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Robots are increasingly being used in dynamic environments like workplaces, hospitals, and homes. As a result,

interactions with robots must be simple and intuitive, with robots’ perception adapting e�ciently to human-induced

changes.

This paper presents a robot control architecture that addresses key challenges in human-robot interaction, with a

particular focus on the dynamic creation and continuous update of the robot’s state representation. The architecture

uses Large Language Models to integrate diverse information sources, including natural language commands, robotic

skills representation, real-time dynamic semantic mapping of the perceived scene. This enables �exible and adaptive

robotic behavior in complex, dynamic environments.

Traditional robotic systems often rely on static, pre-programmed instructions and settings, limiting their adaptability

to dynamic environments and real-time collaboration. In contrast, this architecture uses LLMs to interpret complex,

high-level instructions and generate actionable plans that enhance human-robot collaboration.

At its core, the system’s Perception Module generates and continuously updates a semantic scene graph using RGB-D

sensor data, providing a detailed and structured representation of the environment. A particle �lter is employed to

ensure accurate object localization in dynamic, real-world settings.

The Planner Module leverages this up-to-date semantic map to break down high-level tasks into sub-tasks and link

them to robotic skills such as navigation, object manipulation (e.g., PICK and PLACE), and movement (e.g., GOTO).

By combining real-time perception, state tracking, and LLM-driven communication and task planning, the architecture

enhances adaptability, task e�ciency, and human-robot collaboration in dynamic environments.
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1. Introduction

Immediacy is crucial in assistive robotics[1][2][3]. In a typical human-robot interaction scenario, users may provide

commands in natural language, such as “Pick the blue bottle on the table and bring it to me”. To such aim, the use of Large

Language Models (LLM) allows robots to interpret natural language requests and “translate” instructions into plans to
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achieve speci�c goals; yet, these models need to know the environment in which they operate so to generate accurate

plans[4]. The need for translation arises from the complexity of human language and the variability in instructions. Users

may express commands di�erently or exploit ambiguous terms that the robot must comprehend. To address these

challenges, robotic architectures must integrate natural language processing with environmental understanding.

The chief concern of the work is to exploit scene graphs as semantic maps providing a structured representation of spatial

and semantic information of robot’s environment. This enables LLMs to generate plans based on this information. Indeed,

via scene graphs robots can map the relationships between objects, their properties, and their spatial arrangements.

Here we address such limitations by representing the environment as a graph endowed with updatable semantics that

language models can interpret. More precisely, the dynamics of the update is achieved via particle �ltering to enhance the

reliability and precision of real-time semantic mapping. The model adopted (PSGTR) is lightweight and can be easily

utilized, making it suitable for live applications and accessible even on less powerful hardware. Using RoBee, the cognitive

humanoid robot developed by Oversonic Robotics, the system dynamically updates the environment graph and replans in

case of failure, overcoming challenges in long-term task planning.

2. Related works

A scene graph captures detailed scene semantics by explicitly modeling objects, their attributes, and the relationships

between paired objects (e.g., “blue bottle on the table”)[5]. 3D scene graphs[6] extend this concept to three-dimensional

spaces, representing environments like houses or o�ces, where each piece of furniture, room, and object is a node. The

edges between these nodes describe their relationships, such as a vase on a table or a chair in front of a sofa.

Recent works, such as[7] and[8] have proposed to generate 3D scene graphs from RGB-D images, combining geometric and

semantic information to create detailed environmental representations. Scene graphs have been widely used in computer

vision and robotics to improve scene understanding, object detection, and task planning. For example,

SayPlan[9]  integrates 3D scene graphs and LLMs for task navigation and planning, performing semantic searches on the

scene and instructions to create accurate plans, further re�ned through scenario simulations. DELTA[10] utilizes 3D scene

graphs to generate PDDL �les, employing multiple phases to prune irrelevant nodes and decompose long-term goals into

manageable sub-goals, enhancing computational e�ciency for execution with classical planners. SayNav[11]  constructs

scene graphs incrementally for navigation in new environments, allowing the robot to generate dynamic and appropriate

navigation plans in unexplored spaces by passing the scene graph to a LLM, thus facilitating e�ective movement and

execution of user requests.

In a crude summary, the main limitations of the above mentioned approaches to build environment representations lie in

their reliance on computationally heavy vision-language models (VLMs) and computer vision models. Such models are not

designed for precision and often demand signi�cant resources, while lacking the ability to be updated in real time, and

thus limiting their practical application.

3. Architecture

Our system is based on two components:
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Perception Module: it is responsible for sensing and interpreting the environment and building a semantic map in the

form of a directed graph that integrates both geometric and semantic information. Its architecture is explained in detail

below.

Planner Module: it takes the information provided by the Perception Module to formulate plans and actions that allow

the robot to perform speci�c tasks. It is composed by the following:

Task Planner: Translates user requests, expressed in natural language, into high-level skills.

Skill Planner: Translates high-level skills into speci�c, low-level executable actions.

Executor: Executes the low-level actions generated by the Skill Planner.

Controller: Monitors the execution of actions and manages any errors or unexpected events during the process.

Explainer: Interprets the reasons of execution failures by analyzing data received from the Controller and provides

suggestions to the Task Planner on how to adjust the plan.

These components interact to allow the robot to understand its environment and act accordingly to satisfy user requests.

In what follows we speci�cally address the Perception Module while details on the planner will be provided in a separate

article.

Robot Hardware. The system was implemented using RoBee, the cognitive humanoid robot developed by Oversonic

Robotics. RoBee, shown in Figure 1, stands 160 cm tall and weighs 60 kg. It features 32 degrees of freedom, and is equipped

with cameras, microphones, and force sensors.

3.1. Perception module

The Perception Module is the component responsible for building a representation of the environment, which the robot

can use for task planning. The representation takes the form of a semantic map, a graph that integrates both geometric

and semantic information about the environment. To generate the semantic map, the perception module uses data from

various sensors. It requires RGB-D frames obtained from the camera which are then processed using a scene graph

generation model, such as PSGTR[12]  to extract objects masks, label and relationships. Also it uses data on the camera

position relative to the geometric map to determine the location of the objects identi�ed by the model. More formally, a

Semantic Map is represented as a directed graph   where:

A node   can be one of the following types:

Room node: De�nes the di�erent semantic areas of the environment, such as “kitchen,” “living room,” or

“bedroom.” Each room node contains information about its geometric boundaries and the object nodes it contains;

Object node: Represents physical objects in the environment, such as “table,” “chair,” or “bottle.” Each object node

contains information about its 3D position, semantic category, dimensions, and other relevant properties:

An edge   can represent:

The relationship between two objects;

The connection between two rooms;

The belonging of an object to one and only one room.

= ( , )Gm Vm Em

v ∈ Vm

e ∈ Em
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The presence of room nodes is important because it facilitates the categorization of objects based on their respective

rooms, which helps distinguish between objects with the same name and enhances the natural language description of the

task, while room nodes enable the application of graph search algorithms for planning paths to objects. Room nodes are

created based on the geometric map, while object nodes are generated following the steps explained below.

As to edges, more speci�cally:

Edges between rooms directly connect two rooms and facilitate navigation between them.

Edges between objects represent the relationships between objects and are directed, the direction capturing the

in�uence of one object on another; the label associated with each edge is derived from the inferences made by the

PSGTR model.

Figure 1 shows an example of a semantic map of an o�ce, built with the room node ’O�ce’ (italian, ’U�cio’) and the

object nodes connected to each other by relationships and linked to the room node.

Figure 1. The �gure on the left showcases an example of a semantic map in an o�ce environment, while the image on the

right shows RoBee, the humanoid robot developed by Oversonic Robotics.

Generating and updating the semantic map

The scene graph generation process is based on the PSGTR model, a single-stage model built on the Transformer

architecture[13]. This model generates a graph representation of a scene given its panoptic segmentation. PSGTR does not

achieve the highest quality in panoptic segmentation compared to better models, but it provides reasonable inference

times for real-time applications, taking about 400 ms to process a 480p image on a machine with access to an NVIDIA T4

GPU.

The Perception Module uses the result of PSTGR and builds the semantic map following the steps below:

1. Reading RGB-D frames: The video frames from the robot’s cameras are sent to the model to be analyzed and used to

generate the scene graph.

2. Reading robot poses: To generate the scene and semantic map, it is necessary to know the robot’s position relative to

the geometric map, the camera’s position relative to the map, and the camera’s mounting position on the robot.

qeios.com doi.org/10.32388/IXADDN 4

https://www.qeios.com/
https://doi.org/10.32388/IXADDN


3. Inference: Each received frame is processed by the model. Results are information about detected objects, such as

labels and masks, and the relationships between them, such as relationship labels and associated probabilities.

4. Graph construction: This step involves extracting data from the object returned by the model and computing values

dependent on the robot system, such as the position of objects. At a �ner level it consists of three sub-steps:

1. Node construction: Classes and masks of detected objects are extracted. Next, the 3D position of each object is

computed, starting in the pixel coordinate system, then transforming to the camera system, and �nally to the

robot’s map coordinate system. Nodes for the semantic scene and the semantic map are instantiated using the

appropriate 3D coordinates. A distance-based �lter is applied to prune objects that are too far from the robot to

avoid issues with object detection and tracking.

2. Edge construction: Data about relationships between objects are extracted. For each relationship, the source and

target object indices are identi�ed. If both objects meet distance constraints and the relationship probability

exceeds a de�ned threshold, an edge is created between the corresponding nodes.

3. Inference improvement through Particle Filter (PF): As the model’s output is not accurate regarding mask

inference, this leads to errors in calculating the object’s centroid for obtaining its position relative to the map. A

PF based on previous observations is applied to improve the accuracy of the result.

At the end of the process, the semantic map is updated with the new information, and the semantic scene is generated and

provided to the planner module.

The PF is used to track the object masks in real-time, provided as output by the PSGTR model, and to improve the

estimation of their position in space. During the update process, the �lter uses information from frames acquired to re�ne

the position estimate of the objects. The last object masks identi�ed by the PSGTR model are compared with previous ones

using the Intersection over Union (IoU) metrics and by applying the motion model, which can be de�ned as a

transformation of the camera position relative to the map between two time instances. Denote the transformation

matrices describing the camera position at time   and at subsequent time  ,   and  , respectively; then, the change

in position and orientation can be expressed by the transformation matrix  . To associate objects between

successive frames, we use an IoU matrix computed over segmentation masks. For two masks   and  , IoU is de�ned as 

, where   represents the area of intersection between masks   and  , and   represents the

area of their union. To compare segmentation masks between two successive frames, we denote the segmentation mask at

time    as    and at time    as  . The transformation matrix    is applied to the previous mask to obtain a

transformed mask   such that  . The Intersection over Union (IoU) is then computed between the

transformed mask    and the current mask    as follows:  . This allows us to identify the

same object across successive frames based on their masks.

 is the transformation matrix that describes the camera position at time  .

 is the transformation matrix that describes the camera position at time  .

 is the transformation matrix representing the change in camera position between the two time instances.

More formally, each object is represented by a set of   particles, where each particle   at time   is a 3D vector representing

a hypothesis about the object’s position:  , where  . The particles are initialized with a normal

t − 1 t Tt−1 Tt

ΔT = TtT
−1
t−1

A B

IoU(A,B) =
|A∩B|

|A∪B|
|A ∩ B| A B |A ∪ B|)

t − 1 Mt−1 t Mt ΔT

M ′
t−1 = ΔT ⋅M ′

t−1 Mt−1

M ′
t−1 Mt IoU( , ) =M ′

t−1 Mt

| ∩ |M ′
t−1 Mt

| ∪ |M ′
t−1 Mt

Tt t

Tt−1 t − 1

ΔT

N st
i

t

= [ , ,st
i

xi yi zi ]T i = 1, . . . ,N

qeios.com doi.org/10.32388/IXADDN 5

https://www.qeios.com/
https://doi.org/10.32388/IXADDN


distribution around the initially observed position  :  , where    is the

initial covariance matrix. Initial weights are uniform:  , where  . Prediction takes into account the

camera motion. If    is the transformation matrix from frame    to frame  , each particle is updated as 

, where   represents the noise added to account for uncertainties in motion, maintaining the same

distribution structure used for initial particle initialization. Given a new observation  , the particle weights are updated

based on the Euclidean distance between the predicted position and the observed one:    and  .

Weights are then normalized:  . The �nal position of the object   is estimated as the weighted mean of all the

particles:  .

Table 1 shows the improvement obtained over 30 measurements using particle �lter.

The overall process for updating the semantic map using the particle �lter can be summarized by the algorithm 1.

Property No Particle Particle

Real position [m] (0.67, 0.10, 0.95) (0.67, 0.10, 0.95)

Mean position [m] (0.74, -0.08, 0.93) (0.65, 0.08, 0.94)

Mean of absolute error [m] (0.07, 0.18, 0.02) (0.02, 0.02, 0.01)

Error standard deviation [m] (0.35, 0.24, 0.03) (0.17, 0.12. 0.02)

Table 1. Comparison of position data

Algorithm 1.
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4. Conclusions

Scene graphs provide a structured representation that captures geometric and semantic information about the

environment. This comprehensive understanding enables improved task planning with large language models, allowing

robots to execute commands.

In this article we have shown how to use real-time sensor data to dynamically update semantic maps, thus enabling the

robot to adapt to ongoing changes in their environment, particularly in collaborative settings in�uenced by human actions.

Here, particle �ltering is applied to improve geometric data precision and semantic map accuracy. This can be particularly

important also for social interaction and intention prediction[14][15] other than physical interaction with the environment.

The issues addressed in this work are cogent. Indeed, the e�ectiveness of planners in translating complex instructions into

actionable plans relies on a robust state representation. Without an accurate semantic map, planners risk generating plans

that misalign with the actual environment, potentially leading to task failures. The integration of semantic and geometric

insights permits robots to reason about their environment in a more informed and adaptive way, ensuring that they can

operate e�ectively and responsively in dynamic environments.

The adoption of a semantic map containing rich spatial information combined with a �exible LLM based planner can easily

allow to explore in the future the introduction of new spatial relationships, e.g. wrapped, stuck under, surrounding,

aligned, that could support speci�c novel robot skills[16].

Notes

The Planner Module mentioned in the article is discussed in the following paper: https://arxiv.org/abs/2411.15033)

___

Workshop on Advanced AI Methods and Interfaces for Human-Centered Assistive and Rehabilitation Robotics (a Fit4MedRob

event) - AIxIA 2024, November 25–28, 2024, Bolzano, Italy.
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