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In the era of 5G communication, the knowledge of channel state information (CSI) is crucial for enhancing

network performance. This paper explores the utilization of language models for spatial CSI prediction

within MIMO-OFDM systems. We begin by outlining the signi�cance of accurate CSI in enabling advanced

functionalities such as adaptive modulation. We review existing methodologies for CSI estimation,

emphasizing the shift from traditional to data-driven approaches. Then a novel framework for spatial CSI

prediction using realistic environment information is proposed, and experimental results demonstrate the

e�ectiveness. This research paves way for innovative strategies in managing wireless networks.
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I. Introduction

In the background of widespread 5G, the users around the globe bene�t from high-speed characteristics of

such a new communication technology. Meanwhile, the demand for more reliable and low-latency

transmission is also increasing. E�cient management and adjustment of large-scale antenna arrays is an

essential key to optimizing communication. Traditional management techniques are typically reactive,

relying on feedback from users to adjust to the constantly changing wireless environment. But recent

research emphasizes a forward-looking approach using CSI prediction. This proactive prediction-based

management allows for more dynamic adjustment of network resources.[1]

To explain the importance of CSI, it is needed to point out that CSI is essential for advanced functionalities of

communication system such as precoding, bit-loading, adaptive modulation, channel-aware scheduling,

and beamforming. In a MIMO setup, having precise knowledge of the CSI at the transmitter enables

signi�cantly higher channel capacity compared to transmission without CSI, improving the reliability of

traditional communication systems.[2]
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In this context, CSI prediction is becoming an integral part. People used to utilize di�erent approaches to

predict channels, and various parametric models have been explored, such as the autoregressive (AR) model,

the sum-of-sinusoids model, and the polynomial extrapolation model. As for concrete computation, a

prediction algorithm called Prony-based angular-delay domain (PAD) was introduced as well. Despite their

usefulness, these methods may struggle to accurately capture the complex features of real-world channels.

In recent years, researchers have sought innovative techniques to tackle the complexity of CSI prediction,

ranging from traditional algorithms to modern algorithms, so the technique has evolved signi�cantly.

Meanwhile, AI tools are growing at a high pace, which helps in increasing the precision of prediction.

The content of this report includes:

Foundational Concepts in Wireless Channels: An overview of wireless channel theory, channel modeling,

Massive MIMO, and OFDM fundamentals, establishing a basis for advanced prediction techniques.

Time-Series Channel Prediction with LLM4CP: Replication of time-series prediction experiments using

the “LLM4CP” framework.

Spatial CSI Prediction Studies: Exploration of spatial CSI prediction with large models.

The contributions of this paper include:

Application of Large models for Spatial CSI Prediction.

Development of a preprocessing framework which merges geometric-physical knowledge for robust

prediction.

The notations which could be used are presented in the table below.

 matrix

Frobenius norm of matrix

transpose of 
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II. Review on Related Works

The foundation of modern CSI prediction can be traced back to early works like[3], which addressed the

challenge of adaptive channel estimation in MIMO systems, focusing on the use of feedback channels to
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optimize transmission. The work by[4]  highlights the challenges in traditional methods of estimating

channel coe�cients.

Building on this,[5] address the limitations imposed by the dimensionality of CSI in massive MIMO systems.

They propose leveraging compressive sensing and deep learning to enhance the e�ciency of CSI estimation,

as a groundbreaking work.

In 2020,  [6]  further advanced the discussion by comparing traditional Kalman �ltering techniques with

emerging machine learning methods. Then the research shifts towards data-driven methodologies is echoed

in the work of [7], who thoroughly explore the potential of deep learning to enhance CSI prediction accuracy.

[8] contribute to this discourse by proposing a novel 3D CNN framework for predicting future CSI in highly

mobile environments. This trend towards utilizing advanced neural network architectures is further

supported by  [9], who introduce a domain transformation technique to enhance training e�ciency for

channel prediction, highlighting the ongoing re�nement of machine learning applications in CSI estimation.

The exploration of meta-learning and deep denoising techniques by [10] illustrates how such new strategies

can alleviate the challenges posed by limited pilot data, thereby enhancing the performance of channel

predictors in real-world scenarios. Apart from that,  [11] expand the range of channel prediction to spatial-

temporal domain, where two di�erent tools CNN and convolutional variation of LSTM is combined to be

namely Conv-LSTM to capture the inherent complexity of massive MIMO systems, which can be found

in [10].

In a more recent study,  [12]  delve into the applicability of meta-learning for adaptive predictors to new

environments, emphasizing the necessity for models that can quickly adjust to varying conditions without

extensive retraining.

In the context of advancing 6G technologies, [1] introduces a novel framework, the digital radio twin, which

leverages U-Net for accurate spatial-CSI prediction.

Finally, [13] provides a comprehensive survey on LLMs in telecommunications, highlighting their capabilities

in managing complex network tasks and optimizing CSI prediction processes.

III. Basic Concepts of Channels

A. General Theory of Channel Models

In wireless communication systems, the channel is a critical factor in determining the overall performance.

In a MIMO system with    transmitting antennas and    receiving antennas, the channel is typicallym n
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represented by a matrix, named CSI, as shown below:

The models of channels can be categorized in several ways, and the diagram is shown in Fig.1, which shows

three ways of classi�cation: physical models, analytical models, and standard models.

Figure 1. Modern classi�cation of wireless channels

Physical models use basic theories in physics to describe the multipath propagation environment between

the transmitter and receiver, considering factors like the direction of arrival (DoA), direction of departure

(DoD), signal amplitude, and the delay of multipath components (MPCs).

Analytical models focus on the channel impulse response or transfer function between speci�c pairs of

transmitter and receiver antennas. These models do not directly account for wave propagation but instead

synthesize a channel gain matrix that describes the overall system behavior.

Standard models are designed mostly by industrial organizations and companies to assist in new wireless

communication technologies.
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B. OFDM Systems

In modern digital wireless communication systems, orthogonal frequency division multiplexing (OFDM)

technology is widely used to combat frequency-selective fading in multipath propagation environments,

such as in standard IEEE 802.11a/g/n.

IV. WINNER Models and Ray Tracing Models

Some of the channel dataset used in this work is generated by QuaDRiGa, which is based on the earlier

WINNER model. Other data are generated using ray-tracing models, for realistic modelling and more stable

prediction.

A. WINNER

WINNER supports a wide frequency range, making it suitable for mmWave and for scenarios with diverse

transceiver techniques. WINNER models are adopted by QuaDRiGa. [14]

B. Ray Tracing

Another important channel modeling used in this study is based on ray tracing, which is a deterministic

method used to model wave propagation by simulating the paths of electromagnetic waves through an

environment. Unlike statistical models that provide average estimates, ray tracing computes the interactions

between waves and obstacles using the principles of geometric optics. This results in a more precise

description of the channel characteristics.

C. Softwares Using Ray Tracing

WinProp (Wireless In-building Propagation) integrates a range of deterministic, empirical, and hybrid

models, making it well-suited for wireless network planning and coverage analysis. Winprop’s interests go

further than just principle-level veri�cation since it can also be used to generate realistic datasets. WinProp

supports the import of CAD �les, o�ering �exibility in modeling di�erent environments.

In practice, One can adopt di�erent approaches based on the electrical construction size and complexity

(Fig.2). It is reasonable that in large urban scenarios, more approximations will be introduced in simulation,

instead of solving complex wave equations.
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Figure 2. Numerical Methods of Winprop, with more approximation introduced when the prolem’s

scale becomes larger.

V. Reproducing Time-Series Channel Prediction Experiment

As part of research, we will review and validate one related work in the �eld of intelligent channel prediction.

The experiment in the paper LLM4CP: Adapting Large Language Models for Channel Prediction (in short

“LLM4CP”) will be reproduced, where a pre-trained LLM is applied to predict future downlink CSI based on

historical uplink CSI.

A. Modelling of Channel in LLM4CP

The base station is modeled with a dual-polarized uniform planar array (UPA), consisting of 

 antennas. The users are set to have motion, which induces Doppler shifts and contributes to

the time variation of the channel.

The received signal at UE is given by:

where    is the downlink CSI for the  -th subcarrier,    is the transmit precoder,    is the transmitted

symbol, and   is additive white Gaussian noise (AWGN). The precoding vector   is designed based on  ,

and any inaccuracy in the predicted CSI can result in suboptimal transmission rates.
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B. Formulation of Channel Prediction Problem

In LLM4CP, the goal is to predict future downlink CSI over   RBs using historical uplink CSI from   RBs. In

mathematical formulation, we hope to minimize NMSE:

Where:

 represents the expectation over all the data samples.

 represents the predicted downlink CSI at time  .

 represents the actual downlink CSI at time  .

The uplink and downlink CSI are assumed to share some statistical correlation due to channel reciprocity,

which can be leveraged to infer future downlink conditions.

C. Experiment Methodology

1. CSI Generation

The �rst step of the experiment is to generate channel data. To replicate real-world communication

environments, we con�gure standardized 3GPP 38.901 Urban Macro(Uma) scenario using QuaDRiGa. Users

are set to move linearly at speeds ranging from 10 km/h to 100 km/h.

Parameter Value

Center Frequency 2.4 GHz

BS Antenna 4x4 dual-polarized array

Antenna Tilting Angle 7 degrees

User Device Single omni-directional antenna

User Speed 10.1̃100 km/h in 0.1 km/h increments

Velocity Sampling Period 0.5 ms

Sample Duration 19 cycle lengths

Table I. Parameters Con�guration
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In order to have a direct comprehension of the experimental setup, the locations of UE and BS are depicted in

Fig.3. The height of BS is 30m and the height of UEs is 0m.

Figure 3. Locations of UEs and BS in LLM4CP’s experiment setup. For consideration of

simplicity, only LOS paths are shown. But remember that NLOS paths also exist and they

are caused by randomly generated scatter points in the space, under QuaDriGa built-in

algorithms.

2. CSI Data Preprocessing

The complex channel matrix    is constructed for each transmit antenna    using the temporal length of

historical CSI data.

Hf j
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3. Model Training

Both frequency domain and delay domain information are feeded into the model. Note that most layers of the

pre-trained GPT-2 are frozen during training, while other parameters of the network are trainable. The

number of trainable parameters is relatively small.

Model/Speed(km/h) 10 20 30 40 50 60 70 80 90 100

GPT(LLM4CP) 0.02083 0.02296 0.02485 0.02608 0.02983 0.03292 0.03849 0.04231 0.04986 0.05747

Transformer 0.03138 0.03286 0.03429 0.03232 0.04195 0.04371 0.05647 0.06176 0.07890 0.08816

CNN 0.02882 0.03075 0.03101 0.03113 0.03823 0.04109 0.05071 0.05773 0.07105 0.08244

GRU 0.05893 0.06010 0.05556 0.04230 0.06078 0.05665 0.08096 0.08246 0.10270 0.09824

LSTM 0.07976 0.07787 0.06596 0.04831 0.07003 0.06375 0.08819 0.09591 0.12286 0.11560

RNN 0.16996 0.13275 0.10381 0.07724 0.10493 0.08652 0.11641 0.12414 0.15519 0.20657

No Prediction 0.05873 0.13305 0.25106 0.41127 0.59231 0.79652 1.02281 1.25426 1.47749 1.68876

PAD 0.08252 0.12101 0.14623 0.11190 0.17296 0.18224 0.23769 0.15349 0.18944 0.18723

Table II. NMSE of prediction for di�erent models across speeds, under TDD scenario

Model/Speed(km/h) 10 20 30 40 50 60 70 80 90 100

GPT(LLM4CP) 0.40161 0.34878 0.35639 0.40715 0.34129 0.38660 0.40247 0.33781 0.36739 0.40094

Transformer 0.56755 0.49624 0.47638 0.54351 0.48867 0.52255 0.51155 0.48147 0.49504 0.51693

CNN 0.97241 0.96062 0.96784 0.95742 0.95547 0.94933 0.94312 0.97714 0.96508 0.97834

GRU 0.62848 0.60466 0.60371 0.61128 0.59004 0.59892 0.59454 0.60476 0.60998 0.61508

LSTM 0.69523 0.65747 0.64816 0.65555 0.62290 0.64631 0.63110 0.64763 0.64663 0.66668

RNN 0.60296 0.55399 0.53408 0.52743 0.51272 0.50512 0.50732 0.52599 0.53564 0.58028

No Prediction 2.01695 1.92730 1.95513 1.93453 1.99573 1.88920 1.92420 1.85007 1.89675 1.82435

Table III. NMSE of prediction for di�erent models across speeds, under FDD scenario
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4. Model Evaluation

To evaluate the performance of the proposed LLM4CP model, we compare its NMSE with several baselines

across di�erent user velocities for both TDD and FDD systems, and these include PAD, RNN, LSTM, GRU

(Gate recurrent unit), CNN and traditional Transformers (Fig.4 and Fig.5).

Figure 4. The LLM4CP and other baselines’ NMSE performance in relation to various user

velocities for TDD systems
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Figure 5. The LLM4CP and other baselines’ NMSE performance in relation to various user

velocities for FDD systems

VI. QuaDRiGa Dataset for Spatial CSI Prediction

Our work will be focused on CSI spatial prediction from now on. This section serves as a heuristic startup and

tools will be re�ned in later sections. Spatial prediction could be bene�cial when the BS acquires knowledge

about a user’s location but communication rate between BS and this user is relatively slow.

We still adopt QuaDRiGa for data generation, with the main adjustment being that all pedestrians are

stationary to focus on spatial rather than temporal prediction. Users are positioned within a 3D area

(horizontal range: -100 m to 100 m, height: 0 to 3 m).

A. Training Procedure

Model training employs a customized GPT-2-based structure, with AdamW optimizer. During training, the

input to the model is each position  , and the output is the predicted CSI value    for the

corresponding position. The predicted CSI   is hoped to be as close as possible to the ground-truth CSI  .

The training process uses a smooth L1 loss function,  . This loss function is a combination of

absolute error and squared error:

p ∈ R
3 Hde

Ĥ Hgt

LSmoothL1

= {LSmoothL1
0.5∥ − ,Hde Hgt∥2

∥ − − 0.5,Hde Hgt∥2
F

if~∥ − < 1Hde Hgt∥2
F

otherwise
(4)
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B. Results of Spatial CSI Prediction Based on QuaDRiGa

The model incorporates dual convolutional layers before GPT-2. Data from single time stamp leads to the

lowest observed validation NMSE of 0.17. Then, model is trained using multiple time slices. This leads to a

noticeable improvement in performance and the least NMSE is 0.035.

C. Limitations of Current Approach and Improvements

While the current work demonstrates seemly ideal results, several limitations still need to be addressed. The

greatest drawback is that, current implementation uses a statistical channel. The scatter points in space are

random, resulting in �uctuating channel conditions that do not correspond to physical existence. This

randomness can adversely a�ect the stability and accuracy of predictions.

VII. MIMO-OFDM Channel Modeling in WinProp for Realistic Spatial

CSI Prediction

A. Methodology of Channel Modelling

To achieve a realistic channel that accounts for surroundings and data frames in real-world settings, and

realize high-level customization, we utilize WinProp.

The whole procedure from channel simulation to machine learning is depicted in Fig.6.
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Figure 6. Procedure from physical environment buil-up, channel generation,

to model training

The �rst step involves preparing an environmental layout. We select the area of CUHK(SZ) in OpenStreetMap

to obtain an OSM �le, then clean and convert the data via QGIS for compatibility with WinProp, shown in

Fig.7. The OSM �le provides a detailed model of buildings, streets, and vegetation zones. Once imported, the

simulation can be conducted in the area de�ned by the OSM �le.
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Figure 7. (a) The selected region of CUHK(SZ) as the place for ray-tracing

simulation. (b) The wide range simulation result shown in power distribution,

with a tiny blue dot at the center representing the BS. Notice that the

simulation in the picture is coarse with distant UEs. For model training, more

dense UEs are simulated in a smaller region.
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Then the OFDM protocol is selected in air interface settings, and the 5G NR FDD standard description �le is

imported to WinProp for consistency with current wireless communication protocols. It is possible to

custom-tailor parameters such as subcarrier spacing, modulation schemes, and bandwidth of the system.

For industrial-grade simulators like WinProp, without con�guration the air interface, the BS will only send

simple modulated waves, and in this case discussing about data frame and RBs etc. is impossible.

The OFDM symbols per slot are set to 14, ensuring the simulation closely re�ects high-capacity, high-

frequency communication. For MIMO con�gurations, we implement a 4x4 BS antenna array combined with

single-antenna UE.

In WinProp simulation fashion, each UE’s position is uniformly distributed in prede�ned zones, instead of

randomly generated according to a probabilistic function. The distance between UEs in the grid is 0.1m.

Meanwhile the BS antenna is placed near the center.

B. Ray Tracing and Data Export

Ray tracing is conducted in a rectangle inside the map. Although it is allowed to simulate the channel for only

one time-slot in WinProp, it will bring a static result, which makes CSI output impossible. To obtain CSI of

the channel, the dynamic simulation is carried out, with the time span of simulation at 1s and the time

interval being 1ms.

Each simulation run generates essential parameters for machine learning integration. The .str �le

encapsulates the attributes of each path, such as loss of path, along with the UEs interacted, but it is not

measurable in practice, thus deserted. The .txt �le contains CSI values for all locations and time-stamps

considered in the simulation.

C. Machine Learning of WinProp-Generated Channel for CSI Prediction

Once the geographic features have been extracted, they need to be merged with CSI data to train models,

corresponding to the step 4 of Fig.6. To achieve this, features require suitable representation. If a model

predicts well across di�erent points or even across regions, it means that the model can infer the CSI

accurately from the geographic information which can be practically measured.

In our initial approach, the walls nearby each UE is treated as a segment characterized by distance and

orientation relative to the UE. With such two geometric parameters, it is believed that the surrounding of UE

can be grasped by the large model, and other material-related parameters will be learned indirectly

throughout the epochs. For every UE, the properties of top 5 nearest walls are extracted, which has

computational e�ciency but lacks of details.
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To overcome insu�cient representation of features, a new approach is adopted. As shown in Fig.8, the �rst

stage involves embedding TX and RX positions into a raw geographical map and extracting environmental

features. The map is then processed through a CNN module. The features are processed through multiple

convolution and pooling layers to capture hierarchical representations of the environment. Intermediate

features are concatenated to preserve multiscale information.

Figure 8. Novel architecture of machine learning targeted at informing CSI accurately

from environmental knowledge, with prediction capability enhanced by multiple-feature

fusing technique

Simultaneously, raw CSI data is represented in a machine-learning-friendly format. The RX positions are

encoded using a positional encoding module, while the CSI values undergo an amplitude-phase

decomposition to separate the magnitude and phase information.

The �nal stage integrates the environmental features and CSI data to predict spatial CSI. Features extracted

from the environment and encoded RX locations are again concatenated as tensors before being fed into the

learning model.The tensors are saved for reuse by multiple models. Notice that feeding positions and the raw

map separately into the model will cause in a degenerate e�ect of feature learning, due to that the features

are not aligned.

Multiple machine learning models are employed to predict spatial CSI by leveraging knowledge of physical

environments. The models utilized include GPT-2, VAE, Transformer, Di�usion Model which incorporates a
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U-Net inside, and MLP as baseline.

D. Results and Discussion

The models are all evaluated using NMSE metric.

In this task, the VAE achieves the best performance, represented by a smooth and gradually decreasing NMSE

curve in both training and validation sets, as shown in Fig.9. Meanwhile the time cost by VAE training is less

than typical large models.

Figure 9. The learning curve of VAE, exhibiting high accuracy and low NMSE in

the task of predicting spatial CSI distributed in an area of CUHK(SZ)

The Di�usion Model also shows robust performance in prediction. During early epochs, the NMSE might

�uctuate. However, as training progresses, the curve converges and stabilizes. Considering no obvious

progress in reducing NMSE after 30 epochs, early-stop is adopted and the lowest NMSE of validation set is

0.125 (Fig.10).
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Figure 10. The learning cutve of Di�usion model

GPT-2 and Transformer models, which are primarily tailored for sequence modeling, exhibit moderate

initial improvement in NMSE, with the curve plateauing early. At the same time, The MLP model, being the

simplest architecture, yields the highest NMSE across all epochs. The learning curves of all these three

models decrease slowly and sporadically, re�ecting their limited ability to capture CSI function. The

validation NMSE of them are signi�cantly higher than the training NMSE, indicating lack of �tting (Fig.11).
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Figure 11. Learning curves of GPT-2, Transformer and MLP

Epoch

Transformer GPT-2 MLP VAE Di�usion

Training Validation Training Validation Training Validation Training Validation Training Validation

1 0.5006 0.4960 0.5014 0.4966 0.5010 0.4964 0.1148 0.0647 0.1514 0.1496

10 0.4987 0.4941 0.5008 0.4962 0.5002 0.4956 0.0502 0.0495 0.1424 0.1445

20 0.4962 0.4918 0.5007 0.4960 0.4963 0.4918 0.0483 0.0467 0.1400 0.1661

30 0.4951 0.4908 0.4993 0.4943 0.4945 0.4899 0.0473 0.0453 0.1398 0.1456

60 0.4933 0.4890 0.4972 0.4906 0.4913 0.4869 0.0466 0.0439    

90 0.4919 0.4871 0.4916 0.4876 0.4902 0.4866 0.0464 0.0457    

120 0.4931 0.4863 0.4911 0.4871 0.4872 0.4833 0.0463 0.0445    

Table IV. Training and Validation NMSE Across Models and Epochs
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VIII. Conclusion

In this paper, the study starts with probablistic modeling like QuaDRiGa, and switches to a more robust,

physics-driven approach. By integrating raytracing-based channel generation technique, we successfully

create a highly realistic dataset which re�ects the sophisticated nature of real-world urban scenario.

Combined with the dataset, the use of large models like GPT-2 and VAE provide an e�ective solution for

predicting spatial CSI. Nevertheless, the incorporation of physical characteristics of the paths of the signal

reduces the uncertainty of the function to be learned by the model, hence reliably raises the accuracy of

prediction. The novel methodology is believed to be adaptive to totally di�erent and complex urban maps.

IX. Future Developments and Possible Applications

Future work on CSI prediction with machine learning could advance along multiple fronts. Adopting

architectures such as Mistral AI or Llama models, or models capable of handling complex graphs is a

promising direction. For the latter idea, applying GNN, VoxNet or PointNet could be helpful, but the

challenge of the feature engineering also exists.

The application potential for CSI prediction is considerable. One of the most immediate applications lies in

optimizing beamforming and antenna selection strategies in 5G and emerging 6G networks. Another

promising application is in vehicular and mobile robotics communications, where vehicles or drones require

robust and dynamic connection capabilities. In such cases, real-time CSI prediction enables adaptive signal

transmission, leading to improved reliability in motion-intensive scenarios. In addition, the integration of

these predictive models with other intelligent systems in smart cities or IoT environments o�ers potential

for advancements in resource allocation, where predicted CSI data could inform better network resource

deployment.
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