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Abstract

In this work we obtained some results on the real and complex roots of real polynomials of the
form P(z) = 2" + an—12™ " 4+ - - - + a1x + ao, where the a;, are real numbers for k € {0,...,n —1},
we also obtained results on linear Diophantine equations of the form ax + by + cz = d, where a, b, ¢
and d are integers.

To obtain the desired results, the relation that states the following was used: for any real
numbers A and B, there exists a unique real number ), such that A+ B = A\[A? + B?]. This result
is appropriately linked to the object of study.

For the polynomials, optimal domains were obtained where the real or complex roots are found,
without the use of higher calculus.

For the linear Diophantine equation, the desired solutions were obtained, which were found
by establishing several links between the Diophantine equation and the relationship A + B =
A[A% + B?]. Several examples of the results obtained are illustrated, which are intended to show
the benefits of this proposal.

Additionally, we obtained the solution of Fermat’s last Theorem in an elegant, simple and
unprecedented way, different from what has been done by other authors.
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1 Introduction

The study of polynomial roots and Diophantine equations remains an active area of research because
of their broad applications across mathematics (including numerical analysis), science, engineering,
computer science, and other fields. In linear algebra, for instance, they are essential in finding the
eigenvalues of operators and matrices. In control theory, polynomial roots are crucial in assessing a
system’s stability and overall behavior.

In numerical analysis, finding the roots of a polynomial is a fundamental problem. Several al-
gorithms have been developed to approximate these roots, such as Newton’s method, the bisection
method, Miiler’s method, Durand-Kerner method and others. These methods are essential in com-
putational mathematics and scientific computing. Néwton’s method may not converge if the initial
estimate is too far from a root. Some of these methods rely on the initial estimation interval in which
the algorithms are applied. While there are globally convergent methods, such as Miiller’'s method,
most of these techniques are fundamentally based on differential calculus.

In this work, without the use of differential calculus, the approximate real or complex roots of
polynomials of degree n with real coefficients are achieved, using as a starting point the method
presented in |7], [6] and [1]. Initial estimates of the roots of the polynomial are also given in a different
way than traditional. This method involves creating a connection between the problem under study
and the relationship expressed as: for any a1, as,...,a, € R, there exists a A that satisfies the equation
ar+az+ - +a, =A(a?+add+ - +a2).

Next, we present a general non-classical solution for the Diophantine equation of the form Az +
By+Cz = D. These types of equations are crucial due to their various applications in number theory,
algorithms and computing, as well as in geometry and topology.

We finish this work, presenting the proof of Fermat’s last theorem in an elegant and simple way.
In this work, N will be the set of natural numbers, Q the set of rational numbers and R the set of real
numbers.

2 Preliminaries
Let us consider the polynomial of degree n
p() = anx" + ap_1z” '+ -+ aw +ag,  a, # 0.

By the fundamental theorem of algebra it is known that p has n real or complex roots, counting
multiplicities. If all the coefficients ag, a1, ..., a, are real, then there are real or complex roots. In the
case of complex roots will occur in conjugate pairs, in the form ¢ + di, where ¢,d € R and i2 = —1. On
the other hand, if the coefficients are complex, it is not necessary that the complex roots be related.

There are methods to determine roots of a polynomial. For example, among the analytical methods
we have: the method of formulas (quadratic, cubic and quartic), the remainder theorem, the factor
theorem and the rational root theorem. Among the numerical methods we have: Synthetic division by
a simple factor, Synthetic division by a quadratic factor, Bairstow method, Laguerre method, Bernoulli
method, Newton’s method, Miiler’s method, Quotient difference algorithm, Graeffe square root method
and Jenkins-Traub method.

On the other hand, computational methods (use of Mathematical Software) combine a variety of
numerical and analytical methods to find the roots of polynomials efficiently and accurately. These
methods are carefully implemented to handle the complexities of high-degree polynomials with complex
coefficients. For example, the “Jenkins-Traub” method is an efficient and robust algorithm for finding
all roots of a polynomial, both real and complex.

The following Theorem is one of the many results that gives us how to take initial estimates
(intervals) where the roots are located.

Theorem 2.1. Given a polynomial p(x) = a,2" +an 12" 1+ +ag,a, # 0, define the polynomials

P(x) = |an| 2" + |an_1| 2" 4+ - + |ar] 2 — |ao],

n—1

Qz) = lan| 2™ = lan_1|2"" —=---—aq].



According to Descartes’ rules, P(x) has exactly one positive real zero r1 and Q(z) has exactly one
positive real zero ro. Then all zeros z of p(x) are in the annular region

r < |z] <y

Theorem 2.2. Let ay,...,a, be any real numbers, then there exists A € R, such that

Proof. Let f : R* — R be defined by f(z1,...,zs) = >, a;z;, be defined by f is a linear and
continuous functional. Therefore

R"™ = ker f @ (ker f). (1)

Thus we have that:
dim R" = dim Im f + dim ker f.

n =1+ dimker f.

Therefore dimker f =n — 1.
Thus, from we have:

n—1

(L1, 1) = X Nty + Ay, (2)

i=1
where {u1,...,u, 1} < ker f and u, € (ker f)*
From and taking into account that f is a linear functional, we have

f(lv"'71)=>‘f(un)7

since u,, = (ay,...,a,) € (ker f)*.

Using this last relation, which must be linked with the function to be maximized and with the given
restrictions. Below we show several problems that illustrate the given theory. O

3 About Polynomials

In this section we will find the roots of a polynomial of degree n of the form

1

P(x) = 2" 4+ ap_12" " + - + agz® + a1 + ao, (3)

with the condition that a; # 0 and ap < 0. Therefore the polynomial P(z) can be written as
P(z) = Q(x) + a1x + ag, where

Q(z) =" + ap_ra" ' 4+ + asx?. (4)
Using the technique described in the article [6] and assuming that z is a root of P(x), we obtain
Q(z) + az = A[Q*(z) + afz?]. (5)
From this last relationship we obtain

1 \/2by

1 \/2by
R W TPV Q

where b2 + b3 = 1,b; = b1 (), by = ba(x) and A = \(z).
From the relations (5)) and (6)) we obtain

—2 < Aap < 0. (8)



Theorem 3.1. Let P(z) = 2" 4+ ap_12" 1 + -+ + a2 + a12 + ag, where ag < 0 and a; > 0. If
2
p (o) =0, then there exists A > 0 such that 0 < A < ——,

ag
ag
—— < x¢ and <A< ——,
2(11 ai1xg ap
or
a 2
X ——O<xo and) < A< ——,
a1 ag
or
ap 2
O<zg<——andd< A< ——,
\ 2a4 ao
ag 1 2 2(10
where g = ——— + —[—af — —.
2&1 2&1 0 A

Proof. From the relation we obtain that

2
< ——.
<A<~ 9)
Also from (5)) we have
Q (z0) [1 — AQ (z0)] = a1xo [Narzo — 1]. (10)

From the relation and being @ (z¢) = —a1zo — 1 we obtain
(—a1mo — ag) [1 — A (—a1x0 — ag)] = a120 [Aarzg — 1]. (11)
From this equation , the following cases are derived.
i) Let —ajxo —ag > 0 and 1 + A (a1x0 + ag) > 0, from this we have

ar1zg > 0 and Aajxg —1 > 0,
or
a1xg9 < 0and Aajxg —1 < 0.
If —a129 — ag = a1xg, then
1+ (a1mo + ag) A < Aagzg — 1,
which is absourd —2 > Aag, ag < 0 and A > 0.

If —a129 — ap < a1xg, then
1+ (CL1.’130 + CLQ) A > dajxg — 1.

The relationship a;xg < 0 is false, since it is observed that —a;xy — ap < 0 which implies that
0 < ag, which is false.

Therefore we have

Qg 2
—— < x¢ and <A< ——.
2&1 a1 an

ii) Let —ayzo —ap <0 and 1 + A (a1 + ap) < 0 which implies that

ar1zo >0 and Aayjzg—1>0,
or

a1zo <0 and Aajzg—1<0.

The relationship in item (ii) is impossible, since a1z +ag > 0 and A > 0 imply A (a129 + ap) > 0
and since 1 4+ A (a1zo + ag) < 0 we have that 1 < 0, which is false.



iii) Let —a1z9 —ap <0 and 1+ A (ajzo + ag) > 0, from this we have

a1xg < 0and Aajxg—1>0,
or

ai1zo > 0and Aajzg—1<0.
Since —aj1xg —ag < a12p y 1 + A(ar1xo + ag) > Aajxg — 1 we have

P
~290 « ppand A < and A < ——,

ai a1Zo ao

that is,

an 1
—— <zogand 0 < A< ——.
ay ao

iv) Let —ajzg —ag > 0and 1 + A (a1z¢ + ag) < 0, from this we have

a1zg <0 and Aajzg—1>0,
or

a1rg >0 and Aajzg—1<0.

If —ajx0 —ap > a1z and 1+ A (a1x0 + ag) < Aaixo — 1, which is an impossible relationship.
If —a1x0 —ap > a1z and 1 4+ X (ayxo + ag) > Aayxo — 1, which implies that
2
0<a:o<—ﬂ and 0 < A < ——.
2a4 ao

In addition to the relation we obtain

Example 3.1. Find the roots of the polynomial of degree five
Px) =2 +a* + 2% + 22 + 2 2.

Solution 3.1. We have that ag = —2, a1 = 1 from the relation (i) we obtain

1
1<zgand — < A< 1.
zo

From the relation ( iii ) we obtain
2<zgandd < A<1

. From the relation (v ) we obtain

O<zg<landd< A<l

1 4 1
=144/ d+—=144/-1+=
ro =1+ +y=1% + 5
1

furthermore xog < x. Analyzing the variation of A\ and xo we have that
Taking A = 0.9 then x¢ = % and P (%) ~ —0.263374.

Taking A = 0.95 then xp =1 — 1£99 and P (1 — 1£99) ~ (0.446263.

This suggests to us that if we take A = 0.921935 then xo = 0.70901 and P(0.70901) ~ 0.

. The real root is



Remark 3.1. A connection between the given polynomial

"+ ap1 2"+t ajad 4 a4+ ag =0, (12)
and the relation
N N
MAy=2> A (13)
k=1 k=1
can give us other information to find the real or complex roots, in that sense we choose N = 2.
Al =2"+ap_ 12" L+ + aj+1xj+1 + aj,lxj_l + 4 a0z + arz. (14)
Ay = ajx’. (15)
Substituting the relations and into , we obtain
—ag = A [a?x% + (—aop — a;z?)?]. (16)

From the relation (@ we obtain

. ag 1 9 ap
==t ——af —2—. (17)
2aj 26Lj )‘j
Assuming that ag > 0, we have that A\; <0, therefore from the relation we obtain
2
- — <A <0. (18)
ao
Let’s define
2@0
From the relationship (@ completing squares we have
()\jCj)Q + (ao)\j + 1)2 =1. (20)
Parameterizing the relationship @ we have
1—1¢2 2t;
J J
jCj = 35 /\ja0+1 = 3 tj € [—171] (21)
1+¢2 1+ 12
From the relation we obtain
1+t
cj=— * Lag, t; € [-1;1). (22)
1—t;
From the relation (@ we obtain in the following
: agp tj .
)= — tie[-1;1 e{l,... 23
X ajxl_tja J [ ) >7 J {7 5”}3 ( )
or
io % b e-nD, jeq 24
W= T e[k, Jellon) (24

From the relation

|17

let’s set

-9 .
we have that if Aj € (=00, —) U {0, +0), then =7 is a complex number.
ao

In the relation

ao
d?:::a§+-2xg. (25)
From the relation (@ we obtain the following
NI 1 2t; (26)

ah+1 1+ aghj+1 1+



Using the relation (@) we obtain

(l()(l + tj)
dj = ————~. 2
Using the relation m we obtain
R (R A P T >0, jedl 2
T 20, + =, i), tje[-1,1), ap>0, je{l,...,n}, (28)
or )
R GRS i ) D >0, jell 2
T 2, =1, i), tje[-1,1), ap>0, je{l,...,n} (29)
Remark 3.2. Let P(x) = 2" + ap 12" ' + -+ a1x + ag, where ag < 0. Let
A = 2"4ap_ 12" 4+ aj+1:cj+1 + aj_lxj*1 + -+ asz? + arx. (30)
B = a1’ (31)
Using the relationship
A+ B =)\[A* + B?]. (32)
Working in the same way as what was done in the Observation we obtain the following
2
0< A <——, (33)
ao
and also
j ao tj .
) = — , tie[-1,1), ap <0, je{l,...,n}, (34)
aj 1-— tj
or
. ag 1 .
)= — |- , tie[-1,1), ap <0, je{l,...,n}. (35)
a; 1-— tj
2 A
For \j € (=00,0) U {——, +0) we obtain complex x7, which has the next way
aog
=00 (L (2EEY ) e e, a<0, jef 36
T 2aj< + ].—tj v, J [ 7>a ao s J {7"'7”}) ( )
or )
i@ (EELN ) e, a0 <0, je {1 37
X 2@]( ].—tj 1], g [ 7>’ aop s J {7"'7’”‘}' ( )

Example 3.2. Find the complex and real roots of the polynomial P(z) = 2° + x + 1.

. 1 . t;
sz—ao( ) or :cjzao< ! >, (38)
a; l—tj Q; 1—tj

where t; € [—1,0) U (0,1). In the relation @) for j =1 we have, ag = 1, a; = 1, then we obtain

x=—< ! ) or w=—4_ (39)

1—t 1—t

Solution 3.2. As

Fort; = % we obtain in (@)

r=-2 or x=1. (40)
1 L
Fort, = —3 we obtain in
2 1
rT=—= or x=—. (41)
3 3



From the relationship @) and we obtain x = _72 s a reasonable value.

Fort; = —i we have
1 4
= (—)=_= 42
‘ (1 + i) 5 (42)
Fort; = —% we have
4
- 43
r=-: (13)
‘ o -2_1 11 o _ 1
An approzrimate root is given for x = 5 =~ Only the midpoints of the intervals (—1, —§>
have been taken.
For complex roots we have
gl = -2 1+(1+tj)z' tj € [-1,0)u<0,1) (44)
2a; (1-t;) )" ’ T
or
Iy CURN G 1)) R R 45
€T 20,] (]_—tj)Z v [ 7>U<7>' ( )
Forj=1,a0=1,a1=1 andt1=% we have
1 , 1 .
x=—§(1+32) or x=—§(1—32). (46)
Fort; = % we have
1 5
z=—§+7i or x=—§—6i. (47)
Fort; = —% we have
1 1 1 1
x=—§+6i or x=—§—6i. (48)
Fort, = —i we have
1 3. 1 3.
z——§+1—01 or ¥=-5= 5% (49)

From the relations (@), , (@ , (@/ when evaluating the polynomial with these wvalues, it is
observed that the best approrimate root is given by relation ,
For the last two complex roots of the given polynomial, we have to

i) For j =5, a5 =1, ap =1 and t5 = 0 in the relation we have

z° =—% <1+ Gfg)z) ts € [-1,0) U <0, 1].

Using the formula

2 2
{L/7= ,"/|Z| I:Cos(9+ ﬂk)-ﬁ-isen(e—i_ 7T.k>:|, ke{O,l,...,n—l}.
n

n

For k = 0, the first fifth root would be xq = 0.8598326415 + 0.1361841118:. So on, for k = 3,
x3 = —0.6155722065 — 0.6155722065¢, this value is a good approximation for the complex root.

it) The approzimation given in item i) can be improved by varying the parameter ts. For example,
taking midpoints of the intervals [—1,0) or {0, 1].



4 About Number Theory
In this work we propose a new method to solve the Diophantine equation
Az + By +Cz=D. (50)

In we will assume that D > 0and D > A,D > B,D > C and A, B,C and D without common
factors. The technique consists of establishing a link between equation and the relationship:

Zn: ag = A z”: az. (51)

Here aj, are any real numbers and n is a natural number greater than or equal to 2 and X is unique.
In this case we use n = 2 and,

a1+ as = A\ (af +a3) . (52)
Let a; = Ax + By;as = Cz, from the relation and we obtain
D =\ [(Az + By)®> + C?2*] = M [(D — C2)* + C?27]. (53)

From the relation we obtain the following:

z=%i% —D2+%,whereo<)\1<%. (54)
Let
_pry 20 T3 (55)
At
From the relation the following is obtained
(MT1) + (DA —1)° = 1. (56)
The relation is conveniently written as:
(A) When
Dh —1= = ti and M) = 211 5, (57)
1+t 1+

where [t1| < 1.

m

Let t; = — where my and nq are prime numbers relative to each other. From the relation 1)
ni

we obtain

o2n? m1D
N =— -t = ) 58
1 D (m% + n%) s 41 n ( )

From the relation and we obtain

Z:2n10(n1+m1) or Z=W(n17m1). (59)
For z = ﬁ (n1 + my) and the equation we obtain
D ~
Ar+By=— (2n1 —ny —mq) = D. (60)
27L1

Again we apply the relationship by connecting it with .



Let a = Ax; By = b we get
D = [(Az)? + (By)?] = Ao [(Aa:)2 +(D— AI)Q]

From the relation we obtain

_b.m
T4 A
where
~, 2D
-D*+ = =12
A2

From the relation we obtain
) N 2
(&B)+OMTJ)=L

From the relation two possibilities arise

(A1)
~ 1—13 2ty
D>\2_1:1+t§ and )\2T2=1_|_tg
or
(A2)
l~))\2 —1= 215 and NIy = i
1+143 1+1t3°

ma . . .
where |t3] < 1 and t5 = — with mg and ny numbers relative cousins to each other.

n2

From the relation (A;) we obtain

o — 2n§ T mgﬁ
2= = — o ==
D (m3 +n3) 2

From the relations , and we obtain

D D 1
T <1+m2> — (n1 —my) x —— (n2 + ma)

T 24 T - 2n1 2Ang
or
D 1
T = Tm(nl_ml) X m(ng—mg)

From the relation A3) we obtain

(mg + 712)2 Ny — Mo \ ~
= =, TQ = _— D7 ) #* —Mma.
D (n3 +m3) ng + Mo

From the relations , and we obtain

5 Ng — Mo D 1
= 2 (1+ 222 ) = = (g - S
* 2A < + o +m2> 2n, (n1 —ma) 2A (ng + mo) (2nz)
or
D Ny — Mo D 2ma
=—(1- = — — 2
SC 2A ( no + m2> 2”1 (nl ml) 2A (’n2 +m2) ( nZ)

(64)



From case A), for z = % (n1 —my) we obtain in the equation

D <
Ax—i—By:%(nl—i-ml):D.
1

Again we apply the relationship by linking it with the relationship we obtain.

Let a = Ax, b = By we obtain

~
~ ~

D = %o [(Ax)? + (By)?] = Ao | (A2)? + (D — Ax)?

From the relation we obtain

5_%E
r=—+ =
24 7 24°
where
~, 2D
A2

Repeating the process carried out from the relation to the relation we obtain

- Mo X
T2: po -Da
UP)

where mo and 7l are relative primes.
From the relations and obtain the following solution

D Mo D .
w—2A<1+~> = i, (n1 + mq) (e + Mma),

na
or
D o D L
=~ (1=-22) = - )
DY < ﬁ2> AAni 7y (n1 +ma) (722 — o)

For the relation similar to the relation we have

T, = wﬁ, Mg # M.
(n2 +m2)

Using the relationship and we obtain the following solution

~

ﬁ T~L2 — ’I7~’L2 D (TLl + ml) 2’77,2
r=—(1+= = = X — —
2A Ng + Mo 4An, (Tig + o)

or

.5 (1_ﬁ2—m2>_D(n1+m1)x 2Ma

Y] Fio + 1712 4An, (7iz + M2)

(B) For this case we have the following situations

2ty 2t

DM —1=-—"L1_ \T = .
! 1+ T e

From the relation (83 we obtain
ﬂ:<m—va
ny +mq

11

(73)

(75)

(76)

(79)

(81)



From the relation y (54) we obtain

D - D 2
2 <1+”1ml>=x"1 (85)

B % ny +mq 2C (n1 + m1)7
or
D (ng —my) D 2my
= — ()= 2T
“Tac ( ny + my 2c * (n1 +my) (86)

After replacing in or replacing in , the same steps are performed, from the
relation until the relation .

From the relation and the relation we have

D 2 D 2
Am—i—By:D—xnl:D(l— ™ ): (m) _ 7 (87)
2 ni +my ni +my

After the relation the solutions are obtained

D o Dmy fig + My
r=— 1+ = = X = ,
2A o 2A (’ﬂl + ml) Mo
or
Dm1 % ’/:lg - 7%2
T = = .
2A (ny +mq) o
Similar for the other case see
Dm1 TZLQ — %2 Dml 2?12
r=—-—"——|1+ = o~ = X = —,
2(”1 +m1)A Ng + Mo 2A(n1+m1) Ty + Mo
or
Dmq 7:7,2 — 7%2 D (ml) 27%2
= —_— — — = X = =~.
2(n1+mp) A Ny + Mo 2A(n1+m1) Ry 4 mgy

From the relation and the relation the following is obtained:

D 2 D
Ax+By:D_xm):D(1_ al ) ™

2 (n1+m

= = D*. (88)
niy +mq mi + nq

Then we have the following solutions

T = X —
24 (n1 + ml) N9 ’
or
Dnl % ;LQ - 7%2
x = =
2A (ny +my) Fig
Similar for the other case, see
Dn1 % 27%2
T = — ——,
2A (n1 +mq) T + T
or
Dm iy
T = = =
2A (ny +mq) Ny + T

So we have the following solutions

12



S1)

_D(mi+mi)  D(ng—m) S D
277,10 ’ B 4A7’L1TLQ (n2 + m2)7 y= 4Bn1n2 (NQ m2) (nl ml) '
S)
_D(mi+my) D ~ Dmgy
z2= 2. T = i, (ny —my) (ne —ma);y = 1Bning (ng + mg) (ng —my).
S3)
_ D(m +m1)' _ D(nl—ml)ng_ _ Dmo (nl—ml)
27110 2711A (TLQ - m2) ’ 2B’ﬂ1 (le + mg) '
S4)
Z:D(nl—i-ml). :D(nl—ml)mg. _ Dng(nl—m1)
2’)7,10 2’)7,114 (7”L2 —mz)’ QBTLl (712 +m2)'
Ss)
_D(nl—ml). _D(n1+m1)(ﬁ2+7’h2). _ D - -
== 27110 N 4An1ﬁ2 = 4Bn1ﬁ2 [(TL1 + ml) (Tlg m2)] ’
Se)
_D(u—mi) _ D(ni+mi) (R —1m2). _
? 21,0 - 4Any i, Y= DBy, L+ ma) (2 + ma)].
S7)
Z_D(nl—ml). _ D(n1+m1) - :D(n1+m1)ﬁz2
2C T 24ng (fig +mg) 7 24ng (g + 1)
Sg)
Z:D(nl—ml)_ :D(n1+m1)m2. :D('fb1+m1)ﬁ2
2n,C 2An, (’flg + ﬁlg) Y 2An, (’ﬁg + 7712) '
So)
Y Dny o Dmq (7%2 + 77:12 o Dmy (7:12 — ﬁlg)
C(ny+my)’ 2A (ny +mq) Tio ’ 2B (n1 +m1)1:12'
S10)
Dn, Dmy <ﬁ2 - 7%2) Dmy <ﬁ2 + ﬁlg)
z= jx = - Ty = 2.
C (n1 + ml) 2A (n1 + ml) o 4 2B (m + ml) N9
S11)
B Dny ~ Dmy T Ly = Dy
C(n1 +mi)’ A(n1 +ma) (T:LQ +ﬁl2), B (ny +my) (7:12-1-7?12)
512)
B Dny _ Dmy o Ly = Dmy iy
Cln+my) "~ Any +my) (7:12—1-17:12)7 B(n1+m1)(ﬁg+ﬁm)

13




Si3)

z 2 D =
L Dy - Dy (ng + m2> - ni (Tlg m2>
C(ny+mq)’ 2A (n1 +mq) 7%2 7 2B (ny +m1)7%2.
S14)
= D =
. Dimy ) Dy (ng m2> ny (ng + m2>
= T = ~ Y = z -
Clnit+mi)  24(m +my) & 2B (n1 + m1) fz
Sis)
_ Dm _ Dn, iy Ly = Dnyiin
C(n1 +mq) A(ny +mq) (rELQ + ﬁm) B (ny +my) (%2 + 7%2)
S16)
B Dmy e Dny ﬁzg Ly = Dm?%z
T C(n+my)T A = 2\ z 2\
(n1 +ma) (n1 +m1) (ng + m2> B(ni+mq) | no+ m2>

Where the pairs of numbers (ny,m1), (no, ms), (fig, Ma), (

cousins to each other.

5 About Fermat’s Last Theorem

na, M2

Theorem 5.1. The equation x™ + y™ = 2™ has no positive integer solution for n = 3, n € N.

Proof. Suppose there are positive integer solutions z,y,z where GCD(z,y) = 1, GCD(x, 2)

GCD(y, z) = 1 satisfying
"ty =

Let

A:=2" B:=qy" C:=2".

Let’s use the relationship

A+ B+C = )\A*+ B>+ (7.

From the relations , and we obtain

22" = N2 +¢y*" + 2*"].

From the relation we have

1

_ =+ n o_
Achy

1
—C
2\ 2

.,L,'I’L

2",

n

z

)

=1

9

1
—C
)\ >

where ¢? + ¢34+ c2 =1, A e QT and c¢1,¢2 v ¢3 € Q. Using the relation and we obtain

c1+cy=c3+1.
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Using the relation ¢? + ¢3 + ¢3 = 1 and the relation given in (94) we obtain
C% + C% +c1c0 —c1 —co = 0. (95)

Using the relationship , and we obtain

2" (z" — i\) =z"y". (96)

Since A is positive rational, then \ := %, where
GCD(M,N) = 1. (97)

From and we have

From the relation we have the first possibility

z=Mr, reN. (99)
Using and we have r = 1. Then we get
M — N.M™ 1 = gy (100)

From the relation (100) we obtain that this is absurd because for z = M, the right hand side is not
divisible by z.
The second case in the relation is when M = 2", therefore from here we obtain

M? — N = 2"y". (101)
c c M
Since z™ = Xlandy" = ;,Where)\z N and as ¢1, 2 € Q7,0 <¢; € 1,0 < o < 1,
m m
we can express ¢; and co como ¢; = = and Ccy = —2, respectively, where GCD(my,n1) = 1y
iy no

GCD(mz,ns) = 1. Therefore

miN maoN
n_ "= . 102
. nmM’ y na M (102)

From the equation ([102) it follows that, given that GCD(z,y) = 1, it is true that
N = ning, mp = TlM, mo = '1"2_]\4-7 (103)

where GCD(Tl,’/‘Q) =1.
Therefore, substituting (103)) into (102)) we obtain

" =ring and y" = rong. (104)
Using the relation (104)) and (103)) in (101]) we obtain
M2 — NiNg = Tr1raning. (105)

From the relation (105 the only possibility is that
ning = 1. (106)

From ([106)) we obtain n; = ny = 1, which implies that ¢; = 1, ¢ = 1 and the equation ¢? +c3 +c2 =1
would be absurd. O
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6 Conclusions

It is interesting to observe that an appropriate connection between the object of study and the relation
Ai+---+A, =2>_, A? (where A, € R, k = 1, n € N, and X € R is unique) allows for the resolution
of classical problems. Remarkably, through this mechanism, it is possible to obtain approximate
zeros, both real and complex, of a real monic polynomial of degree IV, general solutions to the linear
Diophantine equation in three variables, and even a demonstration of Fermat’s Last Theorem. We
still do not fully understand why this method works; one possible explanation is that the problem
is transformed into an n-dimensional sphere, which is symmetric in relation to a coordinate system,
making it easier to approach.
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