equal to, or greater than h/2, i.e.

Akξ (t) ≥ h

2
∀k ∈ {1, 2, ..., n}. (5)

This is the indeterminacy relation on phase space. It
states that the shape of the state ξ cannot deform dur-
ing its Hamiltonian flow in such a way that it breach the
lower bound as defined by h/2. In the language of sym-
plectic topology, the projected area Akξ is referred to as
the symplectic capacity ckξ and its minimum value, i.e.
h/2, as the Gromov width cG [4]. The arbitrary state
ξ is thus mathematically represented by the set of sym-
plectic capacities

{
c1ξ , ..., c

k
ξ , ..., c

n
ξ

}
. The indeterminacy

relation thus state that the symplectic capacities of an
arbitrary state ξ cannot deform during its Hamiltonian
flow in such a way that its value gets smaller than the
Gromov width1, i.e.

ckξ (t) ≥ cG ∀k ∈ {1, 2, ..., n}. (6)

This indeterminacy relation is related to the Robertson-
Schrödinger indeterminacy relation2 [6]. The mathemat-
ical proof of the impossibility of squeezing the state ξ
into a smaller symplectic capacity than h/2 at any given
time, as the system experience an Hamiltonian flow, was
given by Mikhail Gromov in 1985 [3] and is referred to
as Gromov’s non-squeezing theorem.

The key character of the quantum Hamiltonian flow,
contrasting its classical approximation, is thus the con-
straint on the shape of the flow as encoded in the indeter-
minacy relation. This is in direct contradiction with the

1 It is important to emphasize that there is no restriction on the
symplectic capacity of the state onto a non-conjugate pair of
degrees of freedom, i.e. the symplectic capacities for (qi, qj),
(pi, pj) or (qi, pj), ∀i 6= j, can have arbitrarily small sizes.

2 The Robertson-Schrödinger indeterminacy relation [11, 15–18]
generalize the Heisenberg indeterminacy relation [19] [20] due to
its inclusion of the covariance between observables.

Liouville theorem. The Liouville theorem state that any
initial region on phase space can deform continuously in
any conceivable way as long as its volume do not change
[14]. Thus, according to the Liouville theorem, it is possi-
ble to deform the arbitrary state ξ in such a way that the
symplectic capacity onto some given subset of conjugate
pairs is smaller than the Gromov width h/2, as long as
it is balanced by an increase in the symplectic capacity
of another subset of conjugate pairs, keeping the volume
invariant. Thus, classical mechanics, whose dynamics on
phase space is governed by the Liouville theorem, violate
the indeterminacy relation and can only be considered
a valid approximation when the system is observed at
scales much larger than h/2.

State overlap

Consider any given pair of systems. The pair of sat-
urated states, ψ and φ, at some time t = 0, define the
initial conditions for the pair of systems. The finite size
of the pair of states, as represented by their balls Bψ and
Bφ, allow for the possibility that they have a non-zero
overlap Γ, see Fig.3. This imply that there exist a subset
of symplectic capacities, e.g. ckψ and ckφ, which have a
non-zero overlap, Ωk(ψ, φ). In other words, there might
be a non-zero degree of indistinguishability between the
pair of states ψ and φ if they are sufficiently close to each
other. Of course, if the pair of states have zero over-
lap, for all conjugate planes, then they are completely
distinguishable. The total area of overlap, Ω (ψ, φ), is

FIG. 3. Given that the state overlap Γ between the satu-
rated balls Bψ and Bφ is complex-valued, the overlap Ωk(ψ, φ)
between the symplectic capacities ckψ and ckφ must also be
complex-valued.
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given by the linear sum of the contributions Ωk, for all
k ∈ {1, 2, ..., n}, i.e.

Ω (ψ, φ) =
n∑
k=1

Ωk (ψ, φ) . (7)

The summation is linear since the n−dimensional set of
conjugate planes are linearly independent.

Due to the complex-valuedness of the pair of saturated
states ψ and φ, the overlap Ωk(ψ, φ) between the sym-
plectic capacities ckψ and ckφ is complex-valued. Further-
more, consider the arbitrary pair of non-saturated states
ξ and η whose overlap is Ωk (ξ, η), see Fig. 4. Indepen-
dent on the size of their symplectic capacities, and their
overlap, it is always possible to define a pair of saturated
states ψ and φ whose overlap Ωk (ψ, φ) lie within the over-
lap Ωk (ξ, η). Thus, given that the overlap Ωk (ψ, φ) is
complex-valued, the overlap Ωk (ξ, η), of which Ωk (ψ, φ)
is a part, is also complex-valued.

FIG. 4. The overlap Ωk (ξ, η) between arbitrary pairs of non-
saturated states ξ and η is complex-valued.

Fidelity and mistaken identity

Due to the complex-valuedness of the state overlap, it
cannot serve as a physical measure for the degree of dis-
tinguishability between arbitrary pairs of systems, whose
states are given by ξ and η, at some given time t. For
the purpose of constructing a useful physical measure,
the function F (Ω) is introduced, and required to satisfy
the following set of conditions:

i It is real-valued.

ii It is non-negative, i.e. F (Ω) ≥ 0.

iii It is unitless.

iv F (Ω) = 0 iff Ω = 0. The pair ξ and η are completely
distinguishable.

v F (Ω)=1 iff Ωk = ckξ and/or3 Ωk = ckη for all
k ∈ {1, 2, ..., n}. The pair ξ and η are completely
indistinguishable.

The conditions (ii) and (v) correspond to the first and
second, respectively, Kolmogorov axioms of a probability
measure [21]. The physical interpretation4 of F (Ω) is
thus that it give the probability that the pair of systems,
occupying states ξ and η, are mistaken for each other by
the observer upon a measurement at the given time t. It
is a quantitative measure for the belief of the observer
about the state of the system, rather than a description
of the state of the system itself. This point of view on
the character of probability originate from the works of
Cox [23] [24] and, when applied to statistical mechan-
ics, Jaynes [25] [26]. The probability presented here is
the symplectic topological representation of the quantity
known in quantum information theory as the quantum
fidelity between pairs of pure states [27] [28] [29].

The Born rule [30] [31], in the symplectic represen-
tation, give the most obvious candidate for the fidelity,
satisfying all the imposed conditions, i.e.

F (Ω) = |Ω(ξ, η)|2 . (8)

Conservation of probability

Considering that the Liouville theorem is a statement
on the conservation of distinguishability between pairs
of classical states, its generalization to the pointless
geometry of phase space in quantum mechanics is
proposed to be given by the following statement:

The distinguishability between an arbitrary pair of
quantum states, as measured by quantum fidelity, is
conserved in time.

Thus, the fidelities between the pair of states eval-
uated at arbitrary different times, e.g. t0 and t, are
equal, i.e.

F (Ω)|t = F (Ω)|t0 , (9)

3 For saturated states, ψ and φ, Ωk = ckψ = ckφ = h/2. For ar-

bitrary non-saturated states, ξ and η, the possibilities are that
ckξ = ckη or that one of the symplectic capacities are enclosed by

the other.
4 It also has been interpreted as the probability associated with

the process that the states transition into each other, and thus
referred to as the transition probability [22].
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or, alternatively,

F (Ω)|t
F (Ω)|t0

= 1. (10)

Due to the Born rule, the conservation of fidelity can
equivalently be stated in terms of the overlaps as

Ω∗Ω|t
Ω∗Ω|t0

= 1. (11)

The infinitesimal flow of the overlap, from the initial
time t0 to the final time t = t0 + δt, to first order in the
infinitesimal time step δt, is given by

Ω|t0 → Ω|t = Ω|t0 − δΩ|t0,t · Ω|t0 , (12)

or, alternatively,

Ω|t
Ω|t0

= 1− δΩ|t0,t, (13)

where δΩ|t0,t represent the infinitesimal change in the
overlap, during the time δt, relative to the initial overlap
Ω|t0 . The flow of the complex-conjugated overlap is given
by

Ω∗|t
Ω∗|t0

= 1− δΩ∗|t0,t (14)

which thus gives that

Ω∗Ω|t
Ω∗Ω|t0

= (1− δΩ∗|t0,t) (1− δΩ|t0,t) (15)

= 1− δΩ∗|t0,t − δΩ|t0,t + δΩ∗|t0,t · δΩ|t0,t
≈ 1− δΩ∗|t0,t − δΩ|t0,t,

where the second-order term has been dropped. If quan-
tum fidelity is conserved, then it must be that

δΩ∗|t0,t + δΩ|t0,t = 0. (16)

This is only possible if δΩ|t0,t is imaginary-valued. Fur-
thermore, since the pair of systems is assumed to be
closed, it has no explicit dependence on time, i.e.

δΩ|t0,t ∼ iδt · H, (17)

where the phase-space function H is explicitly time-
independent and real-valued with the units of energy.
It is the Hamiltonian. Thus, in quantum mechanics,
the Hamiltonian generate the flow in time of the over-
lap between pairs of systems. Furthermore, due to the
indeterminacy relation, the Hamiltonian cannot quantify
changes in the overlap with infinite precision. The Hamil-
tonian can therefore only be defined in units of the great-
est possible resolution ε =

√
h/2π. However, since the

infinitesimal change in the overlap must be unitless, the
measure of resolution that enter into its definition must

be ε2 = h/2π. Thus, in conclusion, the infinitesimal flow
of the overlap is given by

Ω|t
Ω|t0

= 1− i δt · H
h/2π

. (18)

Extending over arbitrarily many time-steps m, such
that m · δt = t − t0, the flow in time of the overlap is
determined by

Ω|t
Ω|t0

= lim
m→∞

(
1− i (t− t0)

m

H
h/2π

)m
(19)

= e2πiH·(t−t0)/h. (20)

The relation between overlaps at different times is com-
monly denoted by U(t, t0), i.e.

U(t, t0) ≡ Ω|t
Ω|t0

= e2πiH·(t−t0)/h, (21)

and referred to as the time-evolution operator. It is uni-
tary, i.e.

U∗U = 1. (22)

The notion of unitarity is thus just a restatement, by
the application of the Born rule, of the conservation of
quantum fidelity.

The Schrödinger equation

Eq. 18 can be rewritten as a differential equation, i.e.

i
h

2π
Ω|t − Ω|t0

δt
= HΩ|t0 , (23)

which becomes

i
h

2π
∂Ω(t)
∂t

= HΩ(t). (24)

This is the Schrödinger equation for the overlap. It is
a direct consequence of conservation of quantum fidelity.
This is the analog of the situation in classical mechan-
ics, where the Hamilton equations are the direct conse-
quences of the Liouville theorem. Thus, the Schrödinger
equation is a representation for the quantum generaliza-
tion of the Liouville theorem.

The Schrödinger equation predict exactly the value of
the overlap at some given time, if the initial condition
on the overlap is known. This displays the key difference
between the notion of determinism in classical and quan-
tum mechanics. In classical mechanics, the exact state of
the system is predictable at any given time, given the ini-
tial condition. In quantum mechanics, the state cannot
be predicted with absolute certainty. It is only the over-
lap between the symplectic capacities of pairs of states
which is exactly predictable, given the initial overlap.



6

Ensemble of similar states

Consider an ensemble of closed systems. Each member
has been submitted to the same, arbitrary, state prepa-
ration ξ at the same time t = 0. This define the ini-
tial conditions for the members of the ensemble. Al-
ternatively, a single system could be considered. The
requirement is that it is observed in many successive tri-
als and before each new measurement it is resubmitted
to the same state preparation ξ5. In classical mechan-
ics, the initial condition can, by assumption, be prepared
with infinite precision. The members of the ensemble
are thus identical copies of each other. Identical mea-
surements on the identical members will yield the same
experimental outcomes. In quantum mechanics, due to
the non-zero overlap between ξ and η, this is no longer
the situation. The state preparation ξ might be mis-
taken for the state η by the observer upon a measure-
ment. By this, it is meant that eventhough the system is
prepared in the state ξ, it might occupy the state η, due
to their non-zero overlap. In other words, while the ob-
server thought the system was prepared in ξ it might have
been prepared in η. Therefore, when the measurement
is performed, the system might be found in the state η
rather than the state preparation ξ. In this sense, the
two states are mistaken for each other, from the per-
spective of the observer. Thus, the members are not
necessarily identical. Identical measurements on the en-
semble will not necessarily yield the same results. More
generally, consider the situation when the state prepa-
ration ξ has a non-zero overlap with each member of
the M− dimensional set of states {η1, ..., ηj , ..., ηM}, i.e.
Ωk (ξ, ηj) 6= 0, ∀j ∈ {1, 2, ...,M}, see Fig.5. Such a set
will be referred to as the quantum ensemble associated
with the state preparation ξ. Then, the initial condi-
tion ξ might be mistaken for any given state ηj in the
quantum ensemble. The members of the ensemble of
systems, all of which have been submitted to the same
state preparation ξ at the same time, are thus not neces-
sarily identical. However, they are similar, in the sense
that they all have a non-zero overlap with ξ. Upon mea-
surement, there will be a statistical distribution for the
states in which the systems are found, depending on the
size of the overlap between ξ and the members of the
quantum ensemble. If e.g. the overlaps are all equal, i.e.
Ωk (ξ, ηj) = Ωk (ξ, ηi) , ∀i 6= j ∈ {1, 2, ...,M}, then it is
expected, in the limit of a very large ensemble of systems,
that all states in the quantum ensemble will appear an
equal number of times.

5 The typical single-system experiment is the double-slit experi-
ment, where e.g. individual electrons are subsequently, and in-
dependently from each other, submitted to the same initial con-
dition.

FIG. 5. The M−dimensional quantum ensemble associated
with the state preparation ξ is defined by the set of all states
{η1, ..., ηj , ..., ηM} which have a non-zero overlap with ξ. The

black shaded area, denoted by Ω̃, i.e. the mutual overlap
between ξ, η1 and ηM , is physically constrained to be zero.

In conclusion, the state preparation ξ, due to the pos-
sibility that it is mistaken for any other state in its quan-
tum ensemble {η1, ..., ηj , ..., ηM}, cannot be understood,
from the observational point of view, to describe a unique
and specific state of an individual system. It describes
an ensemble of systems which are similar, in the sense
that their states have non-zero overlaps with the state
preparation. This is despite the fact that they have been
prepared, from the viewpoint of the observer, in an iden-
tical manner. This is the quantum ensemble interpreta-
tion of the quantum state as advocated in this article.
There have been many other variants of ensemble inter-
pretations for the quantum state, see e.g. the excellent
reviews [32] [33] and references therein.

Superposition of overlaps

Consider the linear combination, or, superposition, of
overlaps between the state preparation and its quantum
ensemble, denoted by ω (ξ|η1, ..., ηM ), i.e.

ω (ξ|η1, ..., ηM ) ≡
M∑
j=1

ajΩ (ξ, ηj) , (25)

where the coefficients aj are in general complex-valued.
Since the fidelity between the state preparation and any
given member of the quantum ensemble is postulated to
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be conserved in time, any given overlap Ω (ξ, ηj) is a so-
lution to the Schrödinger equation. Therefore, due to the
linearity of the Schrödinger equation, the linear combi-
nation ω (ξ|η1, ..., ηM ) is also a solution.

For the quantum ensemble depicted in Fig.5, the over-
laps Ω(ξ, η1) and Ω(ξ, ηM ) have a part which is mutual,
denoted by Ω̃. Therefore, it is necessary to consider the
subtraction ω − Ω̃ in order to not count the same area
twice. The mutual overlap Ω̃ do not represent a physical
solution of the Schrödinger equation. This is because the
Schrödinger equation originate from the postulate that
the quantum fidelity between pairs of quantum states is
conserved in time. The mutual overlap Ω̃ is not an over-
lap between pairs of states and hence cannot be incorpo-
rated into the postulate. Thus, there is no physical rea-
son which suggest that it should satisfy the Schrödinger
equation. The mutual overlap should therefore be ex-
cluded from any physical discussions on the distinguisha-
bility between the state preparation and its quantum en-
semble. The quantum ensemble is for this reason physi-
cally constrained by the requirement that there exist no
mutual overlaps between the state preparation and two,
or more, members of the quantum ensemble. Put differ-
ently, the set of overlaps between the state preparation
and the members of the quantum ensemble are linearly
independent from each other.

However, it should be noted that any given pair of
members of the quantum ensemble are allowed to have
non-zero overlaps with each other, i.e. Ω(ηi, ηj) 6=
0, ∀i 6= j ∈ {1, 2, ...,M}, as long as this overlap do not
coincide partially with the state preparation.

Ensemble fidelity

The superposition of overlaps, Eq.25, can be used to
generalize the notion of quantum fidelity to measure the
distinguishability between the state preparation and the
quantum ensemble. Consider the situation when M =
2. The fidelity F (ω (ξ|η1, η2)) for the linear combination
ω (ξ|η1, η2) = a1Ω (ξ, η1) +a2Ω (ξ, η2) becomes, using the
Born rule,

F = |a1Ω(ξ, η1) + a2Ω(ξ, η2)|2 (26)
= |a1|2F (Ω(ξ, η1)) + |a2|2F (Ω(ξ, η2)) +
+ a∗1a2Ω∗(ξ, η1)Ω(ξ, η2) + a∗2a1Ω∗(ξ, η2)Ω(ξ, η1)

=
M=2∑
j=1

|aj |2F (Ω(ξ, ηj))

+
M=2∑
j=1

M=2∑
i6=j

a∗jaiΩ
∗(ξ, ηj)Ω(ξ, ηi).

The last two terms clearly illustrate the key difference
between the notion of probability in statistical and quan-
tum mechanics. In classical probability theory, any dis-
joint pair of events satisfy Kolmogorov’s third axiom [21].

Thus, the classical prediction would be that if the state
preparation ξ were mistaken for e.g. the state η1, then
that would exclude the possibility that ξ were mistaken
for the state η2, with the consequence that the fidelity
for the linear combination would be given by

F (ω (ξ|η1, η2)) = F (Ω(ξ, η1)) + F (Ω(ξ, η2)) . (27)

In quantum mechanics, on the other hand, there are ad-
ditional terms which mix the states η1 and η2, despite the
fact that the the members of the ensemble of systems are
all supposed to be closed. The conclusion is thus that
the mistaking of identity for the state preparation with
the states η1 and η2 are not mutually exclusive6. This
type of non-exclusivity between members of the quan-
tum ensemble is referred to as quantum interference. It
is the key distinction between the theories of statistical
and quantum mechanics.

For an arbitrary M -dimensional quantum ensemble,
the fidelity for the ensemble is given by

F (ω(ξ|η1, ..., ηM )) =
M∑
j=1

|aj |2F (Ω(ξ, ηj)) (28)

+
M∑
j=1

M∑
i6=j

a∗jaiΩ
∗(ξ, ηj)Ω(ξ, ηi).

The physical interpretation of the fidelity is that it give
the probability associated with the event that the state
preparation is mistaken for any given state in the quan-
tum ensemble upon measurement by an observer. Given
this interpretation, the ensemble fidelity is required to
satisfy the condition 0 ≤ F (ω) ≤ 1. Clearly, F (ω) = 0
when Ω(ξ, ηj) = 0, ∀j ∈ {1, ...,M}, at which the state
preparation is completely distinguishable from the quan-
tum ensemble. It is furthermore real-valued for arbitrary
non-zero overlaps, for all possible complex-valued coef-
ficients. The requirement that the ensemble fidelity is
bounded from above by unity, i.e. F (ω) ≤ 1, is the prob-
lem of normalization in quantum mechanics. It amounts
to the statement that, in the limit M →∞, it is guaran-
teed that the state preparation will be mistaken by the
observer upon measurement. In other words, the normal-
ization condition is given by

lim
M→∞

F (ω(ξ|η1, ..., ηM )) = 1. (29)

Conclusion

To summarize, we have attempted to formulate the
theory of non-relativistic quantum mechanics within the

6 Put differently, in the jargon of transition probability, the tran-
sitions ξ → η1 and ξ → η2 cannot be considered as mutually
exclusive events.
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language of symplectic topology, in which the following
set of postulates are taken as its foundation:

i The state of a system is represented by its set of
symplectic capacities on the complex-valued phase
space.

ii The symplectic capacity of a state is constrained
from below by the Gromov width cG = h/2.

iii The probability F that the identity of a
state ξ is mistaken for any given member
of its M−dimensional quantum ensemble
{η1, ..., ηj , ..., ηM} is given by

F =
M∑
j=1

|aj |2 · |Ω(ξ, ηj)|2 +
M∑
j=1

M∑
i 6=j

a∗jaiΩ
∗(ξ, ηj)Ω(ξ, ηi)

(30)
where Ω(ξ, ηj) is the overlap between the symplec-
tic capacities of the pair of states ξ and ηj .

iv For a closed Hamiltonian system, the probability is
conserved in time.

The first postulate encode the requirement that the
phase space must become complex-valued at scales be-
low the Gromov width. Otherwise, the formulation will
not be able to reproduce standard results in quantum
mechanics. This condition seem ad-hoc but signify the
fundamental mystery associated with the appearance
of complex-valuedness in quantum mechanics which is
present in all contemporary formulations. Consider e.g.
the complex-valuedness appearing in the Hilbert space
of state vectors and the probability amplitudes associ-
ated with space-time paths. They are not derived, nor
explained from a more fundamental principle, but rather
postulated by necessity to obtain theoretical predictions
which agree with measurements. The problem here, how-
ever, is to precisely understand and physically interpret
what it means to say that the phase space of quantum
systems is complex-valued below a certain scale. We have
not been able to bring any clarity to this issue, which is
thus a significant drawback of the article. In any case, we
believe that the article approach the foundations of non-
relativistic quantum mechanics in an original manner by
trying to connect it with the mathematics of symplec-
tic topology and the non-squeezing theorem. Hopefully,
the article will encourage the physics community to take
a greater interest in this programme and strengthen the
weaknesses presented in this article.

The second postulate is the indeterminacy relation,
stating that there exist a universal finite limit to the pre-
cision by which the state can be distinguished. This give
rise to the necessity to introduce the concept of probabil-
ity, as defined in the third postulate. Due to the complex-
valuedness of the phase space, probability in quantum
mechanics has some special properties as compared to

classical probability theory. In particular, disjoint pair
of overlaps are not necessarily mutually exclusive, giving
rise to quantum interference. The fourth postulate is the
statement of unitary evolution as represented mathemat-
ically by the Schrödinger equation.

I thank Maurice A. de Gosson and Pontus Vikstl for
valuable comments.
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