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In this work we obtained some results on the real and complex roots of real polynomials of the form 

, where the   are real numbers for  , we also

obtained results on linear Diophantine equations of the form  , where   and   are

integers.

To obtain the desired results, the relation that states the following was used: for any real numbers 

 and  , there exists a unique real number  , such that  . This result is

appropriately linked to the object of study.

For the polynomials, optimal domains were obtained where the real or complex roots are found,

without the use of higher calculus.

For the linear Diophantine equation, the desired solutions were obtained, which were found by

establishing several links between the Diophantine equation and the relationship 

. Several examples of the results obtained are illustrated, which are intended to

show the bene�ts of this proposal.

Additionally, we obtained the solution of Fermat’s last Theorem in an elegant, simple and

unprecedented way, different from what has been done by other authors.

Qeios

P (x) = + + ⋯ + x +xn an−1x
n−1 a1 a0 ak k ∈ {0, … ,n − 1}

ax + by + cz = d a, b, c d

A B λ A + B = λ[ + ]A2 B2

A + B = λ[ + ]A2 B2
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1. Introduction

The study of polynomial roots and Diophantine equations remains an active area of research because of

their broad applications across mathematics (including numerical analysis), science, engineering,

computer science, and other �elds. In linear algebra, for instance, they are essential in �nding the

eigenvalues of operators and matrices. In control theory, polynomial roots are crucial in assessing a

system’s stability and overall behavior.

In numerical analysis, �nding the roots of a polynomial is a fundamental problem. Several algorithms

have been developed to approximate these roots, such as Newton’s method, the bisection method,

Müler’s method, Durand-Kerner method and others. These methods are essential in computational

mathematics and scienti�c computing. Néwton’s method may not converge if the initial estimate is too

far from a root. Some of these methods rely on the initial estimation interval in which the algorithms are

applied. While there are globally convergent methods, such as Müller’s method, most of these techniques

are fundamentally based on differential calculus.

In this work, without the use of differential calculus, the approximate real or complex roots of

polynomials of degree    with real coef�cients are achieved, using as a starting point the method

presented in[1][2], and[3]. Initial estimates of the roots of the polynomial are also given in a different way

than traditional. This method involves creating a connection between the problem under study and the

relationship expressed as: for any  , there exists a    that satis�es the equation 

.

Next, we present a general non-classical solution for the Diophantine equation of the form 

. These types of equations are crucial due to their various applications in number

theory, algorithms and computing, as well as in geometry and topology.

We �nish this work, presenting the proof of Fermat's last theorem in an elegant and simple way. In this

work,   will be the set of natural numbers,   the set of rational numbers,   the set of irrational numbers

and   the set of real numbers.

2. Preliminaries

Let us consider the polynomial of degree 

n

, , … , ∈ Ra1 a2 an λ

+ + ⋯ + = λ ( + + ⋯ + )a1 a2 an a2
1 a2

2 a2
n

Ax + By + Cz = D

N Q I

R

n

p(x) = + + ⋯ + x + , ≠ 0.anx
n an−1x

n−1 a1 a0 an
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By the fundamental theorem of algebra it is known that    has    real or complex roots, counting

multiplicities. If all the coef�cients   are real, then there are real or complex roots. In the case

of complex roots will occur in conjugate pairs, in the form  , where    and  . On the

other hand, if the coef�cients are complex, it is not necessary that the complex roots be related.

There are methods to determine roots of a polynomial. For example, among the analytical methods we

have: the method of formulas (quadratic, cubic and quartic), the remainder theorem, the factor theorem

and the rational root theorem. Among the numerical methods we have: Synthetic division by a simple

factor, Synthetic division by a quadratic factor, Bairstow method, Laguerre method, Bernoulli method,

Newton’s method, Müler’s method, Quotient difference algorithm, Graeffe square root method and

Jenkins-Traub method.

On the other hand, computational methods (use of Mathematical Software) combine a variety of

numerical and analytical methods to �nd the roots of polynomials ef�ciently and accurately. These

methods are carefully implemented to handle the complexities of high-degree polynomials with complex

coef�cients. For example, the “Jenkins-Traub” method is an ef�cient and robust algorithm for �nding all

roots of a polynomial, both real and complex.

The following Theorem is one of the many results that gives us how to take initial estimates (intervals)

where the roots are located.

Theorem 2.1. Given a polynomial  , de�ne the polynomials

According to Descartes’ rules,   has exactly one positive real zero   and   has exactly one positive real

zero  . Then all zeros   of   are in the annular region

Theorem 2.2. Let   be any real numbers, then there exists  , such that

Proof. Let    be de�ned by  , be de�ned by    is a linear and

continuous functional. Therefore

p n

, , … ,a0 a1 an

c ± di c,d ∈ R = −1i2

p(x) = + + ⋯ + , ≠ 0anx
n an−1x

n−1 a0 an

P (x) = | | + | | + ⋯ + | |x − | |,an xn an−1 xn−1 a1 a0

Q(x) = | | − | | − ⋯ − | |.an xn an−1 xn−1 a0

P (x) r1 Q(x)

r2 z p(x)

≤ |z| ≤r1 r2

, … ,a1 an λ ∈ R

= λ .∑
i=1

n

ai ∑
i=1

n

a2
i

f : → RRn f ( , … , ) =x1 xn ∑n
i=1 aixi f

= kerf ⊕ .Rn (kerf)⊥ (1)
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Thus we have that:

Therefore 

Thus, from (1) we have:

where   and 

From (2) and taking into account that   is a linear functional, we have

Using this last relation, which must be linked with the function to be maximized and with the given

restrictions. Below we show several problems that illustrate the given theory. 

3. About Polynomials

In this section we will �nd the roots of a polynomial of degree   of the form

with the condition that    and  . Therefore the polynomial    can be written as 

, where

Using the technique described in the article[2] and assuming that   is a root of  , we obtain

From this last relationship we obtain

dim = dim Imf + dim kerf.Rn

n = 1 + dim kerf.

dim kerf = n − 1.

(1, 1, … , 1) = + λ ,∑
i=1

n−1

λiui un (2)

{ , … , } ⊂ kerfu1 un−1 ∈un (kerf)⊥

f

f(1, … , 1) = λf ( ),un

= λ ,∑
i=1

n

ai ∑
i=1

n

a2
i

 since  = ( , … , ) ∈ .un a1 an (kerf)⊥

□

n

P (x) = + + ⋯ + + x + ,xn an−1x
n−1 a2x

2 a1 a0 (3)

≠ 0a1 < 0a0 P (x)

P (x) = Q(x) + x +a1 a0

Q(x) = + + ⋯ + .xn an−1x
n−1 a2x

2 (4)

x P (x)

Q(x) + x = λ [ (x) + ].a1 Q2 a2
1x

2 (5)

Q(x) − = .
1

2λ

2–√ b1

2|λ|
(6)

x − = .a1
1

2λ

2–√ b2

2|λ|
(7)
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where   and 

From the relations (5) and (6) we obtain

Theorem 3.1. Let  , where   and  . If  ,

then there exists   such that  ,

where  .

Proof. From the relation (8) we obtain that

Also from (5) we have

From the relation (10) and being   we obtain

From this equation (11), the following cases are derived.

i) Let  , from this we have

or

If  , then

which is absourd   and  .

If  , then

+ = 1, = (x), = (x)b2
1 b2

2 b1 b1 b2 b2 λ = λ(x).

−2 ≤ λ ≤ 0.a0 (8)

P (x) = + + ⋯ + + x +xn an−1x
n−1 a2x

2 a1 a0 < 0a0 > 0a1 p ( ) = 0x0

λ > 0 0 < λ ≤ − 2
a0

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪

− ≤ and < λ < − ,a0

2a1
x0

1
a1x0

2
a0

or

− < and 0 < λ ≤ − ,a0

a1
x0

2
a0

or

0 < < − and 0 < λ < − ,x0
a0

2a1

2
a0

= − ±x0
a0

2a1

1
2a1

− −a2
0

2a0

λ

− −−−−−−−
√

0 < λ ≤ − .
2

a0

(9)

Q ( ) [1 − λQ ( )] = [λ − 1].x0 x0 a1x0 a1x0 (10)

Q ( ) = − − 1x0 a1x0

(− − ) [1 − λ (− − )] = [λ − 1].a1x0 a0 a1x0 a0 a1x0 a1x0 (11)

− − > 0 and 1 + λ ( + ) > 0a1x0 a0 a1x0 a0

> 0 and λ − 1 > 0,a1x0 a1x0

< 0 and λ − 1 < 0.a1x0 a1x0

− − ⩾a1x0 a0 a1x0

1 + ( + )λ < λ − 1,a1x0 a0 a1x0

−2 > λ , < 0a0 a0 λ > 0

− − ≤a1x0 a0 a1x0
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The relationship    is false, since it is observed that   which implies that  ,

which is false.

Therefore we have

ii) Let   and   which implies that

or

The relationship in item (ii) is impossible, since   and    imply   and

since   we have that  , which is false.

iii) Let  , from this we have

or

Since   y   we have

that is,

iv) Let  , from this we have

or

1 + ( + )λ > λ − 1.a1x0 a0 a1x0

< 0a1x0 − − < 0a1x0 a0 0 < a0

− ≤ and < λ < − .
a0

2a1
x0

1

a1x0

2

a0

− − < 0a1x0 a0 1 + λ ( + ) < 0a1x0 a0

> 0 and λ − 1 > 0,a1x0 a1x0

< 0 and λ − 1 < 0.a1x0 a1x0

+ > 0a1x0 a0 λ > 0 λ ( + ) > 0a1x0 a0

1 + λ ( + ) < 0a1x0 a0 1 < 0

− − < 0 and  1 + λ ( + ) >0a1x0 a0 a1x0 a0

< 0 and λ − 1 >0,a1x0 a1x0

> 0 and λ − 1 < 0.a1x0 a1x0

− − <a1x0 a0 a1x0 1 + λ ( + ) > λ − 1a1x0 a0 a1x0

− <  and λ <  and λ ≤ − ,
a0

â1

x0
1

a1x0

2

a0

− <  and 0 < λ ≤ − .
a0

a1
x0

1

a0

− − > 0 and 1 + λ ( + ) < 0a1x0 a0 a1x0 a0

< 0 and λ − 1 >0,a1x0 a1x0

> 0 and λ − 1 < 0.a1x0 a1x0
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If   and  , which is an impossible relationship.

If   and  , which implies that

In addition to the relation (10) we obtain

Example 3.1. Find the roots of the polynomial of degree �ve

Solution 3.1. We have that  ,   from the relation (i) we obtain

From the relation (iii) we obtain

From the relation (iv) we obtain

The real root is

furthermore  . Analyzing the variation of   and   we have that

Taking   then   and  .

Taking   then   and  .

This suggests to us that if we take   then   and  .

Remark 3.1. A connection between the given polynomial

and the relation

− − >a1x0 a0 a1x0 1 + λ ( + ) < λ − 1a1x0 a0 a1x0

− − >a1x0 a0 a1x0 1 + λ ( + ) > λ − 1a1x0 a0 a1x0

0 < < −  and 0 < λ < − .x0
a0

2a1

2

a0

= − ± , 0 < λ ≤ − .x0
a0

2a1

1

2a1
− −a2

0

2a0

λ

− −−−−−−−−
√

2

a0

□

P (x) = + + + + x − 2.x5 x4 x3 x2

= −2a0 = 1a1

1 ≤  and  < λ < 1.x0
1

x0

2 <  and 0 < λ ≤ 1.x0

0 < < 1 and 0 < λ < 1.x0

= 1 ± = 1 ± ,x0
1

2
−4 +

4

λ

− −−−−−−
√ −1 +

1

λ

− −−−−−−
√

<x0
1
λ

λ x0

λ = 0.9 =x0
2
3

P ( ) ≈ −0.2633742
3

λ = 0.95 = 1 −x0
19√

19
P (1 − ) ≈ 0.44626319√

19

λ = 0.921935 = 0.70901x0 P (0.70901) ≈ 0

+ + ⋯ + + ⋯ + x + = 0,xn an−1x
n−1 ajx

j a1 a0 (12)

= λ∑
k=1

N

Ak ∑
k=1

N

A2
k

(13)
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can give us other information to �nd the real or complex roots, in that sense we choose  .

Substituting the relations (14) and (15) into (13), we obtain

From the relation (16) we obtain

Assuming that  , we have that  , therefore from the relation (17) we obtain

Let’s de�ne

From the relationship (19) completing squares we have

Parameterizing the relationship (20) we have

From the relation (21) we obtain

From the relation (22) we obtain in (17) the following

or

From the relation (18) we have that if  , then   is a complex number.

In the relation (17) let’s set

N = 2

= + + ⋯ + + + ⋯ + + x.A1 xn an−1x
n−1 aj+1x

j+1 aj−1x
j−1 a2x

2 a1 (14)

= .A2 ajx
j (15)

− = [ + ].a0 λj a2
jx

2j (− − )a0 ajx
j 2 (16)

= − ± .xj
a0

2aj

1

2aj
− − 2a2

0

a0

λj

− −−−−−−−−
√ (17)

> 0a0 < 0λj

− ≤ < 0.
2

a0
λj (18)

:= − − .c2
j a2

0

2a0

λj
(19)

+ = 1.( )λjcj
2 ( + 1)a0λj

2 (20)

= , + 1 = , ∈ [−1, 1].λjcj
1 − t2

j

1 + t2
j

λja0

2tj

1 + t2
j

tj (21)

= − , ∈ [−1; 1⟩.cj
1 + tj

1 − tj
a0 tj (22)

= × , ∈ [−1; 1⟩, j ∈ {1, … ,n},xj
a0

aj

tj

1−tj
tj (23)

= − × , ∈ [−1; 1⟩, j ∈ {1, … ,n}.xj
a0

aj

1
1−tj

tj (24)

∈ ⟨−∞, ⟩ ∪ ⟨0, +∞⟩λj
−2
a0

xj
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From the relation (25) we obtain the following

Using the relation (26) we obtain

Using the relation (27) in (17) we obtain

or

Remark 3.2. Let  , where  . Let

Using the relationship

Working in the same way as what was done in the Observation (3.1) we obtain the following

and also

or

For   we obtain complex  , which has the next way

:= + 2 .d2
j a2

0

a0

λj
(25)

= , = .
djλj

+ 1a0λj

1 − t2
j

1 + t2
j

1

+ 1a0λj

2tj

1 + t2
j

(26)

= .dj
(1 + )a0 tj

1 − tj
(27)

= (−1 +( ) i), ∈ [−1, 1⟩, > 0, j ∈ {1, … ,n},xj
a0

2aj

1 + tj

1 − tj
tj a0 (28)

= (−1 −( ) i), ∈ [−1, 1⟩, > 0, j ∈ {1, … ,n}.xj
a0

2aj

1 + tj

1 − tj
tj a0 (29)

P (x) = + + ⋯ + x +xn an−1x
n−1 a1 a0 < 0a0

A := + + ⋯ + + + ⋯ + + x.xn an−1x
n−1 aj+1x

j+1 aj−1x
j−1 a2x

2 a1 (30)

B := .ajx
j (31)

A + B = [ + ].λj A
2 B2 (32)

0 < ≤ − ,λj
2

a0
(33)

= ( ), ∈ [−1, 1⟩, < 0, j ∈ {1, … ,n},xj
a0

aj

tj

1 − tj
tj a0 (34)

= (− ), ∈ [−1, 1⟩, < 0, j ∈ {1, … ,n}.xj
a0

aj

1

1 − tj
tj a0 (35)

∈ ⟨−∞, 0⟩ ∪ ⟨− , +∞⟩λj
2
a0

xj

= (−1 +( ) i), ∈ [−1, 1⟩, < 0, j ∈ {1, … ,n},xj
a0

2aj

1 + tj

1 − tj
tj a0 (36)
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or

Example 3.2. Find the complex and real roots of the polynomial  .

Solution 3.2. As

where  . In the relation (38) for   we have,  ,  , then we obtain

For   we obtain in (39)

For   we obtain in (39)

From the relationship (40) and (41) we obtain   is a reasonable value.

For   we have

For   we have

An approximate root is given for  . Only the midpoints of the intervals   have been

taken.

For complex roots we have

or

= (−1 −( ) i), ∈ [−1, 1⟩, < 0, j ∈ {1, … ,n}.xj
a0

2aj

1 + tj

1 − tj
tj a0 (37)

P (x) = + x + 1x5

= − ( ) or = ( ),xj
a0

aj

1

1 − tj
xj

a0

aj

tj

1 − tj
(38)

∈ [−1, 0⟩ ∪ ⟨0, 1⟩tj j = 1 = 1a0 = 1a1

x = −( ) or x = .
1

1 − tj

tj

1 − tj
(39)

=t1
1
2

x = −2 or x = 1. (40)

= −t1
1
2

x = − or x = .
2

3

1

3
(41)

x = −2

3

= −t1
1
4

x = −( ) = − .
1

1 + 1
4

4

5
(42)

= −t1
3
4

x = − .
4

7
(43)

x = = −
− −2

3

4

5

2
11
15

⟨−1, − ⟩1
2

= − (1 + i), ∈ [−1, 0⟩ ∪ ⟨0, 1⟩,xj
a0

2aj

(1 + )tj

(1 − )tj
tj (44)

= − (1 − i), ∈ [−1, 0⟩ ∪ ⟨0, 1⟩.xj
a0

2aj

(1 + )tj

(1 − )tj
tj (45)
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For  ,  ,   and   we have

For   we have

For   we have

For   we have

From the relations (46), (47), (48) , (49) when evaluating the polynomial with these values, it is observed that the

best approximate root is given by relation (47).

For the last two complex roots of the given polynomial, we have to

i) For  ,  ,   and   in the relation (44) we have

Using the formula

For  , the �rst �fth root would be  . So on, for  , 

, this value is a good approximation for the complex root.

ii) The approximation given in item i) can be improved by varying the parameter  . For example, taking

midpoints of the intervals   or  .

4. About Number Theory

In this work we propose a new method to solve the Diophantine equation

In (50) we will assume that    and    and    and    without common

factors. The technique consists of establishing a link between equation (50) and the relationship:

j = 1 = 1a0 = 1a1 =t1
1
2

x = − (1 + 3i) or x = − (1 − 3i).
1

2

1

2
(46)

=t1
1
4

x = − + i or x = − − i.
1

2

5

6

1

2

5

6
(47)

= −t1
1
2

x = − + i or x = − − i.
1

2

1

6

1

2

1

6
(48)

= −t1
1
4

x = − + i or x = − − i.
1

2

3

10

1

2

3

10
(49)

j = 5 = 1a5 = 1a0 = 0t5

= − (1 +( ) i), ∈ [−1, 0⟩ ∪ ⟨0, 1].x5 1

2

1 + 0

1 − 0
t5

= [cos( )+ isen( )],k ∈ {0, 1, … ,n − 1}.z√n |z|
−−

√n
θ + 2πk

n

θ + 2πk
n

k = 0 = 0.8598326415 + 0.1361841118ix0 k = 3

= −0.6155722065 − 0.6155722065ix3

t5

[−1, 0⟩ ⟨0, 1]

Ax + By + Cz = D. (50)

D > 0 D > A,D > B,D > C A,B,C D

qeios.com doi.org/10.32388/JMY9N1.3 11

https://www.qeios.com/
https://doi.org/10.32388/JMY9N1.3


Here   are any real numbers and   is a natural number greater than or equal to 2 and   is unique. In this

case we use   and,

Let  , from the relation (52) and (50) we obtain

From the relation (53) we obtain the following:

Let

From the relation (55) the following is obtained

The relation (56) is conveniently written as:

(A) When

where  .

Let   where   and   are prime numbers relative to each other. From the relation (57) we obtain

From the relation (58) and (54) we obtain

For   and the equation (50) we obtain

= λ .∑
k=1

n

ak ∑
k=1

n

a2
k

(51)

ak n λ

n = 2

+ = ( + ).a1 a2 λ1 a2
1 a2

2 (52)

= Ax + By; = Cza1 a2

D = [ + ] = [ + ].λ1 (Ax + By)2
C2z2 λ1 (D − Cz)2

C2z2 (53)

z = ± , where 0 < ≤ .
D

2C

1

2C
− +D2 2D

λ1

− −−−−−−−−

√ λ1
2

D
(54)

− + = .D2 2D

λ1
T 2

1 (55)

+ = 1.( )λ1T1
2 (D − 1)λ1

2 (56)

D − 1 =  and  = ,λ1

1 − t2
1

1 + t2
1

λ1T1
2t1

1 + t2
1

(57)

| | ≤ 1t1

=t1
m1

n1
m1 n1

= , = .λ1

2n2
1

D ( + )m2
1 n2

1

T1
Dm1

n1
(58)

z = ( + )  or z = ( − ).
D

2 Cn1
n1 m1

D

2 Cn1
n1 m1 (59)

z = ( + )D

2 Cn1
n1 m1

Ax + By = (2 − − ) = .
D

2n1
n1 n1 m1 D

∼
(60)
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Again we apply the relationship (51) by connecting it with (60).

Let   we get

From the relation (61) we obtain

where

From the relation (63) we obtain

From the relation (64) two possibilities arise

( )

or

( )

where   and   with   and   numbers relative cousins to each other.

From the relation   we obtain

From the relations (60), (62) and (67) we obtain

or

a = Ax;By = b

= [ + ] = [ + ]D
∼

λ2 (Ax)2 (By)2
λ2 (Ax)2 ( − Ax)D

∼ 2
(61)

x = ± ,
D
∼

2A

T2

2A
(62)

− + = .D
∼ 2 2D

∼

λ2
T 2

2 (63)

+ = 1.( )λ2T2
2 ( − 1)D

∼
λ2

2
(64)

A1

− 1 = and =D
∼
λ2

1 − t2
2

1 + t2
2

λ2T2
2t2

1 + t2
2

(65)

A2

− 1 = and = ,D
∼
λ2

2t2

1 + t2
2

λ2T2

1 − t2
2

1 + t2
2

(66)

| | ≤ 1t2 =t2
m2

n2
m2 n2

( )A1

= , =λ2

2n2
2

( + )D
∼

m2
2 n2

2

T2
m2

n2
D
∼

(67)

x = (1 + ) = ( − ) × ( + )
D
∼

2A

m2

n2

D

2n1
n1 m1

1

2An2
n2 m2 (68)
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From the relation   we obtain

From the relations (60), (62) and (70) we obtain

or

From case A), for   we obtain in the equation (50)

Again we apply the relationship (51) by linking it with the relationship (73) we obtain.

Let  ,   we obtain

From the relation (74) we obtain

where

Repeating the process carried out from the relation (64) to the relation (72) we obtain

where   and   are relative primes.

From the relations (75) and (77) obtain the following solution

x = ( − ) × ( − )
D

2n1
n1 m1

1

2An2
n2 m2 (69)

)A2

= , = ( ) , ≠ − .λ2

( + )m2 n2
2

( + )D
∼

n2
2 m2

2

T2
−n2 m2

+n2 m2
D
∼

n2 m2 (70)

x = (1 + ) = ( − ) × (2 )
D
∼

2A

−n2 m2

+n2 m2

D

2n1
n1 m1

1

2A ( + )n2 m2

n2 (71)

x = (1 − ) = ( − ) × (2 ).
D
∼

2A

−n2 m2

+n2 m2

D

2n1
n1 m1

2m2

2A ( + )n2 m2

n2 (72)

z = ( − )D

2 Cn1
n1 m1

Ax + By = ( + ) = .
D

2n1
n1 m1 D

∼
∼

(73)

a = Ax b = By

= [ + ] = [ + ].D
∼
∼

λ
∼

2 (Ax)2 (By)2
λ
∼

2 (Ax)2 ( − Ax)D
∼
∼ 2

(74)

x = ± ,
D
∼
∼

2A

T
∼

2

2A
(75)

− + = .D
∼
∼ 2

2D
∼
∼

λ
∼

2

T
∼2

2 (76)

= ,T
∼

2
m
∼

2

n
∼

2

D
∼
∼

(77)

m
∼

2 n
∼

2
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or

For the relation similar to the relation (77) we have

Using the relationship (80) and (75) we obtain the following solution

or

(B) For this case we have the following situations

From the relation (83) we obtain

From the relation (84) y (54) we obtain

or

After replacing (85) in (50) or replacing (86) in (50), the same steps are performed, from the relation (60)

until the relation (82).

From the relation (85) and the relation (50) we have

x = (1 + ) = ( + ) ( + ),D
∼

2A

m
∼

2

n
∼

2

D

4An1n
∼

2

n1 m1 n
∼

2 m
∼

2 (78)

x = (1 − ) = ( + ) ( − ).
D
∼

2A
m
∼

2

n
∼

2

D

4An1n
∼

2

n1 m1 n
∼

2 m
∼

2 (79)

= , ≠ .T
∼

2

( − )n
∼

2 m
∼

2

( + )n
∼

2 m
∼

2

D
∼
∼

n
∼

2 m
∼

2 (80)

x = (1 + ) = × ,
D
∼
∼

2A

−n
∼

2 m
∼

2

+n
∼

2 m
∼

2

D ( + )n1 m1

4An1

2n
∼

2

( + )n
∼

2 m
∼

2

(81)

x = (1 − ) = × .
D
∼
∼

2A

−n
∼

2 m
∼

2

+n
∼

2 m
∼

2

D ( + )n1 m1

4An1

2m
∼

2

( + )n
∼

2 m
∼

2

(82)

D − 1 = , = .λ1
2t1

1 + t2
1

λ1T1
2t1

1 + t2
1

(83)

= ( )D.T1
−n1 m1

+n1 m1

(84)

z = (1 + ) = × ,
D

2C

−n1 m1

+n1 m1

D

2C

2n1

( + )n1 m1

(85)

z = (1 − ) = × .
D

2C

( − )n1 m1

+n1 m1

D

2C

2m1

( + )n1 m1

(86)

Ax + By = D − × = D(1 − ) = = .
D

2

2n1

+n1 m1

n1

+n1 m1

D ( )m1

+n1 m1
D
∼
∼
∼

(87)
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After the relation (87) the solutions are obtained

or

Similar for the other case see (70)

or

From the relation (86) and the relation (50) the following is obtained:

Then we have the following solutions

or

Similar for the other case, see (70)

or

x = 1 + = × ,
D
∼
∼
∼

2A

⎛

⎝

m
∼
∼

2

n
∼
∼

2

⎞

⎠

Dm1

2A ( + )n1 m1

+n
∼
∼

2 m
∼
∼

2

n
∼
∼

2

x = × .
Dm1

2A ( + )n1 m1

−n
∼
∼

2 m
∼
∼

2

n
∼
∼

2

x = 1 + = × ,
Dm1

2 ( + )An1 m1

⎛

⎝

−n
∼
∼

2 m
∼
∼

2

+n
∼
∼

2 m
∼
∼

2

⎞

⎠

Dm1

2A ( + )n1 m1

2n
∼
∼

2

+n
∼
∼

2 m
∼
∼

2

x = 1 + = × .
Dm1

2 ( + )An1 m1

⎛

⎝

−n
∼
∼

2 m
∼
∼

2

+n
∼
∼

2 m
∼
∼

2

⎞

⎠

D ( )m1

2A ( + )n1 m1

2m
∼
∼

2

+n
∼
∼

2 m
∼
∼

2

Ax + By = D − × = D(1 − ) = = .
D

2

2n1

( + )n1 m1

n1

+n1 m1

Dn1

+m1 n1
D∗ (88)

x = × ,
Dn1

2A ( + )n1 m1

⎛

⎝

⎜⎜
+n

∼
∼
∼

2 m
∼
∼
∼

2

n
∼
∼

2

⎞

⎠

⎟⎟

x = × .
Dn1

2A ( + )n1 m1

⎛

⎝

⎜⎜
−n

∼
∼
∼

2 m
∼
∼
∼

2

n
∼
∼
∼

2

⎞

⎠

⎟⎟

x = × ,
Dn1

2A ( + )n1 m1

2n
∼
∼

2

+n
∼
∼
∼

2 m
∼
∼
∼

2
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So we have the following solutions

x = × .
Dn1

2A ( + )n1 m1

2m
∼
∼
∼

2

+n
∼
∼
∼

2 m
∼
∼
∼

2

)S1

z = ;x = ( + );y = ( − ) ( − ).
D ( + )n1 m1

2 Cn1

D ( − )n1 m1

4An1n2
n2 m2

D

4Bn1n2
n2 m2 n1 m1

)S2

z = ;x = ( − ) ( − );y = ( + ) ( − ).
D ( + )n1 m1

2 Cn1

D

4An1n2

n1 m1 n2 m2
Dm2

4Bn1n2

n2 m2 n1 m1

)S3

z = ;x = ;y = .
D ( + )n1 m1

2 Cn1

D ( − )n1 m1 n2

2 A ( − )n1 n2 m2

D ( − )m2 n1 m1

2B ( + )n1 n2 m2

)S4

z = ;x = ;y = .
D ( + )n1 m1

2 Cn1

D ( − )n1 m1 m2

2 A ( − )n1 n2 m2

D ( − )n2 n1 m1

2B ( + )n1 n2 m2

)S5

z = ;x = ;y = [( + ) ( − )].
D ( − )n1 m1

2 Cn1

D ( + ) ( + )n1 m1 n
∼

2 m
∼

2

4An1n
∼

2

D

4Bn1n
∼

2

n1 m1 n
∼

2 m
∼

2

)S6

z = ;x = ;y = [( + ) ( + )].
D ( − )n1 m1

2 Cn1

D ( + ) ( − )n1 m1 n
∼

2 m
∼

2

4An1n
∼

2

D

4Bn1n
∼

2

n1 m1 n
∼

2 m
∼

2

)S7

z = ;x = ;y = .
D ( − )n1 m1

2 Cn1

D ( + )n1 m1

2A ( + )n1 n
∼

2 m
∼

2

n
∼

2

D ( + )n1 m1 m
∼

2

2A ( + )n1 n
∼

2 m
∼

2

)S8

z = ;x = ;y = .
D ( − )n1 m1

2 Cn1

D ( + )n1 m1 m
∼

2

2A ( + )n1 n
∼

2 m
∼

2

D ( + )n1 m1 n
∼

2

2A ( + )n1 n
∼

2 m
∼

2

)S9

qeios.com doi.org/10.32388/JMY9N1.3 17

https://www.qeios.com/
https://doi.org/10.32388/JMY9N1.3


z = ;x = ;y = .
Dn1

C ( + )n1 m1

Dm1

2A ( + )n1 m1

( + )n
∼
∼

2 m
∼
∼

2

n
∼
∼

2

D ( − )m1 n
∼
∼

2 m
∼
∼

2

2B ( + )n1 m1 n
∼
∼

2

)S10

z = ;x = ;y = .
Dn1

C ( + )n1 m1

Dm1

2A ( + )n1 m1

( − )n
∼
∼

2 m
∼
∼

2

n
∼
∼

2

D ( + )m1 n
∼
∼

2 m
∼
∼

2

2B ( + )n1 m1 n
∼
∼

2

)S11

z = ;x = ;y = .
Dn1

C ( + )n1 m1

Dm1

A ( + )n1 m1

n
∼
∼

2

( + )n
∼
∼

2 m
∼
∼

2

Dm1m
∼
∼

2

B ( + )( + )n1 m1 n
∼
∼

2 m
∼
∼

2

)S12

z = ;x = ;y = .
Dn1

C ( + )n1 m1

Dm1

A ( + )n1 m1

n
∼
∼

2

( + )n
∼
∼

2 m
∼
∼

2

Dm1n
∼
∼

2

B ( + )( + )n1 m1 n
∼
∼

2 m
∼
∼

2

)S13

z = ;x = ;y = .
Dm1

C ( + )n1 m1

Dn1

2A ( + )n1 m1

( + )n
∼
∼
∼

2 m
∼
∼
∼

2

n
∼
∼
∼

2

D ( − )n1 n
∼
∼
∼

2 m
∼
∼
∼

2

2B ( + )n1 m1 n
∼
∼
∼

2

)S14

z = ;x = ;y = .
Dm1

C ( + )n1 m1

Dn1

2A ( + )n1 m1

( − )n
∼
∼
∼

2 m
∼
∼
∼

2

n
∼
∼
∼

2

D ( + )n1 n
∼
∼
∼

2 m
∼
∼
∼

2

2B ( + )n1 m1 n
∼
∼
∼

2

)S15

z = ;x = ;y = .
Dm1

C ( + )n1 m1

Dn1

A ( + )n1 m1

n
∼
∼
∼

2

( + )n
∼
∼
∼

2 m
∼
∼
∼

2

Dn1m
∼
∼
∼

2

B ( + )( + )n1 m1 n
∼
∼
∼

2 m
∼
∼
∼

2

)S16
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Where the pairs of numbers    are relative cousins to

each other.

5. About Fermat’s Last Theorem

Theorem 5.1. The equation   has no positive integer solution for  ,  .

Proof. Suppose there are positive integer solutions    where  ,  , 

 satisfying

Let

Let’s use the relationship

From the relations (89), (90) and (91) we obtain

From the relation (92) we have

where  ,   and   y  . Using the relation (93) and (89) we obtain

Using the relation   and the relation given in (94) we obtain

Using the relationship (89), (93) and (95) we obtain

Since   is positive rational, then  , where

z = ;x = ;y = .
Dm1

C ( + )n1 m1

Dn1

A ( + )n1 m1

m
∼
∼
∼

2

( + )n
∼
∼
∼

2 m
∼
∼
∼

2

Dn1n
∼
∼
∼

2

B ( + )( + )n1 m1 n
∼
∼
∼

2 m
∼
∼
∼

2

( , ) , ( , ) , ( , ) ,( , ) ,( , )n1 m1 n2 m2 n
∼

2 m
∼

2 n
∼
∼

2 m
∼
∼

2 n
∼
∼
∼

2 m
∼
∼
∼

2

+ =xn yn zn n ≥ 3 n ∈ N

x,y, z GCD(x,y) = 1 GCD(x, z) = 1

GCD(y, z) = 1

+ = .xn yn zn (89)

A := ,B := ,C := .xn yn zn (90)

A + B + C = λ[ + + ].A2 B2 C2 (91)

2 = λ[ + + ].zn x2n y2n z2n (92)

= , = , − = ,xn
1

λ
c1 yn

1

λ
c2 zn

1

λ

1

λ
c3 (93)

+ + = 1c2
1 c2

2 c2
3 λ ∈ Q+ ,c1 c2 ∈ Qc3

+ = + 1.c1 c2 c3 (94)

+ + = 1c2
1 c2

2 c2
3

+ + − − = 0.c2
1 c2

2 c1c2 c1 c2 (95)

( − ) = .zn zn
1

λ
xnyn (96)

λ λ := M

N
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From (97) and (96) we have

From the relation (98) we have the �rst possibility

Using (99) and (98) we have  . Then we get

From the relation (100) we obtain that this is absurd because for  , the right hand side is not

divisible by  .

The second case in the relation (98) is when  , therefore from here we obtain

Since   and  , where  , and as  ,  , we can express 

  and    como    and  , respectively, where    y  .

Therefore

From the equation (102) it follows that, given that  , it is true that

where  .

Therefore, substituting (103) into (102) we obtain 

Using the relation (104) and (103) in (101) we obtain

From the relation (105) the only possibility is that 

From (102) we obtain  , which implies that  ,    and the equation 

 would be absurd.

From the relation (102) when   and  . Taking the relation

GCD(M,N) = 1. (97)

( − ) = .zn zn
N

M
xnyn (98)

z = Mr, r ∈ N. (99)

r = 1

− N. = .M 2n M n−1 xnyn (100)

z = M

z

M = zn

− N = .M 2 xnyn (101)

=xn
c1

λ
=yn

c2

λ
λ = M

N
, ∈c1 c2 Q+ 0 < ≤ 1, 0 < ≤ 1c1 c2

c1 c2 =c1
m1

n1
=c2

m2

n2
GCD( , ) = 1m1 n1 GCD( , ) = 1m2 n2

= , = .xn
Nm1

Mn1
yn

Nm2

Mn2
(102)

GCD(x,y) = 1

N = , = M, = M,n1n2 m1 r~1 m2 r~2 (103)

GCD( , ) = 1r~1 r~2

= and = .xn r~1n2 yn r~2n1 (104)

− = .M 2 n1n2 r~1r
~

2n1n2 (105)

= 1.n1n2 (106)

= = 1n1 n2 = 1c1 = 1c2

+ + = 1c2
1 c2

2 c2
3

M = zn N = =n1 n2
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together with (89), we obtain the following

In (108), we take the parametrization

where   belong to the set of irrational numbers, and according to (108)

Let

where  . Therefore, from (110) and (112) we obtain

Using (112), relation (109) is rewritten as

If we replace (113) in (89), we get the relation

If we do

where  ,   y  . Knowing that  , from relations (113)

and (115) we obtain

+ + = λ [ + + ]xn yn zn x2n y2x z2n (107)

2 + 2 = λ [ + + ]xn yn x2n y2x z2n (108)

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪

− =xn 1
λ

2√

λ
d1

− =yn 1
λ

2√

λ
d2

=zn
2√

λ
d3

(109)

, ,d1 d2 d3

+ + = 1d2
1 d2

2 d2
3 (110)

= , = , =d1 2–√ e1 d2 2–√ e2 d3 2–√ e3 (111)

, , ∈ Qe1 e2 e3

+ + =e2
1 e2

2 e2
3

1

2
(112)

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪

− =xn 1
λ

2e1

λ

− =yn 1
λ

2e2

λ

=zn
2e3

λ

(113)

= + + 1e3 e1 e2 (114)

= , = , =e1
r1

t1
e2

r2

t2
e3

r3

t3
(115)

GCD( , ) = 1r1 t1 GCD( , ) = 1r2 t2 GCD( , ) = 1r3 t3 λ = M

N
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From the relation (101), N is an odd number. Using relation (116), we have the following cases

A. When

Using (117) and (115) in (112), we obtain

This result is interesting, since   being an odd number, (118) is absurd.

B. When

Using (119) and (115) in (112), we obtain

Furthermore, using relations (119) and (115) in (114), we obtain

If we put (121) in (120) then we get the relation

and since   is an odd number, obviously, the relation (122) is absurd.

C. Another possibility is that    together with (116) gives us    and by (101), this is

impossible, since   and   would have common prime factors and these prime factors must divide 

 or  , which is false.

6. Conclusions

It is interesting to observe that an appropriate connection between the object of study and the relation 

 (where  ,  ,  , and   is unique) allows for the resolution

of classical problems. Remarkably, through this mechanism, it is possible to obtain approximate zeros,

both real and complex, of a real monic polynomial of degree  , general solutions to the linear

Diophantine equation in three variables, and even a demonstration of Fermat’s Last Theorem. We still do

not fully understand why this method works; one possible explanation is that the problem is transformed

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

=xn
(2 + )Nr1 t1

Mt1

=yn
(2 + )Nr1 t1

Mt2

=zn
2 Nr3

Mt3

(116)

N = = =t1 t2 t3 (117)

+ + =r2
1 r2

2 r2
3

N 2

2
(118)

N

N = = =t1 t2
t3

2
(119)

+ + =r2
1 r2

2

r2
3

4
N 2

2
(120)

= 2( + + N)r3 r1 r2 (121)

+ + ( + + N =r2
1 r2

2 r1 r2 )2 N 2
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into an  -dimensional sphere, which is symmetric in relation to a coordinate system, making it easier to

approach.
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