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show that the PLL node can be simulated in a more realistic way using the state-
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numerically.
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1 Introduction

The phase-locked loop (PLL) architecture proposed for frequency demodulation in
the 1930’s [1] has been a paradigm for designing a large spectrum of electronic
and communication synchronization strategies, being present in the new generation
of wireless devices and dense communication networks [2,3]. Generally being an
anonymous element, the PLL is a vital element to detect clock signals providing syn-
chronization for circuits, devices and networks. Despite miniaturization, the original
circuit architecture remained almost unchanged although it improved significantly
with digital signal processing. Such improvement allows accurate and precise op-
eration over a very broad frequency band. Faster communications and geographical
localization are strongly dependent of how clock signals are distributed and detected.
This requires parameter values that take into account nonlinearities either for the
whole network or the interconnected nodes.

Rigorous analytical and practical studies about isolated PLLs [4] and their behav-
ior when connected forming networks [5,6] revealed that despite all the complexity,
PLL digital networks are efficient and capable of changing our daily life [7].

Contemporarily, some seminal works appeared [2,3], presenting mathematical
formulations and results regarding the behavior of the parameters of the entire net-
work, which served as basic references to the subsequent important developments in
communication structures. Currently, such developments are being used with design
tools and complemented by the analysis of parameter variations [4].

In this context, the models were developed in a simplified way, considering that
the two signals to be synchronized present almost the same frequency with the terms
of phase differences responsible for the error to be corrected to align the local clock
signal with the input coming from a remote device or network node [8,9]. In such
models, the PLL order is defined as one plus the order of the low-pass filter imple-
mented in the loop [9] and in this work such a nomenclature is maintained.

Usually, synchronization systems present acceptable performance when second-
order PLLs, i.e. with first-order loop filters, are used as network nodes [10]. However
there are some situations where more accurate transient responses are needed, de-
manding second-order loop filters, resulting in third-order PLLs [11].

In such cases, the design must take into account possible instabilities [11] and,
depending on parameter values, Hopf bifurcation and chaotic behaviors can appear
[12].

Unfortunately, phase reductionistic models [13] are not generally effective to
choose design parameters because they do not take into account the high frequency
components present at the low pass filter output even in the second-order case [14]
because the filter is considered to be ideal.

Understanding the filter operation in a more realistic way is one of the main mo-
tivations to develop a state-space model for the PLL operation. Other motivations for
the non reductionist model include i) being able to simulate state variables compati-
ble with measurable magnitudes in real circuits, hence frequency and phase detection
processes can be accurately related to filter parameters; ii) the state space model is
valid even for large phase errors; and iii) it enables the designer to investigate the
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effect of noise that may appear in different points of the system. This is a significant
advantage over the reductionist model, which is generally noise-free.

This paper aims at investigating dynamical aspects related to synchronization per-
formance and possible de-synchronization of third-order phase-locked loops (PLL)
due to parameters variations.

The model representing the third-order PLL is actually a fourth-order state-space
model where no state variable is the phase, rather the phase must be estimated from
the oscillating signals produced by the PLL components. The state-space model
comes much closer to the circuit implementation of a practical PLL and therefore
becomes an important tool for design of such systems.

A PLL (Fig. 1) is composed of a phase detector (PD) where the input signal,
u(t), and the voltage controlled oscillator (VCO) feedback output, z1, are added and
multiplied by a gain Kd, resulting the filter input vd.

The low-pass filter (LPF) with transfer function F(s) attenuates high-frequency
components, generating the VCO control input vc that adjusts the VCO whole phase,
considering that its free-running angular frequency is ω0, with gain Kv.

VCO
vc z1LPF

vd
Kd

u(t) PD

PLL node

F (s) ω0,Kv

Fig. 1 Block diagram of non-reductionist version of a PLL node. The u(t) and the node output z1 are
multiplied.

The paper is organized as follows. In Section 2, a state space model is studied,
with the classical basic topology of a PLL (Fig. 1) used to write the state equations. It
is shown that the local phase PLL model complements the corresponding reductionist
version, reviewed in [15], allowing to access the time evolution of the main signals,
as illustrated with an example. To study how the constitutive parameters of the blocks
affect the synchronization performance, several examples discussed in Sec. 3 confirm
the effective contribution of this approach to give a global view of how node pa-
rameters affect the synchronization performance. Although the presented approach is
analytically complicated when compared to the traditional model, it permits a sim-
ple and accurate numerical simulations, even considering noise, as exemplified in
Section 4. Section 5 completes the work with the main conclusion and discussions
on how the developed results can be used according to particular specifications of a
design task.
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1.1 Contributions

The main contribution is the proposition and numerical analysis of a full state-space
model instead of the usual phase reduction model [13], here called a reductionist
model. The state-space formulation of the PLL node contributes in the design of
synchronization systems because

– nonlinear effects of phase-detection are taken into account;
– state-space variables are directly related to measurable circuit accessible points;
– non-ideal filter effects are considered and high frequency disturbances can be

evaluated;
– noise effects can be considered in a friendly way;
– adequate parameter regions can be estimated, even for a high order filtering pro-

cess.

2 State space model

Consider the PLL node shown in Fig. 1. The starting point is to write the equation for
an oscillator: {

ż1 = z2
ż2 = −ω

2
instz1,

(1)

which has solution z1 = A cosωinstt, where A is a constant that depends on initial
conditions and ωinst is the instant frequency. A key device in a PLL is the voltage
controlled oscillator (VCO). In order to represent a VCO it suffices to write the instant
frequency as:

ωinst(t) = ω0 + Kvvc(t), (2)

where ω0 is the central frequency, Kv is the VCO gain and vc(t) is the corresponding
input voltage, therefore z1 = A cos[ω0 + Kvvc(t)]t, from where it is seen that the
frequency of the VCO given by (1)-(2) depends on vc(t).

It is commonplace to normalize the frequency by choosing ω0=1 rad/s. Therefore
the VCO can be interpreted as implementing a frequency modulated output z1(t) with
carrier ω0 and modulating signal vc(t).

The voltage vc(t), in turn, is the output of a linear filter, as for instance

F(s) =
Vc(s)
Vd(s)

=
b1s + b0

s2 + a1s + a0
, (3)

where Vc(s) and Vd(s) are, respectively, the Laplace transforms of vc(t) and vd(t)
which is the output of the phase detector (PD).

F(s) can be realized as {
ẋ1 = x2
ẋ2 = −a0x1 − a1x2 + vd(t), (4)

with output given by vc(t) = b0x1 + b1x2.
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Clearly, many other filter structures can be used and since all that is required in
the end is to have the corresponding state space realization, the proposed model can
easily accommodate nonlinear filters.

Finally, the phase detector is modeled as the product of the VCO output and the
“node input”, u(t). Hence

vd(t) = Kdz1(t)u(t), (5)

where the constant Kd is the PD gain.
The final model in state space is:

ẋ1 = x2
ẋ2 = −a0x1 − a1x2 + Kdz1u(t)
ż1 = z2
ż2 = −[ω0 + Kv(b0x1 + b1x2)]2z1,

(6)

with node input u(t) and node output z1(t). The second and the forth equations of (6)
reveal that the node is nonlinear.

As with the physical oscillators, all the state variables are oscillating signals, that
is, none of them is explicitly the output or input phase, as usually considered. This
brings the simulation closer to a practical situation but at the cost of a more elaborate
simulation and a clear increase in the difficulty of developing any analytical results.

To take z1(t) as the output is equivalent to use the simple measuring function
h(x) = z1(t), where x ∈ R4 is the state vector. In Example 1 it will shown that other
measuring functions can be used as, for instance, h(x) = ψo(t), where ψo(t) is the
output phase.

Example 1 This example aims at validating model (6) via numerical integration using
a fourth-order Runge-Kutta with fixed integration interval of δt = 0.01. The other
parameters used were: a0=1/3, a1=1/2, b0=1/3, b1=1/12, that is

F(s) =
s + 4

12s2 + 6s + 4
, (7)

after simple adjustments. The frequency response F( jω) is shown in Figure 2. The
gains were taken as Kd=Kv=0.7 and ω0=1 rad/s. The input was u(t)= sin(1.02t) and
the initial conditions were taken from a zero-mean Gaussian distribution with vari-
ance σ2=0.01. It should be noticed that a slight mismatch between input frequency
and the VCO central frequency ω0 was considered.

The filter input vd(t) and output vc(t) are shown in Figure 3. The effect of the low
pass filter is clear from this figure. It should be noticed that vc(t) oscillates instead of
being a dc signal as assumed in the context of reductionist models [15].

To improve filter performance one could reduce the filter bandwidth or increase
the roll-off rate by adding more poles to F(s). The latter alternative is likely to im-
prove the filter performance but also to deteriorate the PLL performance as the in-
crease of phase-lag in the loop is known to be deleterious.

The VCO output is shown in Figure 4. The central frequency of this signal is ω0
and is roughly half of the high-frequency component of the signal in Figure 3.
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Fig. 2 Frequency response of the low pass filter in (7).
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Fig. 3 The filter input vd(t) is shown in dotted blue lines. This has slow- and high-frequency components.
The filter output vc(t) is indicated in a solid black line and shows that whereas the high-frequency compo-
nent is greatly attenuated the it is not completely eliminated as assumed in the reductionist model.

The question now is how does the phase of the VCO output z1(t) relate to that of
the input signal u(t).

In order to answer this question, Figure 5 shows a Lissajous plot. If the signals
were identically synchronized, this plot would be a diagonal line. If the signals are
phase synchronized, then the result is an ellipse where the width corresponds to the
phase difference
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Fig. 4 VCO output when the input is solid black line in Figure 3.

If the phases difference is constant the result is a single ellipse. In Figure 5 there
are regions in which the line is slightly thicker indicating that the relative phase has a
small fluctuation.
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Fig. 5 This Lissajous plot suggests that the relative phase is nearly constant.

In many problems it is important to have an estimate of the phase. In the case of
the input u(t)= sin(1.02t), because it is sinusoidal, the phase is simply ψi(t)=1.02t. In
the case of the VCO output, a convenient way of estimating the phase is:

ψo(t) = tan−1
(

z2

z1

)
, (8)

which is in the form of a measuring function h(x) = ψo(t). A relative phase can be
defined as θ(t) = e(t) = ψi(t)−ψo(t). Phase locking happens for constant θ(t), and the
condition for phase synchronization, which is more relaxed, is θ(t) < C, where C is a
constant usually smaller than 2π.
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Figure 6 shows the first difference of the relative phase, that is, e(t) − e(t−δt),
which is an approximation of the derivative of the relative phase.
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Fig. 6 First difference e(t) − e(t−δt) of the relative phase.

As can be seen from Figure 6 changes in relative phase remain small indicating
phase synchronization. The spikes are probably due to the discontinuity of the atan
function used to compute the phase. Therefore, despite a small mismatch in the fre-
quency of the input signal compared to the central frequency of the VCO, the input
and output signals of the node become phase synchronized. □

Observing the example, non-reductionist strategy to model PLL dynamics pro-
vides the possibility of having the temporal evolution of the periodic signals through
the loop, complementing the reductionistic strategy that gives only corresponding
phase and frequency errors and their trajectory to equilibrium states.

Besides, Figures 4, 5, and 6 show signals that have counterparts in real electronic
circuits, differently from the reductionist strategy where instead of voltage signals
they directly provide the phase error.

3 Performance of the PLL node

To investigate the performance of the PLL node as it tries to synchronize to the node
input u(t)= sinωit, the node phase is computed using equation (8), as shown in the
next example.

Example 2 Using the same filter as for Example 1 and the additional parameters:
ωi=1.001 rad/s and ω0=1.002 rad/s, δt=π/300, Kd=Kv=0.8, the VCO is simulated
with (2) and with an integral term

ωinst(t) = ω0 + Kvvc(t) + Ki

∫ t

0
vc(τ)dτ, (9)
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with Ki=0.5. It should be noticed that the inclusion of the integral term in (9) would
not be straightforward in the reductionist model.

The motivation for including the integral term stems from the interpretation of
vc(t) as a proxy for the frequency error and from the aim of achieving null steady-
state error. The main results are shown below in Figures 7 and 8.

(a) (b)

0 5000 10000

time

-0.02

0

0.02

0.04

0.06

fr
e

q
u

e
n

c
y
 e

rr
o

r

9900 9950 10000

time

-6

-4

-2

0

fr
e
q
u
e
n
c
y
 e

rr
o
r

10
-4

Fig. 7 (a) Frequency error ωi −ωinst over 1,593 revolutions and (b) zoom. The VCO is implemented with
(2). Notice that the steady-state error is almost always negative.
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Fig. 8 (a) Frequency error ωi −ωinst over 1,593 revolutions and (b) zoom. The VCO is implemented with
(9). Notice that the error mean in steady-state is much closer to zero than for the case in Figure 7.

□

A common approach to determine if synchronization has or not been achieved is
to define ad hoc thresholds such as [16][p. 82]:∣∣∣∣1 − ωi

Ωo

∣∣∣∣ < 2 × 10−3;

|ψo(t) − ωit| < K, (10)



10 José Roberto C. Piqueira*, Felipe Freitas** and Luis Antonio Aguirre**

(a) (b)

1.89 1.895 1.9

t
10

6

0

0.5

1

1.5

2

2.5

d
e

/d
t

10
-3

7.42 7.44 7.46

t
10

5

-0.05

0

0.05

d
e

/d
t

Fig. 9 First difference of phase error computed (a) using e(t)=ωit − ψo(t), see (8) and (b) using e(t)=ωit −
ωinstt, see (2).

where K is a constant often assumed to be equal to π,Ωo = ⟨ωo⟩ = ⟨ψ̇o⟩ is the average
phase growth rate, which can be computed as [16][Eq. 4.46]

Ωo = lim
T→∞

ψo(T ) − ψo(0)
T

. (11)

The second condition in (10) was introduced in [23] and is known as the condi-
tion for phase entrainment, which is clearly weaker than condition ψo(t) − ωit=K.
Frequency entrainment can be tested using the first condition in (10).

In (10) it is common to take K = π because when the phases are not locked, phase
slips of 2π are verified and hence π is sufficiently small to detect such phase slips.

It should be noted that this is true for most reductionist models where stable and
unstable fixed points in the phase relative space are separated by π.

In what follows, instead of defining thresholds in an ad hoc way, we compute

f =
∣∣∣∣1 − ωi

Ωo

∣∣∣∣ ;
e = |ψo(t) − ωit|;

m = ⟨|ė|⟩;
s = std(ė). (12)

In (12), f is a measure of frequency entrainment, e is an estimate of phase error,
where ψo(t) is computed using (8), m is the time average of |ė| and s, the standard
deviation of ė.

The reason for using time average and standard deviation on the derivative of
the phase error is that, due to the fact that here the filtering is not assumed to be
ideal, the resulting phase derivative has small oscillations. The following example
illustrates the use of (12).

Example 3 Here the filter is the same as for Example 1, ω0=1.0 rad/s, δt=π/300 and
the VCO is simulated with (2) and with an integral term – see (9) – with Ki=0.22.
The input frequency was varied in the range 0.2 ≤ ωi ≤ 1.8 rad/s and the gains were
within 0.1 ≤ Kd=Kv ≤ 3, yielding 520 different combinations of ωi and Kd=Kv.
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The simulation time for each case was tf=10000 and the values in (12) were
computed in the second half of the data to reduce transient effects. Initial conditions
were taken randomly around the origin of the state space. The results are summarized
in Figures 10, 11 and 12.

The blue flat floors in Figures 10 and 11 at the orders of 10−3 and 10−5, respec-
tively, and correspond to the region in which the PLL node has best performance
in terms of phase-synchronizing with the input. Consequently, as the figure shows,
determining PLL capture amounts to selecting a combination of parameters that is
inside de blue region of the diagrams. This procedure does not require complicated
analytical work for the design of higher order synchronization networks [17].

The consistency of the synchronization process can be studied observing Fig-
ure 12 which shows that the variability of the absolute phase error derivative is lower
when ωi ≈ ω0 and gradually increases as ωi deviates from the VCO central frequency
ω0 = 1 rad/s. Hence whereas Figures 10 and 11 can be used to select parameters that
result in synchronization, Figure 12 goes a step further and shows the subregions,
within the blue plateau, that result in improved robustness of synchronism.

Beyond the boundary of the blue region the performance of the PLL node de-
grades abruptly. Roughly the range of values for which good performance is achieved
“comfortably” is 0.6 ≤ ωi ≤ 1.5 rad/s and 1 ≤ Kd=Kv ≤ 2.
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Fig. 10 Logarithm of coefficients in (12) for Example 3. The floor in (a) is at the order of 10−3; (b) 2D top
view of (a).

□

As it can be noticed examining examples 2 and 3, using non reductionist approach to
measure PLL performance, despite being analytically complicated, provides a com-
plete idea about capture and lock-in ranges [8,17] simply observing the permitted
synchronization regions of diagrams, allowing to choose gain parameters according
to input frequency variations.

Former works faced the problem of determining capture range for third order PLL
by using the reductionist model [11,12,18] and bifurcation diagrams relating parame-
ters with possible dynamical behaviors. Although such diagrams present results close
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to the ones shown in Figures 10 and 11, Figures 10 and 11 are richer than the ones
presented in [11,12,18] because the transition zones between behaviors are detailed.
Additionally, synchronization quality can be evaluated in Figure 12.

4 Noisy Scenarios

An additional feature of the described non reductionist approach is the capability to
determine the capture and lock-in ranges, even in the presence of noise. In the present
study noise is added to the VCO central frequency and to the input signal and to see
how this affects performance and synchronization boundaries as the gains are varied.

This is illustrated adding noise to some signals in the simulation of the system
described in Example 3. The noise was taken from a zero-mean Gaussian distribution,
with variance equal to σ2 = 0.01 and added to both: the central frequency ω0 and the
input u(t).

The tuning parameters in this case were Kd = Kv = 0.8, Ki = 0, ω0 = 1 rad/s. The
filter parameters are as before and so was the simulation time tf=10000.
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The initial conditions were taken randomly around the origin of the state space.
The values in (12) were computed over the second half of the data. Figure 13 sum-
marizes the results when the noise was added to the VCO central frequency.

As can be seen, the PLL node is quite robust to noise inω0 as about 120 out of 200
runs show performance very close to the noise-free case. The worse runs indicated in
Fig. 13(a) resulted in a frequency mismatch of about 2.5%. Over 87% of the runs had
frequency mismatch less than 1%.
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Fig. 13 Histograms of coefficients in (12) for 200 Monte Carlo runs when noise is added to the parameter
ω0. The red vertical lines correspond to the values of (a) f , (b) m and (c) s in the noise-free case.

Figure 14 summarizes the results when the noise was added to the input of the
PLL node. As can be seen the robustness in this case is even higher than for noise in
the frequency. The distributions are very narrow indeed indicating that the PLL node
remains practically unaffected by high-frequency noise in the input.

In the sequel, as done in Example 3, the PLL node was simulated over a grid
of 520 combinations of Kv = Kc and ωi values. This time noise was added simul-
taneously to both ω0 and u(t). The results are summarized in Figures 15–17 which
should be compared to the noise-free situation, illustrated in Figures 10, 11 and 12.
To facilitate comparison such figures will be reproduced side by side with the noisy
counterpart.
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Fig. 14 Histograms of coefficients in (12) for 200 Monte Carlo runs when noise is added to the input
signal u(t). The red vertical lines correspond to the values of (a) f , (b) m and (c) s in the noise-free case.
Notice that the width of the histograms in this case is much narrower than those in Fig. 13.

As a general remark concerning Figures 15 and 16, it is pointed out that the effect
of the noise added simultaneously to ω0 and u(t) is to reduce the locking region in
parameter space {Kv=Kc, ωi}, however whenever synchronization occurs it is of the
same quality as for the noise-free case. This is seen by noticing that the level of the
floor in such figures has the same order of magnitude as for the noise-free case.

Another interesting remark, which is clearly seen in the 2D projections is that the
noise intensifies the asymmetry of the locking region especially along the direction
of ωi. In other words, the presence of noise limits the capacity of synchronization for
ωi < ω0.

Hence during design there is a smaller and more asymmetrical region in parame-
ter space that will result in synchronization. In practice this means that the choice of
parameters in the noisy case should be done with greater care.

A rather curious phenomenon can be observed in Figure 17, which is a “stabi-
lizing effect” of the noise. Similar situations in other contexts have been reported
elsewhere [19]. It should be noticed that the parameter s – see (12) – quantifies the
dispersion of values of the phase error derivative. Hence small values of s do not
imply synchronization but rather indicate that whatever is the operating condition the
corresponding variability is small.
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Fig. 15 Logarithm of coefficients in (12) (a) and (c) when noise is simultaneously added to ω0 and u(t);
(b) and (d) for the noise-free case, see Fig. 10. The floor in (a) and (b) is at the order of 10−3; (c) and (d) are
the 2D top views of (a) and (b), respectively.

The analysis of the presented noisy scenarios shows that using the non reduc-
tionist model for PLL models is compatible with Viterbi’s seminal work [20] that
has been used for practical design situations [21]. A modern view of the problem, as
discussed in [22], can be considerably improved when phase reduction approach is
replace by the non reductionist one.

5 Conclusions

The main contribution presented is the formulation of the PLL problem in a non
reductionist way, differently from the traditional phase reduction approach, by using
a dynamic state-space model.

The reductionist model should be used for analysis whereas the non-reductionist
approach should be preferred for more realistic simulations and to make design de-
cisions which do not rely on the hypotheses underlying the reductionist model that
are not verified in practice. The proposed model, unlike the reductionist one, i) takes
into account the nonlinearity of the sine function, since the model remains valid for
large phase errors; ii) does not assume the filter is ideal; iii) enables simulating and
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Fig. 16 Logarithm of coefficients in (12) (a) and (c) when noise is simultaneously added to ω0 and u(t);
(b) and (d) for the noise-free case, see Fig. 11. The floor in (a) and (b) is at the order of 10−5; (c) and (d) are
the 2D top views of (a) and (b), respectively.

investigation of noisy scenarios; iv) enables simulating different VCO configurations
with ease, as in (9).

Therefore with the proposed model friendly numerical analysis can be performed,
providing an accurate view of the capture and lock-in ranges observing regions and
boundaries in performance diagrams.

By comparison with studies reported in the literature in seems that abrupt transi-
tions in the performance diagrams are closely related to bifurcations obtained using
reductionist models that include second-order harmonics.

Consequently, according to the input signal characteristics, bounds for gain pa-
rameters adjustments can be easily visualized, even considering noise effects either
in the VCO central frequency or in the input signal.

Measures of synchronization performance were defined (Sec. 3), allowing to pro-
vide criteria to choose gain PLL parameters and, consequently, to set the capture and
lock-in ranges, as shown by examples, operationally important when a clock distri-
bution network with PLL nodes must be built.

Extensive simulations that consider noise in both the VCO central frequency and
in the input signal show that the state-space model is consistent with some basic
features reported in the literature, such as overall performance when second-order
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Fig. 17 Logarithm of coefficients in (12) (a) and (c) when noise is simultaneously added to ω0 and u(t);
(b) and (d) for the noise-free case, see Fig. 12. The floor in (a) and (b) is at the order of 10−3.5; (c) and
(d) are the 2D top views of (a) and (b), respectively.

harmonics are not assumed absent [14], and the pass-band filtering properties of PLLs
[4].

In view of the appealing features of the proposed state-space model, the next step
is to investigate its use in the analysis and design of PLL networks that are typical in
GPS-positioning applications [24].
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