
Qeios PEER-APPROVED

v2: 2 April 2025 Research Article

An Approximated QUBO

Formulation for Solving

Practical SAT Problems

Peer-approved: 29 January 2025

© The Author(s) 2024. This is an

Open Access article under the CC BY
4.0 license.

Qeios, Vol. 7 (2025)
ISSN: 2632-3834

Tomohiro Sonobe1

1. National Institute of Informatics, Tokyo, Japan

In this paper, we introduce an approximated quadratic unconstrained binary

optimization (QUBO) formulation on satisfiability (SAT) problems derived from

real-world applications. The proposed method is an inexact (approximated)

formalization of a SAT instance to a QUBO, where the ground state of the QUBO

does not correspond to the solution of the SAT instance. The method leverages

the fact that practical SAT instances often contain many binary (size 2) clauses,

allowing us to directly use a MAX2SAT formalization. In comparative

experiments using existing formulations, the proposed method exhibits

superior performance on the pigeonhole principle, graph coloring problems,

and a subset of instances from the SAT Competition 2023.

Corresponding author: Tomohiro Sonobe,

tomohiro_sonobe@nii.ac.jp

1. Introduction

Due to recent advancements, many Ising model solvers

(Ising solvers) have been developed [1][2][3][4] and are

used to address combinatorial optimization

problems [5][6][7][8][9]. The ground state search of an

Ising model can be converted into Quadratic

Unconstrained Binary Optimization (QUBO). QUBO is a

combinatorial optimization problem consisting of -

dimensional binary variable () and a

 square matrix . The goal is to find the variable

assignment that minimizes the following Hamiltonian

:

The Boolean satisfiability problem (SAT) is a

fundamental NP-complete problem [10]. Given a

formula, SAT is to determine whether the given formula

has a satisfying variable assignment or not. Many

problems, such as theorem proving [11], neural network

verification [12], and circuit verification [13], are

translated into SAT problems and solved efficiently by

SAT solvers [14]. In general, SAT formulas are given in

Conjunctive Normal Form (CNF), where Boolean

variables appear in clauses connected by logical-OR,

and all clauses are connected by logical-AND. More

formally, a SAT instance comprises a set of

Boolean variables and a set of

clauses . A literal is a positive or negative form of a

variable. A clause of size k is a disjunction

(logical-OR) of k literals, expressed as

 where represents a literal

of a variable. A SAT instance with fixed clause size k is

called kSAT. As a variant of kSAT, MAXkSAT is an

optimization problem where the objective is to find a

variable assignment that maximizes the number of

satisfied clauses. Not-All-Equal kSAT (NAEkSAT) is also

a variation of kSAT with a different satisfaction

criterion: a clause is satisfied only when at least one

literal is true and at least one is false. Consequently, any

solution to NAEkSAT is also a valid solution to kSAT on

the same formula. Existing research [15][16][17]

[18] utilizes QUBO formulations to solve 3SAT,

MAX2SAT, and NAE3SAT, aiming to expand the

capabilities of Ising solvers. Because formulation

choices influence solution quality, discovering novel

n

x ∈ {0, 1}
n

n × n Q

H(x)

H(x) = ∑
i

∑
j

Qi,jxixj (1)

ϕ = (V , C)

V = { , , … , }x1 x2 xn

C

∈ Cci

= (∨ ∨ …)ci ci,1 ci,2 ci,k ci,j

qeios.com doi.org/10.32388/JD6K4G.3 1

mailto:tomohiro_sonobe@nii.ac.jp
https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

QUBO transformations is an important and active

research area.

In this paper, we introduce a simple formalization

method to convert (general) SAT instances into

approximated QUBO instances. Unlike existing QUBO

formalization methods for SAT instances [15][16][17], our

proposed method is designed for practical SAT

instances containing a large number of binary

clauses [19]. As demonstrated in our experiments,

practical SAT instances frequently exhibit a high

proportion of binary clauses due to the prevalence of

relationships between pairs of variables, often

represented by at-most-one constraints [20]. Our

approach employs MAX2SAT formalization for binary

clauses and NAE3SAT formalization for ternary clauses,

resulting in an approximated QUBO. The QUBO

formulations of MAX2SAT and NAE3SAT require no

additional variables, meaning that a Boolean variable in

a MAX2SAT/NAE3SAT instance directly corresponds to

a QUBO variable. Our method leverages the binary

clauses through MAX2SAT formalization. In fact, our

preliminary experiments demonstrated that solving

QUBO instances derived from practical MAX2SAT

instances [21] using simulated annealing exhibited high

performance. For ternary clauses, the method employs

NAE3SAT formalization, resulting in an approximated

QUBO where the ground state does not directly

correspond to a solution that satisfies all three literals

in a specific ternary clause. Note that clauses containing

more than three literals are decomposed into ternary

clauses by introducing additional variables.

Additionally, we assume that SAT instances are free of

unit clauses through pre-processing (unit

propagation [22]). Our experimental results

demonstrate the effectiveness of the proposed method

on practical instances, including the pigeonhole

principle, graph coloring, and a subset of instances from

the SAT Competition 2023.

2. Proposed Method

Existing formalization methods [15][16] are limited to

CNFs with only ternary clauses. To accommodate

clauses of different sizes, auxiliary variables must be

introduced, potentially increasing the size of the QUBO.

Our proposed method leverages the prevalence of

binary clauses in real-world SAT instances. By directly

translating these binary clauses to a QUBO via

MAX2SAT formalization, we aim to mitigate this issue

and reduce the overall problem size. Note that our

formalization method generates an approximated

QUBO where the ground state may not correspond to

the solution of the SAT instance, unlike exact

formalization methods such as Chancellor [15] and

Nüßlein [16].

We define a given SAT instance as

 where is a

set of Boolean variables, is a set of binary clauses,

and is a set of ternary clauses. We assume that the

given instance has been preprocessed by applying unit

propagation [22] to eliminate unit clauses and

introducing auxiliary variables to convert longer

clauses (greater than size 3) into ternary clauses. For the

construction of the QUBO, we adopt the same notation

for QUBO variables as for Boolean variables, i.e., a

Boolean variable directly corresponds to a QUBO

variable .

First, for binary clauses , we simply apply MAX2SAT

formalization [23] to them. The binary clauses are

classified into the following three types, and

corresponding QUBO formalizations are shown.

The objective QUBO Hamiltonian can be constructed by

summing up all the formulas.

Second, for ternary clauses , our method simply uses

NAE3SAT formalization as follows:

where is the sign function for a literal (for a

positive literal and for a negative literal). Since a

clause in which all its literals have truth assignments is

not allowed in NAE3SAT, such a solution of the SAT

cannot be found. However, solutions of NAE3SAT are

valid for SAT and used in practice [18].

The whole process is illustrated in Figure 1. As a

concrete example, consider a (general) SAT instance

,

.

By unit propagation, the unit clause is forced to be

true (assigning as true) and removed from the clause

set. Consequently, the clause is

shortened to since the literal is false.

Subsequently, the clause is

divided into three ternary clauses by introducing

auxiliary variables: , ,

and . At this point, Our method is

ϕ = (V , C = ∪)Cb Ct V = { , , … , }x1 x2 xn

Cb

Ct

xi

xi

Cb

(∨) : 1 − − +xi xj xi xj xixj

(¬ ∨) : −xi xj xi xixj

(¬ ∨ ¬) :xi xj xixj

Ct

H = (2 − 1)(2 − 1)∑
(∨ ∨)∈x1 x2 x3 Ct

ζx1
ζx2 x1 x2

+ (2 − 1)(2 − 1)+ζx1
ζx3 x1 x3

(2 − 1)(2 − 1)ζx2 ζx3 x2 x3

(2)

ζx x +1

−1

= (= { , , , , , , }ϕ1 V1 x1 x2 x3 x4 x5 x6 x7

= {(), (¬ ∨ ∨), (∨ ∨ ∨ ∨)})C1 x1 x1 x2 x3 x3 x4 x5 x6 x7

()x1

x1

(¬ ∨ ∨)x1 x2 x3

(∨)x2 x3 ¬x1

(∨ ∨ ∨ ∨)x3 x4 x5 x6 x7

(∨ ∨)x3 x4 y1 (¬ ∨ ∨)y1 x5 y2

(¬ ∨ ∨)y2 x6 x7

qeios.com doi.org/10.32388/JD6K4G.3 2

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

applied to the re-formalized instance

,

. For

existing methods applied to 3SAT instances, the binary

clauses must be transformed. The binary clause

 is converted to by introducing

another padding variables . To ensure all the

three variables to be false, seven ternary clauses must

be added:

.

Note that these three padding variables can be reused

for other binary clauses, i.e., we only need to add to

all the binary clauses (no additional padding variables

are required). The final 3SAT instance

 is

given to the existing methods.

= (= { , , , , , , , }ϕ2 V2 x2 x3 x4 x5 x6 x7 y1 y2

= {(∨), (∨ ∨), (¬ ∨ ∨),C2 x2 x3 x3 x4 y1 y1 x5 y2

(¬ ∨ ∨)})y2 x6 x7

(∨)x2 x3 (∨ ∨)x2 x3 z1

{ , , }z1 z2 z3

= {(¬ ∨ ∨), (∨ ¬ ∨), (∨ ∨ ¬),Cp z1 z2 z3 z1 z2 z3 z1 z2 z3

(¬ ∨ ¬ ∨),z1 z2 z3

(¬ ∨ ∨ ¬), (∨ ¬ ∨ ¬), (¬ ∨ ¬ ∨ ¬)}z1 z2 z3 z1 z2 z3 z1 z2 z3

z1

= (= ∪ { , , },ϕ3 V3 V2 z1 z2 z3

= {(∨ ∨), (¬ ∨ ∨), (¬ ∨ ∨),C3 x3 x4 y1 y1 x5 y2 y2 x6 x7

(∨ ∨)} ∪)x2 x3 z1 Cp

qeios.com doi.org/10.32388/JD6K4G.3 3

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

Figure 1. Data flow of the proposed/existing methods.

3. Experiments

We conducted comparative experiments on practical

SAT instances using a machine equipped with an Intel

Core i9-10980X CPU, 256GB RAM, and Ubuntu 20.04.

Our code 1 was implemented in Python 3.10, and we

utilized PyQUBO [24][25] for QUBO construction. For

ground state search of a QUBO, we used the

“SimulatedAnnealingSampler” (SAS) from the dwave-

neal package 2 version 0.6.0. We invoked the

“sample_qubo” function of the SAS with the following

parameters: “num_reads” , “num_sweeps”

, and “seed” .”

As a comparison, we used existing methods:

Chancellor [15], Nüßlein [16], and FullApprox [17].

Chancellor and Nüßlein are exact formalization

methods that generate a QUBO with variables

from a 3SAT instance with Boolean variables and

 clauses. FullApprox is an approximated formalization

method that constructs a QUBO with the same number

of variables as the given 3SAT instance. Additionally, we

employed NAE3SAT formalization as a naive baseline.

As benchmark instances, we used three types of SAT

instances: the pigeonhole principle (PHP), graph

coloring (GC), and a subset of instances from the SAT

Competition 2023 (COMP23). Benchmark instances in

the SAT Competitions are often generated from real-

world applications. For example, in the SAT

Competition 2023, the instances are derived from

scheduling, register allocation, software verification,

cryptography, and hashtable safety, among others [26].

GC instances are included as derivatives of the register

allocation problem, and PHP instances are also

included. PHP instances were generated with

CNFgen [27] by setting pigeons and holes (

); hence, all 10

instances are satisfiable. GC instances were also

generated with CNFGen, from the instances of the

DIMACS graph coloring challenge
333https://mat.tepper.cmu.edu/COLOR/instances.html.

We selected instances whose chromatic number was

known and encoded each SAT instance with its

chromatic number, thus resulting in a satisfiable

instance. The subset of the SAT Competition 2023

instances
444https://satcompetition.github.io/2023/downloads.html

was created by selecting instances with less than 100

KB and at least one binary clause, resulting in 40

instances. From these, we excluded instances with non-

sequential variable indices, leaving 28 instances. It

includes 1 satisfiable instance and 25 unsatisfiable

instances (and 2 solution-unknown instances). For each

instance and formalization method, we measured the

number of unsatisfied clauses in the solution output by

the SAS. An exact solution for a satisfiable instance will

exhibit 0 unsatisfied clauses.

PHP states whether it is possible to assign each pigeon

to exactly one hole such that no two pigeons are

assigned to the same hole. A PHP instance is formalized

in SAT as follows. Given an integer indicating the

number of pigeons and holes (note that we consider an

equal number of pigeons and holes in this paper), a

Boolean variable is true if -th pigeon

enters -th hole and false otherwise. The following two

constraints are encoded as a set of clauses:

each pigeon must enter at least one hole (at-leas-one

constraint): for .

there is at most one pigeon for each hole (at-most-

one constraint): for and

= 10

= 10000 = 1

n + m

n

m

n n

n = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

n

(1 ≤ i, j ≤ n)xi,j i

j

⋁n
j=1 xi,j 1 ≤ i ≤ n

¬ ∨ ¬xi,k xj,k 1 ≤ i < j ≤ n

qeios.com doi.org/10.32388/JD6K4G.3 4

https://mat.tepper.cmu.edu/COLOR/instances.html
https://satcompetition.github.io/2023/downloads.html
https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

for .

GC determines the vertices of a graph can be colored

with at most different colors such that no two adjacent

vertices have the same color. GC instances are similar to

PHP ones. Given a graph , where is a set of

vertices and is a set of edges, and an integer , a

Boolean variable is true if

vertex is colored . The following three constraints are

encoded as a set of clauses:

each vertex must be colored at least one color (at-

leas-one constraint): for .

each vertex must be colored at most one color (at-

most-one constraint): for

 and for .

adjacent vertices must have different colors:

 for and for .

Hence, at-most-one constraints generate binary clauses

in proportional to in PHP and in GC. Consequently,

the percentage of binary clauses in both PHP and GC

instances can be high. Additionally, we emphasize that

our method can find an exact solution for satisfiable

PHP/GC instances. This is because for non-binary

clauses (i.e., the at-least-one constraint), there always

exists a solution where only one literal is true and the

others are false. For example, in a PHP instance, we can

easily find an exact solution where true for

. In this solution, each clause of the at-least-

one constraint is satisfied by a single true literal (with

the others being false). The same holds true for GC

instances: only one literal is true in the clauses of the at-

least-one constraint for a valid solution. These solutions

can be found through the NAE3SAT formalization.

1 ≤ k ≤ n

r

G = (V , E) V

E r

(1 ≤ i ≤ |V |, 1 ≤ j ≤ r)xi,j

i j

⋁r
j=1 xi,j 1 ≤ i ≤ |V |

¬ ∨ ¬xi,j xi,k

1 ≤ i ≤ |V | 1 ≤ j < k ≤ r

¬ ∨ ¬xu,k xv,k (u, v) ∈ E 1 ≤ k ≤ r

n2 r2

=xi,i

1 ≤ i ≤ n

qeios.com doi.org/10.32388/JD6K4G.3 5

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

n vars clauses b-clauses b-ratio N3M2 Chancellor Nüßlein FullApprox NAE3SAT

5 25 55 50 90.91% 0 19 0 30 34

10 100 460 450 97.83% 0 121 6 360 3

15 225 1590 1575 99.06% 0 328 13 0 1379

20 400 3820 3800 99.48% 0 629 20 0 3420

25 625 7525 7500 99.67% 0 1255 25 6900 3

30 900 13080 13050 99.77% 0 1555 4116 0 12180

35 1225 20860 20825 99.83% 0 2391 35 19635 19635

40 1600 31240 31200 99.87% 0 3465 40 0 29640

45 2025 44595 44550 99.90% 0 4156 15618 42570 2

50 2500 61300 61250 99.92% 0 5475 50 0 3

total 184525 0 19394 19923 69495 66299

unsat-ratio - 0.00% 10.51% 10.80% 37.66% 35.93%

Table 1. Results for PHP instances. The column “n” indicates the number of pigeons and holes, “vars” and “clauses”

represent the number of variables and clauses in the original CNF (before adding auxiliary variables), “b-clauses” is the

number of binary clauses, “b-ratio” is the ratio of binary clauses, and the remaining columns show the number of

unsatisfied clauses (lower is better) for each method. The bottom two rows indicate the total number of unsatisfied

clauses for all the instances and the ratio for the total number of clauses. The best results are shown in boldface.

Table 1 presents the results of PHP. PHP instances

contain a significant number of binary clauses,

particularly for larger values of “n”. The proposed

method (named N3M2) successfully found exact

solutions for all PHP instances. FullApprox could find

exact solutions for half of the instances, but its

solutions often failed to satisfy the clauses for certain

instances (e.g., instances with). While

the NAE3SAT method could also find near-exact

solutions for some instances, N3M2 leveraged the

benefits of MAX2SAT formalization to achieve superior

performance. In terms of total performance, the bottom

two rows in Table 1 indicate the total number of

unsatisfied clauses for all the instances and the ratio of

unsatisfied clauses to the total number of clauses

(unsat- ratio). The Chancellor and Nüßlein method

achieved an unsat-ratio of approximately 10%,

outperforming both the FullApprox and NAE3SAT

methods (over 35%) As for the processing time of SAS,

N3M2 generated smaller QUBOs, leading to faster

search times (as shown in Table 4). We also show the

processing time of CaDiCaL [28], one of the state-of-the-

art SAT Solvers. CaDiCaL could solve all the instances

within seconds. As expected, PHP instances with an

equal number of pigeons and holes, considered in this

paper, proved to be easily solvable.

n = {25, 35, 45}

0.1

qeios.com doi.org/10.32388/JD6K4G.3 6

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

instance vars clauses b-clauses b-ratio N3M2 Chancellor Nüßlein FullApprox NAE3SAT

anna.col_k11 1518 13151 13013 98.95% 55 2267 134 10728 10631

david.col_k11 957 9338 9251 99.07% 41 1541 85 7569 68

fpsol2.i.1.col_k65 32240 1789686 1789190 99.97% 238 111914 496 1736419 244

fpsol2.i.2.col_k30 13530 457366 456915 99.90% 352 36485 134270 19 387

fpsol2.i.3.col_k30 12750 445940 445515 99.90% 338 34109 425 20 375

games120.col_k9 1080 10182 10062 98.82% 81 2012 120 0 7922

huck.col_k11 814 7455 7381 99.01% 32 1339 72 0 6084

inithx.i.1.col_k54 46656 2247426 2246562 99.96% 416 149564 789756 22 2164646

inithx.i.2.col_k31 19995 733919 733274 99.91% 563 55572 201812 697495 622

inithx.i.3.col_k31 19251 722425 721804 99.91% 585 54416 197918 688212 639

jean.col_k10 800 6220 6140 98.71% 38 1398 74 0 69

le450_15b.col_k15 6750 170235 169785 99.74% 538 14824 450 18 148945

le450_15c.col_k15 6750 297900 297450 99.85% 959 19176 450 267178 265935

le450_15d.col_k15 6750 298950 298500 99.85% 1032 19324 450 268378 816

le450_25a.col_k25 11250 341950 341500 99.87% 305 27026 450 314665 396

le450_25b.col_k25 11250 342025 341575 99.87% 334 27257 450 3 426

le450_25c.col_k25 11250 569025 568575 99.92% 672 35850 450 29 526748

le450_25d.col_k25 11250 571075 570625 99.92% 678 34872 450 529449 528336

le450_5a.col_k5 2250 33520 33070 98.66% 591 4377 449 0 20401

le450_5b.col_k5 2250 33620 33170 98.66% 530 4472 450 20027 20764

le450_5c.col_k5 2250 53965 53515 99.17% 296 3526 450 1 659

le450_5d.col_k5 2250 53735 53285 99.16% 33 3484 450 2 507

miles1000.col_k42 5376 245408 245280 99.95% 63 15674 128 0 233802

miles1500.col_k73 9344 715966 715838 99.98% 46 37810 128 696226 696220

miles250.col_k8 1024 6808 6680 98.12% 59 1513 110 5010 5101

miles500.col_k20 2560 47848 47720 99.73% 64 5312 128 42948 43045

miles750.col_k31 3968 125151 125023 99.90% 62 9939 128 1 117005

mulsol.i.1.col_k49 9653 424194 423997 99.95% 91 27530 197 406691 406840

mulsol.i.2.col_k31 5828 208043 207855 99.91% 168 14207 74639 195499 195059

mulsol.i.3.col_k31 5704 207140 206956 99.91% 196 14566 184 8 194113

mulsol.i.4.col_k31 5735 208536 208351 99.91% 143 14334 185 8 195505

mulsol.i.5.col_k31 5766 209839 209653 99.91% 144 14446 75499 8 196505

myciel3.col_k4 44 157 146 92.99% 9 45 3 73 12

myciel4.col_k5 115 608 585 96.22% 13 135 17 351 21

myciel5.col_k6 282 2168 2121 97.83% 38 407 39 1414 58

qeios.com doi.org/10.32388/JD6K4G.3 7

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

instance vars clauses b-clauses b-ratio N3M2 Chancellor Nüßlein FullApprox NAE3SAT

myciel6.col_k7 665 7375 7280 98.71% 120 1114 2256 5200 153

myciel7.col_k8 1528 24419 24228 99.22% 314 2367 191 3 18514

queen11_11.col_k11 1331 28556 28435 99.58% 34 2659 121 9 66

queen13_13.col_k13 2197 56615 56446 99.70% 46 4853 169 48402 69

queen5_5.col_k5 125 1075 1050 97.67% 5 200 24 630 659

queen6_6.col_k7 252 2822 2786 98.72% 9 455 36 1990 27

queen7_7.col_k7 343 4410 4361 98.89% 12 657 49 3115 51

queen8_12.col_k12 1152 22848 22752 99.58% 13 2198 96 18960 42

queen8_8.col_k9 576 8920 8856 99.28% 12 1156 64 6921 6940

queen9_9.col_k10 810 14286 14205 99.43% 11 1639 81 11397 47

zeroin.i.1.col_k49 10339 449247 449036 99.95% 80 29747 211 430989 127

zeroin.i.2.col_k30 6330 198226 198015 99.89% 109 15226 211 7 181

zeroin.i.3.col_k30 6180 196016 195810 99.89% 117 14463 206 7 183181

total 12625789 10685 877457 1485211 6416101 6198963

unsat-ratio - 0.08% 6.95% 11.76% 50.82% 49.10%

Table 2. Results for GC instances.

Table 2 presents the results of GC. All the instances

were generated by CNFGen for each graph and

chromatic number; hence, all of them are satisfiable.

Similar to PHP, the majority of clauses of GC instances

are binary clauses. While N3M2 did not find exact

solutions, it performed well on all instances, leaving

only 0.08% of clauses unsatisfied. FullApprox found

exact solutions for 5 instances but satisfied only half of

the total clauses, comparable to NAE3SAT performance.

Contrary to PHP, N3M2 failed to reach the ground state

of any instances. One possible reason for this is that GC

has one more constraint than PHP, namely, the

adjacency constraint. This constraint increases the

difficulty of solving GC. Additionally, approximately half

of the GC instances are larger than the largest PHP

instance (). In fact, the average processing time

of CaDiCaL for GC instances was longer than that for

PHP instances.

n = 50

qeios.com doi.org/10.32388/JD6K4G.3 8

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

ID sol vars clauses b-clauses b-ratio N3M2 Chancellor Nüßlein FullApprox NAE3SAT

1 unsat 354 2938 2922 99.46% 32 458 619 1 25

2 unsat 270 6663 1362 20.44% 649 89 14 1116 312

3 unsat 351 4291 4264 99.37% 23 650 1256 9 22

4 unsat 176 1149 1133 98.61% 11 282 13 933 11

5 unsat 398 741 5 0.67% 51 8 3 1 57

6 sat 260 624 520 83.33% 104 216 171 306 137

7 unsat 228 2023 2004 99.06% 12 382 19 1709 14

8 unsat 247 2073 2054 99.08% 17 380 575 5 16

9 unsat 90 415 405 97.59% 85 117 94 324 109

10 unsat 132 1527 168 11.00% 147 31 22 146 162

11 unsat 187 1348 1331 98.74% 22 269 402 4 14

12 unsat 348 4817 4788 99.40% 35 679 29 15 4225

13 unsat 518 7611 7574 99.51% 54 1091 36 6580 6503

14 unknown 526 5477 5458 99.65% 44 662 20 1 38

15 unsat 288 3240 3216 99.26% 33 602 1020 2790 2863

16 unknown 460 4494 4476 99.60% 33 594 1036 3707 34

17 unsat 205 4549 975 21.43% 575 151 12 828 552

18 unsat 228 1915 1896 99.01% 12 308 557 1665 1625

19 unsat 190 632 2 0.32% 85 22 7 63 79

20 unsat 460 8655 8637 99.79% 48 646 1881 1 48

21 unsat 448 5562 5530 99.42% 34 806 31 8 4860

22 unsat 392 4116 4088 99.32% 31 651 25 6 32

23 unsat 231 1880 1859 98.88% 16 443 559 4 19

24 unsat 462 6403 6370 99.48% 53 864 31 5633 5486

25 unsat 412 3654 3637 99.53% 38 572 17 1 2987

26 unsat 252 2049 2028 98.98% 17 427 617 3 21

27 unsat 192 1252 1236 98.72% 8 373 363 1028 1021

28 unsat 299 3182 3159 99.28% 26 564 23 8 2804

total 93280 2295 12337 9452 26895 34076

unsat-ratio - 2.46% 13.23% 10.13% 28.83% 36.53%

Table 3. Results for COMP23 instances. The column “sol” indicates solutions (satisfiable/unsatisfiable or unknown). Due

to space constraints, instance names are abbreviated (see Appendix for full names).

qeios.com doi.org/10.32388/JD6K4G.3 9

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

Table 3 presents the results of COMP23 instances. Due

to space constraints, instance names are abbreviated

(see Appendix for full names). N3M2 showed stable

performance for all the instances, leaving only 2.46% of

total clauses unsatisfied. Some instances contain fewer

binary clauses, and N3M2 was ineffective for them.

FullApprox could output near-optimal solutions, only 1

unsatisfied clause, for 5 instances, and less than 10

unsatisfiable clauses for 13 instances. Note that, as

shown in the Table 6, the large part of instances could

not solved by CaDiCaL within 10000 seconds. Compared

to PHP and GC, COMP23 instances are more difficult to

solve.

4. Summary

We introduce a simple, approximate formalization

method to transform SAT instances into QUBOs,

leveraging NAE3SAT and MAX2SAT formalization. This

approach benefits from the high prevalence of binary

clauses in practical SAT instances. Our experimental

results demonstrate the superior performance of the

proposed method on PHP, GC, and small instances from

the SAT Competition 2023. Notably, the method

successfully finds all exact solutions for PHP instances.

Future work will focus on the theoretical analysis of our

method.

Appendix A. Processing time and

instance names of the SAT

Competition 2023

Tables 4, 5, and 6 show processing times of each

method for PHP, GC, and COMP23, respectively. We also

report the processing time of CaDiCaL [28] version 2.1.2,

one of the state-of-the-art SAT solvers, by setting the

time limit as 10000 seconds. Table 7 presents the

correspondence between IDs and instance names of

COMP23 instances.

qeios.com doi.org/10.32388/JD6K4G.3 10

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

n vars clauses b-ratio N3M2 Chancellor Nüßlein FullApprox NAE3SAT CaDiCaL

5 25 55 90.91% 0.05 0.17 0.14 0.06 0.06 0.00

10 100 460 97.83% 0.25 1.02 0.78 0.30 0.29 0.00

15 225 1590 99.06% 0.61 3.22 2.37 0.74 0.76 0.00

20 400 3820 99.48% 1.17 7.42 5.36 1.44 1.84 0.00

25 625 7525 99.67% 1.93 14.93 11.25 2.46 2.91 0.00

30 900 13080 99.77% 3.24 24.36 19.53 3.83 3.87 0.01

35 1225 20860 99.83% 4.73 42.71 32.77 6.74 7.67 0.01

40 1600 31240 99.87% 7.05 66.08 53.36 9.95 10.19 0.02

45 2025 44595 99.90% 9.14 104.79 81.64 12.85 13.59 0.02

50 2500 61300 99.92% 11.22 146.39 113.20 16.47 17.43 0.03

Table 4. Processing time for PHP instances. Each value of each method stands for time (seconds) of

SimulatedAnnealingSampler. The right-most column shows the processing time of CaDiCaL.

qeios.com doi.org/10.32388/JD6K4G.3 11

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

instance vars clauses b-ratio N3M2 Chancellor Nüßlein FullApprox NAE3SAT CaDiCaL

anna.col_k11 1518 13151 98.95% 5.25 28.63 21.54 6.00 6.40 0.01

david.col_k11 957 9338 99.07% 3.36 19.20 14.40 3.54 3.79 0.01

fpsol2.i.1.col_k65 32240 1789686 99.97% 800.00 6326.45 5906.63 859.76 1352.33 0.39

fpsol2.i.2.col_k30 13530 457366 99.90% 267.44 1707.06 1594.83 236.42 400.95 0.12

fpsol2.i.3.col_k30 12750 445940 99.90% 248.48 1647.17 1510.63 222.63 373.20 0.12

games120.col_k9 1080 10182 98.82% 3.32 21.51 16.26 3.84 4.42 0.00

huck.col_k11 814 7455 99.01% 2.52 15.46 11.81 2.96 3.11 0.00

inithx.i.1.col_k54 46656 2247426 99.96% 1141.75 7715.49 6961.00 1009.75 1800.78 0.51

inithx.i.2.col_k31 19995 733919 99.91% 477.43 2792.77 2725.76 427.45 702.44 0.20

inithx.i.3.col_k31 19251 722425 99.91% 459.95 2746.58 2657.01 416.78 679.69 0.18

jean.col_k10 800 6220 98.71% 2.73 13.34 10.03 2.79 2.82 0.00

le450_15b.col_k15 6750 170235 99.74% 43.48 610.75 555.32 56.60 56.97 0.27

le450_15c.col_k15 6750 297900 99.85% 79.73 1093.39 979.41 138.50 116.74 10000.00

le450_15d.col_k15 6750 298950 99.85% 76.78 1081.64 937.43 135.35 116.50 10000.00

le450_25a.col_k25 11250 341950 99.87% 172.54 1338.32 1220.98 202.06 298.00 0.12

le450_25b.col_k25 11250 342025 99.87% 163.06 1353.05 1221.12 203.31 294.87 0.10

le450_25c.col_k25 11250 569025 99.92% 222.09 2184.04 1975.19 313.90 408.84 10000.00

le450_25d.col_k25 11250 571075 99.92% 212.97 2189.96 1981.19 309.72 405.79 10000.00

le450_5a.col_k5 2250 33520 98.66% 7.12 65.88 53.78 10.65 11.34 0.04

le450_5b.col_k5 2250 33620 98.66% 7.15 66.32 53.88 10.67 11.37 0.15

le450_5c.col_k5 2250 53965 99.17% 8.56 115.16 91.64 13.26 14.19 0.03

le450_5d.col_k5 2250 53735 99.16% 8.63 110.56 92.01 13.69 14.57 0.03

miles1000.col_k42 5376 245408 99.95% 50.29 818.42 724.57 67.66 65.19 0.24

miles1500.col_k73 9344 715966 99.98% 186.89 2408.22 2219.19 288.37 403.13 0.91

miles250.col_k8 1024 6808 98.12% 2.67 15.10 11.65 3.33 3.40 0.00

miles500.col_k20 2560 47848 99.73% 11.38 96.92 79.88 15.10 16.83 0.03

miles750.col_k31 3968 125151 99.90% 23.71 364.56 334.57 31.97 36.22 0.19

mulsol.i.1.col_k49 9653 424194 99.95% 151.47 1519.02 1402.65 189.45 290.78 0.12

mulsol.i.2.col_k31 5828 208043 99.91% 55.09 664.32 649.67 62.39 62.38 0.06

mulsol.i.3.col_k31 5704 207140 99.91% 61.84 675.76 650.16 62.04 89.33 0.06

mulsol.i.4.col_k31 5735 208536 99.91% 74.08 703.15 673.31 58.63 115.76 0.06

mulsol.i.5.col_k31 5766 209839 99.91% 56.84 698.48 674.06 65.20 87.70 0.06

myciel3.col_k4 44 157 92.99% 0.08 0.33 0.28 0.10 0.09 0.00

myciel4.col_k5 115 608 96.22% 0.25 1.20 0.91 0.30 0.30 0.00

myciel5.col_k6 282 2168 97.83% 0.70 4.01 2.92 0.86 0.87 0.00

qeios.com doi.org/10.32388/JD6K4G.3 12

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

instance vars clauses b-ratio N3M2 Chancellor Nüßlein FullApprox NAE3SAT CaDiCaL

myciel6.col_k7 665 7375 98.71% 1.94 13.89 10.52 2.39 2.42 0.00

myciel7.col_k8 1528 24419 99.22% 5.50 46.04 34.07 7.28 8.33 0.01

queen11_11.col_k11 1331 28556 99.58% 5.17 53.22 37.73 7.34 8.52 10000.00

queen13_13.col_k13 2197 56615 99.70% 10.65 119.51 92.78 13.41 17.29 10000.00

queen5_5.col_k5 125 1075 97.67% 0.28 1.91 1.35 0.36 0.36 0.00

queen6_6.col_k7 252 2822 98.72% 0.67 4.91 3.57 0.88 0.88 0.01

queen7_7.col_k7 343 4410 98.89% 0.93 7.62 5.34 1.23 1.24 0.00

queen8_12.col_k12 1152 22848 99.58% 4.25 42.56 32.08 6.04 6.65 0.04

queen8_8.col_k9 576 8920 99.28% 1.86 16.12 11.93 2.35 3.11 0.15

queen9_9.col_k10 810 14286 99.43% 2.76 26.48 20.10 3.67 4.15 0.97

zeroin.i.1.col_k49 10339 449247 99.95% 106.30 1448.36 1265.31 167.54 218.66 0.11

zeroin.i.2.col_k30 6330 198226 99.89% 46.40 620.13 565.62 68.84 100.92 0.05

zeroin.i.3.col_k30 6180 196016 99.89% 46.96 579.77 505.11 57.02 67.67 0.06

Table 5. Processing time for GC instances.

qeios.com doi.org/10.32388/JD6K4G.3 13

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

ID sol vars clauses b-ratio N3M2 Chancellor Nüßlein FullApprox NAE3SAT CaDiCaL

1 unsat 354 2938 99.46% 0.94 5.82 4.42 1.13 1.11 10000.00

2 unsat 270 6663 20.44% 0.96 11.16 8.00 1.35 1.44 10000.00

3 unsat 351 4291 99.37% 1.04 8.01 5.81 1.32 1.50 10000.00

4 unsat 176 1149 98.61% 0.47 2.32 1.79 0.57 0.57 132.77

5 unsat 398 741 0.67% 1.63 3.59 3.33 1.59 1.80 0.02

6 sat 260 624 83.33% 0.66 1.99 1.78 0.76 0.80 10000.00

7 unsat 228 2023 99.06% 0.63 3.98 2.71 0.77 0.78 7574.74

8 unsat 247 2073 99.08% 0.69 4.24 3.05 0.85 0.85 10000.00

9 unsat 90 415 97.59% 0.22 0.94 0.73 0.26 0.26 4.14

10 unsat 132 1527 11.00% 0.36 2.62 2.06 0.45 0.45 4.35

11 unsat 187 1348 98.74% 0.50 2.72 2.06 0.61 0.61 715.66

12 unsat 348 4817 99.40% 1.04 8.87 6.32 1.35 1.44 10000.00

13 unsat 518 7611 99.51% 1.81 14.36 10.28 2.22 2.25 10000.00

14 unknown 526 5477 99.65% 1.44 11.03 7.65 1.87 1.82 10000.00

15 unsat 288 3240 99.26% 0.83 6.22 4.32 1.05 1.06 10000.00

16 unknown 460 4494 99.60% 1.26 8.92 6.32 1.48 1.58 10000.00

17 unsat 205 4549 21.43% 0.72 7.81 6.20 0.96 0.96 3154.73

18 unsat 228 1915 99.01% 0.64 3.77 2.80 0.77 0.79 10000.00

19 unsat 190 632 0.32% 0.27 1.07 1.09 0.25 0.27 10000.00

20 unsat 460 8655 99.79% 1.45 15.81 11.27 1.92 1.93 420.15

21 unsat 448 5562 99.42% 1.40 10.66 8.08 1.85 1.86 10000.00

22 unsat 392 4116 99.32% 1.19 8.13 6.01 1.46 1.59 10000.00

23 unsat 231 1880 98.88% 0.63 3.68 2.86 0.77 0.80 152.61

24 unsat 462 6403 99.48% 1.47 11.95 8.51 1.95 2.03 10000.00

25 unsat 412 3654 99.53% 1.09 7.40 5.32 1.30 1.28 10000.00

26 unsat 252 2049 98.98% 0.71 4.06 2.90 0.86 0.87 348.18

27 unsat 192 1252 98.72% 0.53 2.60 1.98 0.63 0.65 329.45

28 unsat 299 3182 99.28% 0.87 6.00 4.01 1.07 1.10 10000.00

Table 6. Processing time for COMP23 instances.

qeios.com doi.org/10.32388/JD6K4G.3 14

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

ID instance name

1 03e9d1abe418a1727bbf2ead77d69d02-php15-mixed-15percent-blocked.cnf

2 0a4ed112f2cdc0a524976a15d1821097-cliquecoloring_n12_k9_c8.cnf

3 11db226d109e82f93aaa3b2604173ff9-posixpath__joinrealpath_13.cnf

4 246afd75cb97a21144f368c00252a656-BZ2File_write_11.cnf

5 27b4fe4cb0b4e2fd8327209ca5ff352c-grid_10_20.shuffled.cnf

6 328da7966b09b2f6e99c93c4e877fbff-sgen3-n260-s62321009-sat.cnf

7 37d40a1092b58ad28285b9453872d211-DecompressReader_read_12.cnf

8 41a8365f60db55b71d949df6954e0db7-FileObject_open_13.cnf

9 44092fcc83a5cba81419e82cfd18602c-php-010-009.shuffled-as.sat05-1185.cnf

10 571a2f223784fb92a53b4cc8cc8b569e-clqcolor-08-06-07.shuffled-as.sat05-1257.cnf

11 72b5ad031bf852634bc081f9da9a5a60-GzipFile_close_11.cnf

12 7aaf3275cbe217044ef305f0a1ca8eb5-CNFPlus_from_fp_12.cnf

13 824c21545e228872744675ae4ee32976-WCNFPlus_to_alien_14.cnf

14 964162c1faee2c1e3a4dfa4f9c75c34f-php18-mixed-15percent-blocked.cnf

15 965ca988015c9aee5a1a7b2136c1fe5d-os_fwalk_12.cnf

16 99d134de6323a845a2828596a48bbb1d-php17-mixed-15percent-blocked.cnf

17 a45b60e53917968f922b97c6f8aa8db3-unsat-set-b-fclqcolor-10-07-09.sat05-1282.reshuffled-07.cnf

18 a4b05fbc5be28207b704e1fae4b7c8a0-FileObject_open_12.cnf

19 a64f3c1afd7e0f6165efbe9fc2fc8003-pmg-12-UNSAT.sat05-3940.reshuffled-07.cnf

20 a6d7268b35eec18656a85ad91b0413e9-php17-mixed-35percent-blocked.cnf

21 ae9b7950ef1513068bb9339893ec8c50-WCNF_to_alien_14.cnf

22 af1e84bc2ab44d87d1c4c0cbf9e601c5-posixpath_expanduser_14.cnf

23 b09585f2346c207e9e14a3daf0de46cf-CNF_to_alien_11.cnf

24 b2145c28dbed385329ea73a06d9c519a-LZMAFile___init___14.cnf

25 b3840e295097a13e6697fff6be813eeb-php16-mixed-15percent-blocked.cnf

26 c9af5b23c87350f5d817acc9ca7b69bb-CNF_to_alien_12.cnf

27 dd169198070f9aa35015de65e8209a05-LZMAFile_write_12.cnf

28 fd2af7622798171f23a4b8d2616df55e-StreamReader_readline_13.cnf

Table 7. Correspondence table between IDs and instance names of COMP23 instances.

Acknowledgments

We sincerely appreciate valuable comments and

suggestions from the reviewers [29][30][31][32][33][34][35]

[36][37].

qeios.com doi.org/10.32388/JD6K4G.3 15

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

Footnotes

1 available at https://researchmap.jp/t-

sonobe/works/48813360

2 https://github.com/dwavesystems/dwave-neal

References

1. ^S. V. Isakov, I. N. Zintchenko, T. F. Rønnow, and M. Tro

yer (2015) Optimised simulated annealing for ising spi

n glasses. Computer Physics Communications 192, pp.

265–271. External Links: Document Cited by: §1.

2. ^M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa,

H. Tamura, and H. G. Katzgraber (2019) Physics-inspir

ed optimization for quadratic unconstrained problems

using a digital annealer. Frontiers in Physics 7. Externa

l Links: Link, Document Cited by: §1.

3. ^H. Goto, K. Endo, M. Suzuki, Y. Sakai, T. Kanao, Y. Ha

makawa, R. Hidaka, M. Yamasaki, and K. Tatsumura

(2021) High-performance combinatorial optimization

based on classical mechanics. Science Advances 7 (6), p

p. eabe7953. External Links: Document, Link Cited by:

§1.

4. ^H. Li and J. Wang (2025) A collaborative neurodynam

ic algorithm for quadratic unconstrained binary optim

ization. IEEE Transactions on Emerging Topics in Com

putational Intelligence 9 (1), pp. 228–239. External Lin

ks: Document Cited by: §1.

5. ^A. Lucas (2014) Ising formulations of many np proble

ms. Frontiers in Physics 2. External Links: Link, Docum

ent, ISSN 2296-424X Cited by: §1.

6. ^G. Chapuis, H. Djidjev, G. Hahn, and G. Rizk (2017) Fin

ding maximum cliques on a quantum annealer. In Pro

ceedings of the Computing Frontiers Conference, pp. 6

3–70. External Links: ISBN 9781450344876, Link, Docu

ment Cited by: §1.

7. ^B. Krakoff, S. M. Mniszewski, and C. F. A. Negre (2022

-05) Controlled precision qubo-based algorithm to co

mpute eigenvectors of symmetric matrices. PLOS ONE

17 (5), pp. 1–15. External Links: Document, Link Cited b

y: §1.

8. ^R. Honda, K. Endo, T. Kaji, Y. Suzuki, Y. Matsuda, S. Ta

naka, and M. Muramatsu (2024) Development of opti

mization method for truss structure by quantum anne

aling. Scientific Reports 14 (1), pp. 13872. External Link

s: Document Cited by: §1.

9. ^Y. Imanaka, T. Anazawa, F. Kumasaka, and H. Jippo

(2021) Optimization of the composition in a composite

material for microelectronics application using the isi

ng model. Scientific Reports 11 (1), pp. 3057. External Li

nks: Document Cited by: §1.

10. ^S. A. Cook (1971) The complexity of theorem-proving

procedures. In Proceedings of the 3rd Annual ACM Sy

mposium on Theory of Computing, pp. 151–158. Extern

al Links: Link, Document Cited by: §1.

11. ^M. J. H. Heule, O. Kullmann, and V. W. Marek (2016) So

lving and verifying the boolean pythagorean triples pr

oblem via cube-and-conquer. In Theory and Applicati

ons of Satisfiability Testing, pp. 228–245. External Lin

ks: Link, Document Cited by: §1.

12. ^N. Narodytska, S. P. Kasiviswanathan, L. Ryzhyk, M. S

agiv, and T. Walsh (2018) Verifying properties of binari

zed deep neural networks. In Proceedings of the Thirt

y-Second AAAI Conference on Artificial Intelligence, p

p. 6615–6624. External Links: Link, Document Cited b

y: §1.

13. ^P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vinc

entelli (2006) Combinational test generation using sat

isfiability. Transactions on Computer-Aided Design of

Integrated Circuits and Systems 15 (9), pp. 1167–1176. E

xternal Links: Document, Link Cited by: §1.

14. ^N. Eén and N. Sörensson (2003) An extensible sat-sol

ver. In Theory and Applications of Satisfiability Testin

g, 6th International Conference, E. Giunchiglia and A.

Tacchella (Eds.), pp. 502–518. External Links: Link, Doc

ument Cited by: §1.

15. a, b, c, d, eN. Chancellor, S. Zohren, P. A. Warburton, S. C.

Benjamin, and S. Roberts (2016) A direct mapping of

max k-sat and high order parity checks to a chimera g

raph. Scientific reports 6 (1), pp. 37107. External Links:

Document Cited by: §1, §1, §2, §3.

16. a, b, c, d, eJ. Nüßlein, S. Zielinski, T. Gabor, C. Linnhoff-P

opien, and S. Feld (2023) Solving (max) 3-sat via quadr

atic unconstrained binary optimization. In Internation

al Conference Computational Science, pp. 34–47. Exter

nal Links: Link, Document Cited by: §1, §1, §2, §3.

17. a, b, cS. Zielinski, J. Nüßlein, M. Kölle, T. Gabor, C. Linnh

off-Popien, and S. Feld (2024) Solving max-3sat using

qubo approximation. arXiv preprint arXiv:2409.15891.

External Links: Document Cited by: §1, §1, §3.

18. a, bA. Douglass, A. D. King, and J. Raymond (2015) Cons

tructing sat filters with a quantum annealer. In Theor

y and Applications of Satisfiability Testing – SAT 201

5, pp. 104–120. External Links: Document Cited by: §1,

§2.

19. ^R. I. Brafman (2004) A simplifier for propositional for

mulas with many binary clauses. IEEE Trans. Syst. Ma

n Cybern. Part B 34 (1), pp. 52–59. External Links: Link,

Document Cited by: §1.

20. ^J. De Kleer (1989) A comparison of atms and csp tech

niques. In Proceedings of the 11th International Joint C

qeios.com doi.org/10.32388/JD6K4G.3 16

https://researchmap.jp/t-sonobe/works/48813360
https://researchmap.jp/t-sonobe/works/48813360
https://github.com/dwavesystems/dwave-neal
https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

onference on Artificial Intelligence - Volume 1, pp. 290

–296. Cited by: §1.

21. ^T. Ibaraki, T. Imamichi, Y. Koga, H. Nagamochi, K. No

nobe, and M. Yagiura (2011) Efficient branch-and-bou

nd algorithms for weighted MAX-2-SAT. Math. Progra

m. 127 (2), pp. 297–343. External Links: Link, Documen

t Cited by: §1.

22. a, bH. Zhang and M. E. Stickely (1996) An efficient algo

rithm for unit propagation. Proc. of AI-MATH 96. Cite

d by: §1, §2.

23. ^F. Glover, G. Kochenberger, and Y. Du (2018) A tutorial

on formulating and using qubo models. arXiv preprint

arXiv:1811.11538. External Links: Document Cited by: §

2.

24. ^M. Zaman, K. Tanahashi, and S. Tanaka (2021) PyQU

BO: python library for qubo creation. IEEE Transactio

ns on Computers. External Links: Document Cited by:

§3.

25. ^K. Tanahashi, S. Takayanagi, T. Motohashi, and S. Ta

naka (2019) Application of ising machines and a softw

are development for ising machines. Journal of the Ph

ysical Society of Japan 88 (6), pp. 061010. External Link

s: Document Cited by: §3.

26. ^T. Balyo, M. Heule, M. Iser, M. Järvisalo, and M. Suda

(Eds.) (2023) Proceedings of sat competition 2023: solv

er, benchmark and proof checker descriptions. Depart

ment of Computer Science Series of Publications B, De

partment of Computer Science, University of Helsinki

(English). Cited by: §3.

27. ^M. Lauria, J. Elffers, J. Nordström, and M. Vinyals (201

7) CNFgen: A generator of crafted benchmarks. In The

ory and Applications of Satisfiability Testing, pp. 464–

473. External Links: Link, Document Cited by: §3.

28. a, bA. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks,

and F. Pollitt (2024) CaDiCaL 2.0. In Computer Aided V

erification - 36th International Conference, CAV, pp. 13

3–152. External Links: Document Cited by: Appendix

A, §3.

29. ^G. Hahn Review of: an approximated qubo formulati

on for solving practical sat problems. Note: https://doi.

org/10.32388/LE65KM External Links: Document Cite

d by: Acknowledgment.

30. ^L. Lavagna Review of: an approximated qubo formul

ation for solving practical sat problems. Note: https://d

oi.org/10.32388/VODE1P External Links: Document Cit

ed by: Acknowledgment.

31. ^A. Braida Review of: an approximated qubo formulat

ion for solving practical sat problems. Note: https://doi.

org/10.32388/YFMPJ3 External Links: Document Cited

by: Acknowledgment.

32. ^Z. Zhang Review of: an approximated qubo formulati

on for solving practical sat problems. Note: https://doi.

org/10.32388/I86K3V External Links: Document Cited

by: Acknowledgment.

33. ^H. Li Review of: an approximated qubo formulation f

or solving practical sat problems. Note: https://doi.org/

10.32388/NNN1AK External Links: Document Cited by:

Acknowledgment.

34. ^A. Braida Review of: an approximated qubo formulat

ion for solving practical sat problems. Note: https://doi.

org/10.32388/P34DX7 External Links: Document Cited

by: Acknowledgment.

35. ^G. Hahn Review of: an approximated qubo formulati

on for solving practical sat problems. Note: https://doi.

org/10.32388/6RF92E External Links: Document Cited

by: Acknowledgment.

36. ^M. Muramatsu Review of: an approximated qubo for

mulation for solving practical sat problems. Note: http

s://doi.org/10.32388/0NTUPA External Links: Documen

t Cited by: Acknowledgment.

37. ^F. Santini Review of: an approximated qubo formulat

ion for solving practical sat problems. Note: https://doi.

org/10.32388/1LKZ6L External Links: Document Cited

by: Acknowledgment.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/JD6K4G.3 17

https://www.qeios.com/
https://doi.org/10.32388/JD6K4G.3

