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ABSTRACT 

Land use changes can majorly affect many parameters that are directly or indirectly interlinked to various 
human-environmental systems, including hydrological processes and flood risks. The knowledge of future 
land cover changes is crucial for better managing human-environmental interactions and addressing 
potential environmental challenges, such as floods. In this work, the impact of future land cover changes 
in flood inundation is assessed, using a case study in northeast Indiana, US. A Cellular Automata Markov 
(CAM) model is applied, combining Geographic Information Systems (GIS) and Python, to predict land 
changes and provide future land cover maps, along with statistical validation measures. The land use map 
outputs are then used in a HEC-RAS hydraulic model, to test the different flooding impacts under a design 
storm, using the rain-on-grid routine. The results indicate that even slightly more urbanized and 
deforested areas can increase the potential flood extent. Furthermore, the impacts of these forecasted 
land cover changes are quantified in monetary terms, based on a spatial Ecosystem Services Valuation 
(ESV) model. The findings indicate that as certain land uses (mainly wetlands, followed by forests) give 
their place to build-up areas, barren land, or even agricultural lands, the ‘lost’ value due can reach 1.5 
million USD in 2051. The novelty of this study lies in int integrated character, combining for the first time 
to our knowledge land cover forecast with hydrologic-hydraulic modelling and spatial ESV, showing thus 
the future changes, risks, and potential economic losses, respectively. This application uses the minimum 
necessary input data to perform the analyses, and all data and codes are publicly available, contributing 
thus to the transferability and reproducibility of the approach. 
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1. INTRODUCTION 

Studying the future alterations in land cover within specific areas is essential, given their intricate 
connections with various factors dynamically influencing human-environmental systems. Land cover 
changes exert a profound impact on urban planning, environmental sustainability, resource management, 
and overall quality of life (Liu et al., 2022; Hassan and Nazem, 2016). Understanding these changes is 
critical for making well-informed decisions that influence population growth, resource availability and 
utilization, infrastructure development, and the conservation of natural capital and biodiversity, among 
other aspects (McDermott et al., 2022). Knowledge of shifts in land use patterns empowers policymakers 
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to confront challenges like urban sprawl, deforestation, water flow dynamics - potentially exacerbating 
the risks of floods, and habitat loss (Hassan and Nazem, 2016; McDermott et al., 2022). 

The most common technique to explore future land cover is the Cellular Automata (CA), based on Markov-
chain modelling, called Cellular Automata Markov (CAM) models (Aburas et al., 2019). The logic of CA 
models is to simulate land cover changes by considering the local interactions between cells (geographic 
units in spatial datasets). They are based on transition rules (e.g., changes over a period of time), and 
initial conditions (i.e., compared to an initial base-year). Markov chain models rely on the assumption that 
future land cover depends on the current state (base year map) and is independent of past states. Thus, 
CAM models use historical data, usually in the form of maps, to derive transition rules, namely transition 
probability matrices among the land use categories, and generate future maps by applying these matrices 
as rules, iteratively to the historic data (Corner et al., 2013). The field is fast developing, and more complex 
methodologies occur, such as combinations of CAM and Geographic Information Systems (GIS) with 
Remote Sensing observations (Islam and Ahmed, 2012), machine learning techniques (Xing et al., 2020; 
Zambrano-Asanza et al., 2023), and Multi-Criteria Analysis techniques (Addae and Dragićević, 2022), for 
improved prediction accuracies and/or the consideration of more factors in the analyses. The validation 
of the projections is performed statistically, comparing the historic data with the predicted ones, for the 
same year(s), and the most commonly used measure is the Kappa statistics, assessing the accuracy of the 
projections (Saputra and Lee, 2019; Liu et al., 2021). There have been several CAM modelling applications, 
for urbanization projections (Ulloa-Espíndola and Martín-Fernández, 2021; Mansour et al., 2020), for the 
evaluation of different development scenarios (Han et al., 2015), agriculture and biodiversity 
management (Halmy et al., 2015), the impact of climatic parameters (Tariq and Shu, 2020; Al Kafy et al., 
2021), etc. Moreover, future land uses can be necessary for a variety of other analyses, such as soil and 
hydrological assessments (Anard et al., 2018; Dai et al., 2023), wetland management (Ansari and Golabi, 
2019; Alamanos and Papaioannou, 2020), urban and rural development (Agustina et al., 2022; Alamanos 
et al., 2022a; 2022b), flood risk assessments (Roy et al., 2020; Papaioannou et al., 2023), ecological 
assessments (Qin and Fu, 2019), optimal agricultural management (Garcia and Alamanos 2022; 2023), 
management of transboundary environmental and economic assets (Englezos et al., 2023; Mendoza-Poce 
et al., 2021), and many more.  

However, the impact of land cover changes in potential flood risks is still poorly understood (Rogger et al., 
2017), and the need for models simulating such impacts has been long recognized (Tollan, 2002). There 
are studies exploring this topic, but mainly from the perspective of different land use scenarios or specific 
management practices (e.g. focusing on agricultural land uses), rather that land use predictions (Hounkpè 
et al., 2019; Saghafian et al., 2008). There are also very few studies examining the effect of multiple factors 
in future flooding, such as land use, climate, topography etc., as for example in the paper by Avand et al. 
(2021). There are also very limited applications where actual land use prediction models have been 
applied to investigate their impacts on flood risks (Roy et al., 2020), with the exception of the paper by 
Adnan et al. (2020) who developed a CAM model to predict future land uses and explore the associated 
future flooding implications. So far, the main tools for assessing floods in response to altered land uses 
have been SWAT, WaSiM, or other custom approaches, including machine learning (Hounkpè et al., 2019; 
Schilling et al., 2013; Avand et al., 2021). However, to our knowledge there has not been any application 
where predicted land uses are analyzed as part of a hydraulic modelling approach to showcase potential 
flood risks. This is one gap that this work aims to fill.  



Another gap this works aim to bridge, is the mapping of the monetary value of these land cover changes, 
in the future, based on the Ecosystem Services (ES) they can provide. Environmental valuation studies are 
based on the concept of Total Economic Values, considering the use values (direct, indirect, and option 
values) and nonuse values (existence and bequest values), of environmental assets (Koundouri et al., 
2023). Practically, Ecosystem Services Valuation (ESV) assigns monetary values to environmental 
impacts/changes, reflecting the value of ES such as provisioning services (food, raw materials); supporting 
services (life-cycle maintenance for flora, fauna, biodiversity); regulating services (climate, carbon 
sequestration and storage, erosion prevention, nutrient treatment, moderation of extreme events); and 
cultural services (tourism, recreational, aesthetic, and spiritual benefits) (Koundouri et al., 2022). ES are 
closely related to land use changes, so linking them is critical for better land use planning and sustainable 
provision of ES (Fu et al., 2015). The importance of mapping the ES has long been recognized (Troy and 
Wilson, 2006), and value transfer methods are increasingly utilized, to increase the reproducibility of such 
studies (Tammi et al., 2017; Xue and Luo, 2015). Value transfer practically is the application of economic 
values derived from one study area to another context, often to estimate the economic value of ES 
(Koundouri et al., 2022). The ability of providing integrated assessments considering the ESV (Alamanos, 
2021), especially as related to land cover changes, and their future evolution is rare in the literature, but 
crucial for strategic planning, decision prioritization and optimal investment allocation (Rajsic et al., 2023 
; Alamanos and Brouwer, 2020). In contrast to previous studies considering land cover changes trends and 
management scenarios (Schirpke et al., 2020), in this work, the CAM model’s forecasts are used as the 
basis for the ESV. There is a handful of applications considering CAM models to estimate ESV, including 
the paper by Zhang et al. (2021) focusing on urbanization effects, the study by Gao et al. (2021) exploring 
past alterations, the paper by Zhong et al. (2022) showing how CAM can be combined with InVEST Models, 
and Zhang et al. (2023) who combined CAM with system dynamics modelling to forecast the ES values 
under alternative scenarios.  

In this paper, a CAM model is presented, as a combination of processes in GIS environment and open-
source coding, using Python. A hydraulic model is developed in HEC-RAS software to produce flood 
inundation maps under the different future land uses, for a watershed that has received limited attention 
with respect to floods. The ESV is performed based a value transfer method from established values found 
in the literature. All the future values (land cover, flood risks, ESV) refer to 2051. Showing information of 
the impacts of land use changes in future exposure to natural phenomena (e.g. flooding), together with 
their evolution of economic value (e.g. ESV) is presented for the first time to our knowledge, and is a 
comparative advantage to previous studies, as the results provide significant insights for informed and 
holistic decision-making regarding future planning and sustainable landscape management. 

Another contribution of the presented approach is that it can work effectively with limited data: the CAM 
tool uses the minimum number of inputs, namely historic land use maps, and generates future land use 
maps. The future flooding estimations are based also on the minimum necessary input, considering a 
design-storm under a rain-on-grid approach. Finally, the value transfer approach considers the values 
obtained from the existing literature. Thus, the overall framework can be easily applied in other case 
studies, even with limited data. 

 

 

 



2. STUDY AREA 

The Cedar Creek Watershed (CCW) in Indiana, US, is used as a case study. CCW in northeastern Indiana is 
an area within the St. Joseph River watershed, with a diverse landscape of farms, urban areas with cities 
and settlements, and notable geological features (CCW Management Plan, 2005). The land uses have been 
traditionally agricultural, with a slight increase of urban areas, while forests and water bodies are also 
present (Figure 1). The degree of urbanization in the CCW has slightly increased over the past 15 years, as 
rural areas transform into suburban or urban spaces, accompanied by residential areas and transportation 
networks.  

 

 

Figure 1. The land uses of CCW from 2006 to 2021, classified in five main categories. 

 

Positioned just north of Fort Wayne, Indiana's second-largest city, Cedar Creek flows into the St. Joseph 
River, where Fort Wayne sources its drinking water downstream. CCW covers approximately 700 km², it 
has a gentle sloping topography and is primarily used for agriculture (mainly corn, soybeans, and other 
crops) (Pignotti et al., 2017). The region experiences an average temperature range of -1 to 28°C with an 



annual precipitation of 940 mm (Wallace et al., 2018). The greater CCW area has experienced some flood 
events, in the past. The flood of 1982 (Glatfelter and Chin, 1987), and the flood of 2009 (Fowler, 2017) are 
the most significant ones (Bassett et al., 2009).  

The CCW has been studied extensively from a hydrologic and soil assessment point of view focusing on 
streamflows and sediment (Larose et al., 2007; Jiang et al., 2008; Kumar and Merwade, 2009; Kang and 
Merwade, 2011; Pathak and Kalra, 2015), with HEC-HMS and SWAT models. However, the area has 
received little attention regarding its land use evolution, as well as flood risks, and to our knowledge this 
is the first paper presenting a land use prediction model, and a hydraulic model for CCW. 

 

3. METHODOLOGY 

3.1 The Cellular Automata Markov (CAM) model  

Creating a Cellular Automata Markov (CAM) model for land use change prediction involves the estimation 
of the transition probability matrix, and simulation of land use changes over time. The CAM model can be 
mathematically represented as follows (Equation 1): 

𝐿!"# =	𝑃$% ∙ 	𝐿! , for land use types i,j = 1,2,…,n (1) 
 

Where 𝐿! and 𝐿!"# are the land use maps at the year t and t+1 respectively, and 𝑃$%  is the transition 
probability matrix expressing the probability of each cell (pixel) to change from the land use type i in the 
year t to the land use type j in year t+1. So, this matrix can be expressed as shown in Equation 2 below: 
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The transition probability matrix is estimated by assessing the changes among land uses from different 
years (t, t+1). This process can be done in a spatial analysis software first by determining the number of 
pixels in a land-use class i that changed into another class j during that time.  

The input data of land uses were obtained from the United States Geological Survey (USGS) website 
(USGS, 2021), as shape files for the years 2006, 2011, 2016 and 2021, following the National Land Cover 
Database (NLCD) categorization. The main land use categories were grouped for simplicity in classes of: 
'Water': 1, 'Urban': 2, 'Barren Land': 3, 'Forest': 4 and 'Crops': 5. This (indicative for this example) approach 
significantly reduces the computational load and effort, and allows to handle easier the land use changes 
from year to year. The CAM model was used to generate the future land use maps for every five years 
until 2051. The validation of the predicted land use maps was achieved by the following statistical tests: 

• Percentage of Accurate Results (Overall Accuracy): This is a straightforward measure that 
calculates the percentage of correctly classified pixels compared to the total number of pixels, 
according to the relation expressed in Equation 3: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝐷𝑎𝑡𝑎	𝑃𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝑎𝑡𝑎	𝑃𝑜𝑖𝑛𝑡𝑠 × 100% (3) 

 



• Mean Absolute Error (MAE): Expressing the magnitude of errors between predicted and actual 
land use values (Equation 4): 

𝑀𝐴𝐸 =
1
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• Root Mean Square Error (RMSE): This measures the square root of the average squared difference 
between predicted and observed values, penalizing thus larger errors more heavily (Equation 5): 

𝑅𝑀𝑆𝐸 = E
1
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• Kappa (κ): Kappa coefficient measures the level of agreement between two rasters or classifiers, 
often used in the context of classification tasks like land use mapping. It quantifies the agreement 
between the predicted and true labels while taking into account the possibility of agreement 
occurring by chance (Equation 6): 

𝜅 =
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒  (6) 

𝑃𝑜 is the observed agreement between the predicted and true land use categories. It represents the 
proportion of instances where the predicted and true labels match. 𝑃𝑒 is the expected agreement 
between the predicted and true land use categories, if their agreement were purely due to random 
chance. 
 

3.2 The Hydraulic Model 

For the hydraulic model, the Digital Elevation Model (DEM) of CCW is required to delineate the watershed 
into sub-basins and define all the necessary elements for the spatial analysis of the data. This process can 
be done in a GIS software, e.g. with tools such as ArcHydro (ESRI, 2014) or GeoHEC-HMS (HEC, 2023). 
However, the recent versions of HEC-HMS and HEC-RAS (HEC, 2022) provide GIS tools for doing such 
analyses within the software. In this case, HEC-HMS was used to create the basin model and delineate it, 
processing the drainage, producing the reaches, junctions and outlet (streams) (Figure 2A). The DEM of 
the area was retrieved from the Open Topography website (OpenTopography, 2023). The outputs of the 
HEC-HMS can be exported and used as inputs in the HEC-RAS software, where further refining can be 
done within the RAS-Mapper environment. The model with its ‘Geometry’ is developed there (Figure 2B), 
with the 2D Flow Area grid and its computational mesh (Figure 2C). A rain-on-grid approach was followed 
for the analysis as a way to easily show the impact of rainfall in the gridded terrain. The method leverages 
numerical methods to solve the Saint-Venant equations, which describe the conservation of mass and 
momentum in open channel flows, solving them in every cell of the computational mesh (HEC, 2022). By 
discretizing the terrain into a grid, the software calculates water depth, velocity, and discharge in each 
cell while considering factors like channel geometry (from the DEM), boundary conditions (e.g. outlet), 
and the effects of the rainfall. 

 



 

Figure 2. The development of the hydraulic model: A) Data preprocessing, sub-basins and streams in HEC-HMS. B) 
Input data in HEC-RAS. C) Development of the computational mesh (50x50) for the 2D Flow Area. D) Inserting the 
land use map layer in the model. 

 

The land use maps can be also inserted in the model as a map layer (Figure 2D), allowing the model to 
assign varying Manning’s roughness coefficients (n) per land use category, and also taking this into 
account for the calculations. There are publicly available tables providing values for the Manning’s 
roughness coefficients (n) based on the NLCD for the USA (HEC, 2016; Chow, 1959; Barnes, 1987), which 
were used in this study.  

For the rain-on-grid simulation an indicative 24-hour design-storm was used for a return period T=50 
years, to make more straightforward the examination the effect of different land use maps, under 
common precipitation conditions. The NOAA Atlas 14 (NOAA, 2022) provides information on precipitation 
frequency and depth-duration-frequency curves for US locations, including the CCW study area (Table 1). 

 



Table 1. PDS-based point precipitation frequency estimates for the CCW, with 90% confidence intervals (in inches). 
Source: NOAA Atlas 14. 

 
 

3.3 Ecosystem Services Valuation and Mapping 

The valuation of Ecosystem Services (ESV) is a tool increasingly found in several environmental studies. 
There are many techniques for assigning monetary values to ES, mainly survey-based, which however are 
not easy to perform every time in different contexts. Thus, value transfer methods can be used for that 
purpose. Costanza et al. (1997) developed a robust method for ESV, estimating global economic values 
for ES based on existing literature and original calculations considering 17 ES from 16 biomes. Several 
papers valuating land cover changes have used this method (e.g. Chuai et al., 2016; Tolessa et al., 2017; 
Xue and Luo, 2015; Rahman and Szabó, 2021). The most straightforward way to apply this method is to 
compare the 16 biomes identified by Constanza et al. (1997) and assign their ESV coefficients (as 
estimated by Constanza et al.) to the respective land cover category (Rahman and Szabó, 2021) (Table 2).  

 

 



Table 2. Biome equivalents for the five land-use categories and their corresponding ecosystem values (Constanza 
et al., 1997; Rahman and Szabó, 2021). 

Land-use types considered for CCW Equivalent Biome ESV Coefficient (2022 USD/ha/yr) 
Water Water Bodies (lakes/ wetlands/ rivers) 29191.90 
Urban Build-up areas 0.00 

Barren Land Bare land (ice or rock) 0.00 
Forest Vegetation (forest and trees) 3962.67 
Crops Agriculture land (crop land) 181.65 

 

The ESV can be then estimated spatially by multiplying the areas of each category (𝐴*) with their 
respective ESV coefficients from Table 2 (𝐸𝑆𝑉*+,-), as expressed in Equation 7, for a given year. 

𝐸𝑆𝑉 = 	3(𝐴* ×	𝐸𝑆𝑉*+,-) (7) 

 

In this paper, this was estimated for each historic year (2011, 2016, 2021), and each predicted year (2026, 
2031, 2036, 2041, 2046, 2051), to assess the ESV changes. The differences between the estimated ESV for 
each land use category (𝐸𝑆𝑉.$-), between two specific years (e.g. a ‘final year’, and a ‘starting year’) can 
then be estimated with the formula of Equation 8 (Xue and Luo, 2015; Rahman and Szabó, 2021).  

𝐸𝑆𝑉.$- =	
𝐸𝑆𝑉-$'/0	2,/3 − 𝐸𝑆𝑉4!/3!$'5	2,/3

𝐸𝑆𝑉4!/3!$'5	2,/3
×
1
𝑇
	 (8) 

 

Where T is the study period.  

 

4. RESULTS AND DISCUSSION 

An open-source Python model (script in Spyder, Anaconda) was used to process the historic land use 
maps, estimate the transition probability matrix, and generate the predicted maps (Alamanos, 2023). The 
script allows the user to import the results of a GIS software, namely the land use change matrices and it 
returns the transition probability matrices for each year studied. The model can also read the spatial data 
(land use maps) in order to apply the CAM model and its validation, as expressed in Equations 1-6. Finally, 
it provides directly a map with all predicted years, so the user does not need to do this through GIS (Figure 
3).   

 



 

Figure 3. The predicted land use maps for CCW in a 5-year time-step for the period 2026 to 2051. 

 

The validation statistics resulted as follows: Accuracy: 99.63%; MAE: 0.0094; RMSE: 0.1613; Kappa: 
99.25%. These high values of accuracy and Kappa, as well as the MAE and RMSE values that are close to 
zero, indicate that the model achieved a satisfactory performance. The predicted land uses show an 
increase of urban areas over crops and some forest areas, while water and barren land remain almost 
stable during the predicted years (Figure 4). 

 



 

Figure 4. The predicted land use areas as number of pixels predicted by the CAM model for CCW. 

 

The hydraulic model was formulated in HEC-RAS and the necessary data preprocessing was performed in 
HEC-HMS, which is often combined with other tools for hydrological data analysis and hydraulic modelling 
(Pathak and Kalra, 2015; Alamanos and Papaioannou, 2022). The rain-on-grid simulation run with the Full 
Momentum method, which is more detailed compared to the Diffusion Wave method. The Full 
Momentum method takes into account the conservation of both momentum and energy as water flows 
through the channels, while it considers the influence of all the other input factors such as channel shape, 
roughness, and slope. 

 



 

Figure 5. Maximum water depth and flood extent for each predicted land use simulation for the period 2026 to 
2051. 

 

The simulation results are presented in Figure 5 and the zonal statistics for each case are shown in Figure 
5. The flood extent and water depth differences are not easily evident in Figure 5 because of the relatively 
small scale that these changes occurred. However, from the results’ statistics, one can see a slight increase 
in the flood extent as well as minor increases in the water depths (Figure 6). 

  



 

Figure 6. Flooded area (km2) and flood depth (m) under the predicted land uses. 

 

Jiang et al. (2008) had studied the historic land use changes in CCW and observed substantial changes for 
the period 2000 to 2004, where at least 49% of land cover types changed into other types. However, this 
behaviour was not the case in the subsequent years, and the present study found that the historic and 
predicted land uses did not significantly vary. Jiang et al. report that more heavy rainfall does not always 
mean more runoff because the combination of different land cover types always modifies the runoff 
coefficients. Although in this work the same design storm was considered in all scenarios, the mixed 
effects in the flood extent were also observed in certain parts of the watershed. This finding is in line with 
similar behaviours reported in the literature of land use change impacts in runoff. For example, Hounkpè 
et al. (2019) find that the expansion of agricultural and pasture lands leads to a slight increase in flooding, 
while Schilling et al. (2013) find that the greatest flood risk reduction is achieved in perennial vegetation 
areas. In the present study it was also observed that deforestation can cause increased flooding. 

The mapping of ESV is shown in Figure 7, where the lower value ‘white’ and ‘orange’ areas very slowly 
and gradually replace the ‘blue’ areas of higher value. 

 



 

Figure 7. Spatial distribution of ESV (USD/ha/year) for the study period 2011-2051. 

 

In order to estimate the evolution of the ES value, the calculated areas per category and year were 
converted into hectares (Table 3 - upper), since the ESV coefficients are in USD/ha/year, and then 
Equations 7 and 8 were applied (Table 3 - lower). 

 

 

 

 

 

 

 

 



Table 3. The evolution of the different land use types (ha), their ESV (million USD, 2022 values), and the estimated 
yearly changes of ESV. 

Areas (Ha) 
Land Use 
Class 2011 2016 2021 2026 2031 2036 2041 2046 2051 

Water 5866.92 5859.99 5873.04 5862.24 5871.96 5874.03 5877.18 5880.51 5874.66 

Urban 7988.76 8133.03 8265.96 8428.59 8583.48 8739.36 8890.38 9054.63 9054.63 

Barren Land 39.42 40.23 114.84 171.18 165.42 159.48 154.62 152.73 158.40 

Forest 8006.94 7952.04 7920.27 7886.25 7820.10 7753.86 7686.00 7615.80 7607.70 

Crops 47884.68 47801.43 47612.61 47438.46 47345.76 47259.99 47178.54 47083.05 47091.33 
Total Area 
(ha) 69786.72 69786.72 69786.72 69786.72 69786.72 69786.72 69786.72 69786.72 69786.72 

ESV (million USD)  

Water 171.27 171.06 171.45 171.13 171.41 171.47 171.57 171.66 171.49 

Urban 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Barren Land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Forest 31.73 31.51 31.39 31.25 30.99 30.73 30.46 30.18 30.15 

Crops 8.70 8.68 8.65 8.62 8.60 8.58 8.57 8.55 8.55 

Total 211.69 211.26 211.48 211.00 211.00 210.78 210.59 210.39 210.19 

ESV Changes (million USD) 
Land Use 
Class 2011-2016 2016-2021 2021-2026 2026-2031 2031-2036 2036-2041 2041-2046 2046-2051 

Water -0.202 0.381 -0.315 0.284 0.060 0.092 0.097 -0.171 

Urban 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Barren Land 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Forest -0.218 -0.126 -0.135 -0.262 -0.262 -0.269 -0.278 -0.032 

Crops -0.015 -0.034 -0.032 -0.017 -0.016 -0.015 -0.017 0.002 

Total -0.435 0.221 -0.482 0.005 -0.218 -0.192 -0.198 -0.201 
 

The total estimated ESV of CCW in 2011 was 211.69 mil.USD, and the projected value in 2051 is 210.19 
mil.USD, which is 1.5 mil.USD less. The loss of forests and wetlands might be the reason. The water bodies 
have been accounted for approximately of the 81.27% of the total CCW’s ESV, on average, every year. 
Thus, water bodies have been the greatest contributor to ESV, given the multiple and diverse services 
they can provide.  

 

CONCLUSIONS 

This exercise showcased how a CAM model using GIS and Python can be applied to future land use 
predictions, as well as their validation. As explained in the introductory section, this analysis can find 
multiple applications in a variety of studies on human-environmental systems. Such an example is the 
examination of the impacts of future land use changes to flood extent, and the evolution of their monetary 
value according to their ES, which are overlooked applications. This paper examined these impacts, 
working with the minimum necessary inputs for the CAM, the hydraulic, and the ESV models, in order to 



showcase a simple way to assess them in data-scarce areas. Although this approach is often necessary in 
data-scarce areas, it comes with certain limitations. 

It is important to keep in mind that the behavior of a CAM model always depends on the specific rules 
and parameters set for the model. For example, one could expect a concentrated urbanization around the 
existing urban centers rather than a more scattered picture. The CAM model works on a pixel-by-pixel 
basis and does not inherently consider the spatial distribution of land use changes unless explicitly 
programmed to do so. It uses factors such as the current land use category of a pixel, its neighboring pixels 
and the transition probabilities (according to the estimated matrices). For more refined changes, factors 
like proximity to existing urban centers, can be included in the code. In this case, we kept the example 
simple, given the purpose to show how a limited-data approach would work, as proximity to existing urban 
centers would require additional data (e.g. shape files or point data of urban centers), and extra analysis 
(e.g. raster-distance tools, using the proximity as an additional layer, and incorporate it in the CAM). 
Machine Learning can also assist in improving the prediction accuracy. In any case, the validation over 
historic land use observations helps ensure a degree of accuracy of the model and make improvements 
by further adjusting it (mainly through the transition probability matrices). In this example, the validation 
showed a good performance of the model. Moreover, the results are in line with the general perception 
that more urbanized and deforested areas can increase the potential extent and severity of floods. Limited 
input data is often a practical and modelling consideration, so in this example, a design storm is used for 
the hydraulic model. Although this is a common approach, it is a synthetic event that might not capture 
the characteristics of real storms, and it also simplifies the modelling process. However, it allows us to 
examine the sensitivity of flooding solely based on the land use changes, under the same storm conditions.  

The relationship between land use changes, flooding, and ESV is complex and context-specific, depending 
on factors such as topography, land uses, hydrological conditions, storm characteristics, and benefits 
people derive from ecosystems. Future analyses can consider more data to provide more detailed 
assessments considering more refined land use predictions with more classes, improved adjustments of 
the transition probability matrices, or considering the proximity to neighboring cells, as well as more 
thorough hydrological models and real storms. Also, future research could also further explore the 
distribution of ESV per land use type, breaking them down to more specific ES, e.g. provisioning 
(production, supply, raw materials), regulating (water regulation, waste treatment, erosion control, 
climate regulation, biological control, gas regulation, disturbance regulation), supporting (nutrient cycling, 
pollination, soil formation, habitat/refugia), and cultural (recreation, cultural). The approach followed in 
this example, indicates that the loss of the major ESV contributor (i.e. water bodies), can be a factor highly 
related to the increasing flood risks, as water bodies and in particular wetlands, exhibit important 
regulatory services, of which climate regulation and water retention are directly connected with flooding. 

The importance of having reliable land use change models is widely recognized, and the provision of user-
friendly tools is crucial. However, there are very few available free and publicly accessible tools for such 
processes. This work contributes to the provision of tools for land use prediction (data and models used 
are publicly available), facilitating the integration of land use changes in a variety of studies within the 
broader context of human-environmental systems management. The examples of flooding and ESV prove 
the multi-layered nature of such studies, which can be highly insightful for policymakers and land use 
planners for integrated assessments and decisions on the optimum land use development patterns, 
ensuring resilience and sustainable provision of ES. 



 

Data and Code Availability:  

All data used for the analyses can be retrieved from publicly available sources, which are cited in the 
paper. The software used in this paper are also available (QGIS, HEC-HMS, HEC-RAS).  

The GIS guide to perform the necessary analyses and the Python script for the CAM model and its 
validation are accessible at: https://github.com/Alamanos11/Land_uses_prediction. The Python model 
developed provides also more tests as validation options, such as Confusion Matrix, and Confusion Matrix 
Classification Report, which were not presented in the paper to keep it concise.  

 

REFERENCES 

Aburas, M. M., Ahamad, M. S. S., & Omar, N. Q. (2019). Spatio-temporal simulation and prediction of land-use change 

using conventional and machine learning models: A review. Environmental Monitoring and Assessment, 191(4), 205. 

https://doi.org/10.1007/s10661-019-7330-6 

Addae, B., & Dragićević, S. (2022). Integrating multi-criteria analysis and spherical cellular automata approach for 

modelling global urban land-use change. Geocarto International, 0(0), 2152498. 

https://doi.org/10.1080/10106049.2022.2152498 

Adnan, M. S. G., Abdullah, A. Y. M., Dewan, A., & Hall, J. W. (2020). The effects of changing land use and flood hazard on 

poverty in coastal Bangladesh. Land Use Policy, 99, 104868. https://doi.org/10.1016/j.landusepol.2020.104868 

Agustina, I. H., Aji, R. R., Fardani, I., Rochman, G. P., Ekasari, A. M., & Mohmed, F. A. J. (2022). CELLULAR AUTOMATA FOR 

CIREBON CITY LAND COVER AND DEVELOPMENT PREDICTION. PLANNING MALAYSIA, 20. 

https://doi.org/10.21837/pm.v20i20.1080 

Alamanos, A. (2021). Public Policy to Support Environmental Sustainability and Circular Economy: Efforts towards 

integrated approaches. 2nd Symposium on Circular Economy and Sustainability. 14-16 July, 2021. 

Alamanos, A. (2023). A Cellular Automata Markov (CAM) model for future land use change prediction using GIS and Python. 

DOI: 10.13140/RG.2.2.20309.19688. Available at: https://github.com/Alamanos11/Land_uses_prediction  

https://github.com/Alamanos11/Land_uses_prediction
https://doi.org/10.1007/s10661-019-7330-6
https://doi.org/10.1080/10106049.2022.2152498
https://doi.org/10.1016/j.landusepol.2020.104868
https://doi.org/10.21837/pm.v20i20.1080
https://github.com/Alamanos11/Land_uses_prediction


Alamanos, A., & Brouwer, R. (2020, June 9). The cost-effectiveness of wetlands as a nature-based solution to reduce 

phosphorous runoff. International Association for Great Lakes Research (IAGLR) Conference 2020. International 

Association for Great Lakes Research (IAGLR) Conference 2020, Winnipeg, Canada. 

Alamanos, A., & Papaioannou, G. (2020). A GIS Multi-Criteria Analysis Tool for a Low-Cost, Preliminary Evaluation of 

Wetland Effectiveness for Nutrient Buffering at Watershed Scale: The Case Study of Grand River, Ontario, Canada. 

Water, 12(11), Article 11. https://doi.org/10.3390/w12113134 

Alamanos, A., & Papaioannou, G. (2022, November). Developing a hydrological model for Grand River watershed, Ontario. 

3rd IAHR Young Professionals Congress. Online. 3rd IAHR Young Professionals Congress. Online, Online. 

Alamanos, A., Koundouri, P., Papadaki, L. & Pliakou, T. (2022a). Digital management of irrigation water and agriculture: 

Transparency and accountability towards resilience and sustainable development. IAHR Youth Water Congress - 

“Youth in the forefront: before and after World Water Forum, Emerging water challenges since COVID-19”. 6-8 April, 

2022. 

Alamanos, A., Koundouri, P., Papadaki, L., Pliakou, T. & Toli, E. (2022b). Digital agricultural management tools for efficient 

and integrated policy-making. 1st International Electronic Conference on Land (IECL2022). Online, 17–19 May 2022. 

Anand, J., Gosain, A. K., & Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution 

of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of The Total 

Environment, 644, 503–519. https://doi.org/10.1016/j.scitotenv.2018.07.017 

Ansari, A., & Golabi, M. H. (2019). Prediction of spatial land use changes based on LCM in a GIS environment for Desert 

Wetlands – A case study: Meighan Wetland, Iran. International Soil and Water Conservation Research, 7(1), 64–70. 

https://doi.org/10.1016/j.iswcr.2018.10.001 

Avand, M., Moradi, H., & lasboyee, M. R. (2021). Using machine learning models, remote sensing, and GIS to investigate 

the effects of changing climates and land uses on flood probability. Journal of Hydrology, 595, 125663. 

https://doi.org/10.1016/j.jhydrol.2020.125663 

Barnes, H. H. (1987). Roughness Characteristics of Natural Channels. U.S. Government Printing Office. 

https://doi.org/10.3390/w12113134
https://doi.org/10.1016/j.scitotenv.2018.07.017
https://doi.org/10.1016/j.iswcr.2018.10.001
https://doi.org/10.1016/j.jhydrol.2020.125663


Bassetti, K., Winslow-Brown, L., & Kurtz, D. (2009, March 12). Cedar Creek floods Auburn|Water kept rising after heavy 

rains. KPCNews. https://www.kpcnews.com/article_b53ba82e-3dac-576b-a471-705c06aa82a5.html 

Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. 

Chuai, X., Huang, X., Wu, C., Li, J., Lu, Q., Qi, X., Zhang, M., Zuo, T., & Lu, J. (2016). Land use and ecosystems services value 

changes and ecological land management in coastal Jiangsu, China. Habitat International, 57, 164–174. 

https://doi.org/10.1016/j.habitatint.2016.07.004 

Corner, R. J., Dewan, A. M., & Chakma, S. (2014). Monitoring and Prediction of Land-Use and Land-Cover (LULC) Change. 

In A. Dewan & R. Corner (Eds.), Dhaka Megacity: Geospatial Perspectives on Urbanisation, Environment and Health 

(pp. 75–97). Springer Netherlands. https://doi.org/10.1007/978-94-007-6735-5_5 

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., 

Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. 

Nature, 387(6630), Article 6630. https://doi.org/10.1038/387253a0 

Dai, D., Alamanos, A., Cai, W., Sun, Q., & Ren, L. (2023). Assessing Water Sustainability in Northwest China: Analysis of 

Water Quantity, Water Quality, Socio-Economic Development and Policy Impacts. Sustainability, 15(14), Article 14. 

https://doi.org/10.3390/su151411017 

Englezos, N., Kartala, X., Koundouri, P., Tsionas, M., & Alamanos, A. (2023). A Novel HydroEconomic—Econometric 

Approach for Integrated Transboundary Water Management Under Uncertainty. Environmental and Resource 

Economics, 84(4), 975–1030. https://doi.org/10.1007/s10640-022-00744-4 

Environmental Systems Research Institute (ESRI). (2014). ArcHydro for ArcGIS (Version 10.7.1). ESRI. 

https://www.esri.com/en-us/industries/water-resources/arc-hydro/downloads 

Fowler, K. K. (2018). Flood-inundation maps for Cedar Creek at 18th Street at Auburn, Indiana. In Scientific Investigations 

Report (2017–5156). U.S. Geological Survey. https://doi.org/10.3133/sir20175156 

Fu, B., Zhang, L., Xu, Z., Zhao, Y., Wei, Y., & Skinner, D. (2015). Ecosystem services in changing land use. Journal of Soils and 

Sediments, 15(4), 833–843. https://doi.org/10.1007/s11368-015-1082-x 

https://www.kpcnews.com/article_b53ba82e-3dac-576b-a471-705c06aa82a5.html
https://doi.org/10.1016/j.habitatint.2016.07.004
https://doi.org/10.1007/978-94-007-6735-5_5
https://doi.org/10.1038/387253a0
https://doi.org/10.3390/su151411017
https://doi.org/10.1007/s10640-022-00744-4
https://www.esri.com/en-us/industries/water-resources/arc-hydro/downloads
https://doi.org/10.3133/sir20175156
https://doi.org/10.1007/s11368-015-1082-x


Gao, X., Wang, J., Li, C., Shen, W., Song, Z., Nie, C., & Zhang, X. (2021). Land use change simulation and spatial analysis of 

ecosystem service value in Shijiazhuang under multi-scenarios. Environmental Science and Pollution Research, 

28(24), 31043–31058. https://doi.org/10.1007/s11356-021-12826-9 

Garcia, J. A., & Alamanos, A. (2022). Integrated Modelling Approaches for Sustainable Agri-Economic Growth and 

Environmental Improvement: Examples from Greece, Canada and Ireland. Land, 11(9), Article 9. 

https://doi.org/10.3390/land11091548 

Garcia, J. A., & Alamanos, A. (2023). A Multi-Objective Optimization Framework for Water Resources Allocation 

Considering Stakeholder Input. Environmental Sciences Proceedings, 25(1), Article 1. https://doi.org/10.3390/ECWS-

7-14227 

Glatfelter, D. R., & Chin, E. H. (1987). Floods of March 1982, Fort Wayne, Indiana. In V. P. Singh (Ed.), Flood Hydrology: 

Proceeding of the International Symposium on Flood Frequency and Risk Analyses, 14–17 May 1986, Louisiana State 

University, Baton Rouge, USA (pp. 57–67). Springer Netherlands. https://doi.org/10.1007/978-94-009-3957-8_5 

Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in 

the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. 

https://doi.org/10.1016/j.apgeog.2015.06.015 

Han, H., Yang, C., & Song, J. (2015). Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, 

China. Sustainability, 7(4), Article 4. https://doi.org/10.3390/su7044260 

Hassan, M. M., & Nazem, M. N. I. (2016). Examination of land use/land cover changes, urban growth dynamics, and 

environmental sustainability in Chittagong city, Bangladesh. Environment, Development and Sustainability, 18(3), 

697–716. https://doi.org/10.1007/s10668-015-9672-8 

Hounkpè, J., Diekkrüger, B., Afouda, A. A., & Sintondji, L. O. C. (2019). Land use change increases flood hazard: A multi-

modelling approach to assess change in flood characteristics driven by socio-economic land use change scenarios. 

Natural Hazards, 98(3), 1021–1050. https://doi.org/10.1007/s11069-018-3557-8 

https://doi.org/10.1007/s11356-021-12826-9
https://doi.org/10.3390/land11091548
https://doi.org/10.3390/ECWS-7-14227
https://doi.org/10.3390/ECWS-7-14227
https://doi.org/10.1007/978-94-009-3957-8_5
https://doi.org/10.1016/j.apgeog.2015.06.015
https://doi.org/10.3390/su7044260
https://doi.org/10.1007/s10668-015-9672-8
https://doi.org/10.1007/s11069-018-3557-8


Hydrologic Engineering Center (HEC). (2022). HEC-RAS (Version 5.0). U.S. Army Corps of Engineers. Modeling User’s 

Manual (February 2016) 

Hydrologic Engineering Center (HEC). (2022). HEC-RAS (Version 6.3.1). U.S. Army Corps of Engineers. 

https://www.hec.usace.army.mil/software/hec-ras/download.aspx 

Hydrologic Engineering Center (HEC). (2023). HEC-HMS (Version 4.11). U.S. Army Corps of Engineers. 

https://www.hec.usace.army.mil/software/hec-hms/documentation.aspx  

Islam, M. S., & Ahmed, R. (2011). Land Use Change Prediction In Dhaka City Using Gis Aided Markov Chain Modeling. 

Journal of Life and Earth Science, 6, 81–89. https://doi.org/10.3329/jles.v6i0.9726 

Jiang, X., Huang, C., & Ruan, F. (2008). Impacts of land cover changes on runoff and sediment in the Cedar Creek 

Watershed, St. Joseph River, Indiana, United States. Journal of Mountain Science, 5(2), 113–121. 

https://doi.org/10.1007/s11629-008-0105-0 

Kafy, A.-A., Faisal, A.-A.-, Shuvo, R. M., Naim, Md. N. H., Sikdar, Md. S., Chowdhury, R. R., Islam, Md. A., Sarker, Md. H. S., 

Khan, Md. H. H., & Kona, M. A. (2021). Remote sensing approach to simulate the land use/land cover and seasonal 

land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. 

Remote Sensing Applications: Society and Environment, 21, 100463. https://doi.org/10.1016/j.rsase.2020.100463 

Kang, K., & Merwade, V. (2011). Development and application of a storage–release based distributed hydrologic model 

using GIS. Journal of Hydrology, 403(1), 1–13. https://doi.org/10.1016/j.jhydrol.2011.03.048 

Koundouri, P., Alamanos, A., Dellis, K., & Stratopoulou, A. (2022). Ecosystem Services into Water Resource Planning and 

Management (DEOS Working Papers 2230). 

Koundouri, P., Halkos, G., Landis, C. F. M., & Alamanos, A. (2023). Ecosystem services valuation for supporting sustainable 

life below water. Sustainable Earth Reviews, 6(1), 19. https://doi.org/10.1186/s42055-023-00068-1 

Kumar, S., & Merwade, V. (2009). Impact of Watershed Subdivision and Soil Data Resolution on SWAT Model Calibration 

and Parameter Uncertainty1. JAWRA Journal of the American Water Resources Association, 45(5), 1179–1196. 

https://doi.org/10.1111/j.1752-1688.2009.00353.x 

https://www.hec.usace.army.mil/software/hec-ras/download.aspx
https://www.hec.usace.army.mil/software/hec-hms/documentation.aspx
https://doi.org/10.3329/jles.v6i0.9726
https://doi.org/10.1007/s11629-008-0105-0
https://doi.org/10.1016/j.rsase.2020.100463
https://doi.org/10.1016/j.jhydrol.2011.03.048
https://doi.org/10.1186/s42055-023-00068-1
https://doi.org/10.1111/j.1752-1688.2009.00353.x


Larose, M., Heathman, G. C., Norton, L. D., & Engel, B. (2007). Hydrologic and Atrazine Simulation of the Cedar Creek 

Watershed Using the SWAT Model. Journal of Environmental Quality, 36(2), 521–531. 

https://doi.org/10.2134/jeq2006.0154 

Liu, H., Homma, R., Liu, Q., & Fang, C. (2021). Multi-Scenario Prediction of Intra-Urban Land Use Change Using a Cellular 

Automata-Random Forest Model. ISPRS International Journal of Geo-Information, 10(8), Article 8. 

https://doi.org/10.3390/ijgi10080503 

Liu, M., Wei, H., Dong, X., Wang, X.-C., Zhao, B., & Zhang, Y. (2022). Integrating Land Use, Ecosystem Service, and Human 

Well-Being: A Systematic Review. Sustainability, 14(11), Article 11. https://doi.org/10.3390/su14116926 

Mansour, S., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities 

of Oman using GIS and CA-Markov modelling techniques. Land Use Policy, 91, 104414. 

https://doi.org/10.1016/j.landusepol.2019.104414 

McDermott, C. L., Montana, J., Bennett, A., Gueiros, C., Hamilton, R., Hirons, M., Maguire-Rajpaul, V. A., Parry, E., & Picot, 

L. (2023). Transforming land use governance: Global targets without equity miss the mark. Environmental Policy and 

Governance, 33(3), 245–257. https://doi.org/10.1002/eet.2027 

Mendoza-Ponce, A., Corona-Núñez, R. O., Nava, L. F., Estrada, F., Calderón-Bustamante, O., Martínez-Meyer, E., Carabias, 

J., Larralde-Corona, A. H., Barrios, M., & Pardo-Villegas, P. D. (2021). Impacts of land management and climate 

change in a developing and socioenvironmental challenging transboundary region. Journal of Environmental 

Management, 300, 113748. https://doi.org/10.1016/j.jenvman.2021.113748 

NOAA National Weather Service. (2022). NOAA ATLAS 14 POINT PRECIPITATION FREQUENCY ESTIMATES. PF Map: 

Contiguous US. Https://Hdsc.Nws.Noaa.Gov/. 

https://hdsc.nws.noaa.gov/pfds/pfds_map_cont.html?lat=39.9907&lon=-82.8770 

OpenTopography. (2023). https://opentopography.org/about 

Papaioannou, G., Alamanos, A., & Maris, F. (2023). Evaluating Post-Fire Erosion and Flood Protection Techniques: A 

Narrative Review of Applications. GeoHazards, 4(4), Article 4. https://doi.org/10.3390/geohazards4040022 

https://doi.org/10.2134/jeq2006.0154
https://doi.org/10.3390/ijgi10080503
https://doi.org/10.3390/su14116926
https://doi.org/10.1016/j.landusepol.2019.104414
https://doi.org/10.1002/eet.2027
https://doi.org/10.1016/j.jenvman.2021.113748
https://hdsc.nws.noaa.gov/pfds/pfds_map_cont.html?lat=39.9907&lon=-82.8770
https://opentopography.org/about
https://doi.org/10.3390/geohazards4040022


Pathak, P., & Kalra, A. (2015). Rainfall Runoff Modelling for Cedar Creek using HEC-HMS model. 2015, H51B-1358. 

Pignotti, G., Rathjens, H., Cibin, R., Chaubey, I., & Crawford, M. (2017). Comparative Analysis of HRU and Grid-Based SWAT 

Models. Water, 9(4), Article 4. https://doi.org/10.3390/w9040272 

Qin, X., & Fu, B. (2020). Assessing and Predicting Changes of the Ecosystem Service Values Based on Land Use/Land Cover 

Changes With a Random Forest-Cellular Automata Model in Qingdao Metropolitan Region, China. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6484–6494. 

https://doi.org/10.1109/JSTARS.2020.3029712 

Rahman, M. M., & Szabó, G. (2021). Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in 

Dhaka, Bangladesh. Land, 10(8), Article 8. https://doi.org/10.3390/land10080793 

Rajsic, P., Brouwer, R., & Alamanos, A. (2023). Cost-effectiveness of wetlands as a nature-based solution to buffer 

phosphorus in Canadian landscapes. UWSpace. http://hdl.handle.net/10012/19554 

Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., Chaplot, V., Gallart, F., Glatzel, G., Hall, J., 

Holden, J., Holko, L., Horn, R., Kiss, A., Kohnová, S., Leitinger, G., Lennartz, B., Parajka, J., Perdigão, R., … Blöschl, G. 

(2017). Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. 

Water Resources Research, 53(7), 5209–5219. https://doi.org/10.1002/2017WR020723 

Roy, P., Chandra Pal, S., Chakrabortty, R., Chowdhuri, I., Malik, S., & Das, B. (2020). Threats of climate and land use change 

on future flood susceptibility. Journal of Cleaner Production, 272, 122757. 

https://doi.org/10.1016/j.jclepro.2020.122757 

Saghafian, B., Farazjoo, H., Bozorgy, B., & Yazdandoost, F. (2008). Flood Intensification due to Changes in Land Use. Water 

Resources Management, 22(8), 1051–1067. https://doi.org/10.1007/s11269-007-9210-z 

Saputra, M. H., & Lee, H. S. (2019). Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using 

an Artificial-Neural-Network-Based Cellular Automaton. Sustainability, 11(11), Article 11. 

https://doi.org/10.3390/su11113024 

https://doi.org/10.3390/w9040272
https://doi.org/10.1109/JSTARS.2020.3029712
https://doi.org/10.3390/land10080793
http://hdl.handle.net/10012/19554
https://doi.org/10.1002/2017WR020723
https://doi.org/10.1016/j.jclepro.2020.122757
https://doi.org/10.1007/s11269-007-9210-z
https://doi.org/10.3390/su11113024


Schilling, K. E., Gassman, P. W., Kling, C. L., Campbell, T., Jha, M. K., Wolter, C. F., & Arnold, J. G. (2014). The potential for 

agricultural land use change to reduce flood risk in a large watershed. Hydrological Processes, 28(8), 3314–3325. 

https://doi.org/10.1002/hyp.9865 

Schirpke, U., Tscholl, S., & Tasser, E. (2020). Spatio-temporal changes in ecosystem service values: Effects of land-use 

changes from past to future (1860–2100). Journal of Environmental Management, 272, 111068. 

https://doi.org/10.1016/j.jenvman.2020.111068 

St. Joseph River Watershed Initiative (2005). Cedar Creek Watershed Management Plan. Indiana Department of 

Environmental Management, 2005. 

Tammi, I., Mustajärvi, K., & Rasinmäki, J. (2017). Integrating spatial valuation of ecosystem services into regional planning 

and development. Ecosystem Services, 26, 329–344. https://doi.org/10.1016/j.ecoser.2016.11.008 

Tariq, A., & Shu, H. (2020). CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Land Cover 

Change Using Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sensing, 12(20), Article 20. 

https://doi.org/10.3390/rs12203402 

Tolessa, T., Senbeta, F., & Kidane, M. (2017). The impact of land use/land cover change on ecosystem services in the central 

highlands of Ethiopia. Ecosystem Services, 23, 47–54. https://doi.org/10.1016/j.ecoser.2016.11.010 

Tollan, A. (2002). Land-use change and floods: What do we need most, research or management? Water Science and 

Technology, 45(8), 183–190. https://doi.org/10.2166/wst.2002.0176 

Troy, A., & Wilson, M. A. (2006). Mapping ecosystem services: Practical challenges and opportunities in linking GIS and 

value transfer. Ecological Economics, 60(2), 435–449. https://doi.org/10.1016/j.ecolecon.2006.04.007 

Ulloa-Espíndola, R., & Martín-Fernández, S. (2021). Simulation and Analysis of Land Use Changes Applying Cellular 

Automata in the South of Quito and the Machachi Valley, Province of Pichincha, Ecuador. Sustainability, 13(17), 

Article 17. https://doi.org/10.3390/su13179525 

USGS. (2021). National Land Cover Database | U.S. Geological Survey. National Land Cover Database. Retrieved October 

20, 2023, from https://www.usgs.gov/centers/eros/science/national-land-cover-database 

https://doi.org/10.1002/hyp.9865
https://doi.org/10.1016/j.jenvman.2020.111068
https://doi.org/10.1016/j.ecoser.2016.11.008
https://doi.org/10.3390/rs12203402
https://doi.org/10.1016/j.ecoser.2016.11.010
https://doi.org/10.2166/wst.2002.0176
https://doi.org/10.1016/j.ecolecon.2006.04.007
https://doi.org/10.3390/su13179525
https://www.usgs.gov/centers/eros/science/national-land-cover-database


Wallace, C. W., Flanagan, D. C., & Engel, B. A. (2018). Evaluating the Effects of Watershed Size on SWAT Calibration. Water, 

10(7), Article 7. https://doi.org/10.3390/w10070898 

Xing, W., Qian, Y., Guan, X., Yang, T., & Wu, H. (2020). A novel cellular automata model integrated with deep learning for 

dynamic spatio-temporal land use change simulation. Computers & Geosciences, 137, 104430. 

https://doi.org/10.1016/j.cageo.2020.104430 

Xue, M., & Luo, Y. (2015). Dynamic variations in ecosystem service value and sustainability of urban system: A case study 

for Tianjin city, China. Cities, 46, 85–93. https://doi.org/10.1016/j.cities.2015.05.007 

Zambrano-Asanza, S., Morales, R. E., Montalvan, J. A., & Franco, J. F. (2023). Integrating artificial neural networks and 

cellular automata model for spatial-temporal load forecasting. International Journal of Electrical Power & Energy 

Systems, 148, 108906. https://doi.org/10.1016/j.ijepes.2022.108906 

Zhang, P., Liu, L., Yang, L., Zhao, J., Li, Y., Qi, Y., Ma, X., & Cao, L. (2023). Exploring the response of ecosystem service value 

to land use changes under multiple scenarios coupling a mixed-cell cellular automata model and system dynamics 

model in Xi’an, China. Ecological Indicators, 147, 110009. https://doi.org/10.1016/j.ecolind.2023.110009 

Zhang, Y., Chang, X., Liu, Y., Lu, Y., Wang, Y., & Liu, Y. (2021). Urban expansion simulation under constraint of multiple 

ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications. 

Land Use Policy, 108, 105667. https://doi.org/10.1016/j.landusepol.2021.105667 

Zhong, C., Bei, Y., Gu, H., & Zhang, P. (2022). Spatiotemporal Evolution of Ecosystem Services in the Wanhe Watershed 

Based on Cellular Automata (CA)-Markov and InVEST Models. Sustainability, 14(20), Article 20. 

https://doi.org/10.3390/su142013302 

https://doi.org/10.3390/w10070898
https://doi.org/10.1016/j.cageo.2020.104430
https://doi.org/10.1016/j.cities.2015.05.007
https://doi.org/10.1016/j.ijepes.2022.108906
https://doi.org/10.1016/j.ecolind.2023.110009
https://doi.org/10.1016/j.landusepol.2021.105667
https://doi.org/10.3390/su142013302

