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Abstract 
Image registration (IR) is a process that deforms images to align them with respect to a reference space, making it 

easier for medical practitioners to examine various medical images in a standardized reference frame, such as having 

the same rotation and scale. This document introduces image registration using a simple numeric example. It provides 

a definition of image registration along with a space-oriented symbolic representation. This review covers various 

aspects of image transformations, including affine, deformable, invertible, and bidirectional transformations, as well 

as medical image registration algorithms such as Voxelmorph, Demons, SyN, Iterative Closest Point, and SynthMorph. 

It also explores atlas-based registration and multistage image registration techniques, including coarse-fine and 

pyramid approaches. Furthermore, this survey paper discusses medical image registration taxonomies, datasets, 

evaluation measures, such as correlation-based metrics, segmentation-based metrics, processing time, and model size. 

It also explores applications in image-guided surgery, motion tracking, and tumor diagnosis. Finally, the document 

addresses future research directions, including the further development of transformers. 
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Nomenclature & Abbreviations 
 

Table 1.A Nomenclature 

bx translation on the X-axis 

by translation on the Y-axis 

bz translation on the Z-axis 

Cij
pq correspondence of image p in space i and image q in space j 

DT average training time 

E the total number of elements in a set 

e (as in xe) stands for the order of an element in a set X∅i
p

= {x1∅i
p

, x2∅i
p

, x3∅i
p

, … … xE∅i
p

}, Y∅i
p

=

{y1∅i
p

, y2∅i
p

, y3∅i
p

, … … yE∅i
p

} 

Fij
p
  a mapping between  Xij

p
 & Yij

p
 such that Yij

p
=  Fij

p
(Xij

p
 ) 

I∅i
p

 (orIi
p

) <X∅i
p

, Y∅i
p

> an image P that connects X∅i
p

 and Y∅i
p

 

L∅i
p

 labels associated  with I∅i
p

  that describe  properties of elements in I∅i
p

 such as a segmentation 

category 

Lp the number of points in image P 

M∅i
p

 a set of marks that includes selected elements or points of image P such that  M∅i
p

∈ I∅i
p

  

Mp the number of landmarks in image P 

N the number of examples/samples in a dataset 

O an objective function that yields a smaller value when the registration is closer to the desired. For 

example, O = ∑ ( Y∅j
p

− Yij
p

)2N
p=1  which measures the square difference between a registered 

codomain Yij
p
 and a ground truth Y∅j

p
 

RT average registration runtime 

T ij a domain mapping between  X∅i & X∅j  

𝑡𝑟,𝑠𝑡𝑎𝑟𝑡
𝑝  the time at which image p is loaded to an IR model 

𝑡𝑟,𝑒𝑛𝑑
𝑝  the time at which image p is registered 

|| v || length of vector v 

X∅i
p

 (or Xi
p

) domain values of an image p in space i, where ∅ is a reference unknown codomain (used with raw 

data). p is an index of a registration example in a dataset.  

Xij the transformed domain after applying T ij to X∅i such that  Xij =  T ij(X∅i)  

Xi−j the outcome of applying T i−j to X∅i such that Xi−j =  T i−j(X∅i) but before any postprocessing 

like resampling 

xe element number e in a set X, X∅i
p

= {x1∅i
p

, x2∅i
p

, x3∅i
p

, … … xE∅i
p

}, 

Y∅i
p

 (or Yi
p

) codomain values of an image p in space i, where ∅ is a reference unknown codomain (used with 

raw data). p is an index of a registration example in a dataset. 

Yi−j codomain values after a transformation  T i−j but before any post-processing (e.g., interpolation) 

ye element number e in a set Y, Y∅i
p

= {y1∅i
p

, y2∅i
p

, y3∅i
p

, … … yE∅i
p

} 

∆ij
p

 a displacement field that transforms image p from space i to j. 

φij
p a registration field that transforms image p from space i to j.  

θ rotation angle 
′ the apostrophe indicates ground truth, for example, < X′ij

p
, Y′ij

p
> is the ground truth outcome 

<domain and codomain> of image p after IR to space j. 
~ the ~ sign indicates a post-transformation outcome. 

# number of 

Σ standard deviation 

∩ Intersection 

∪ Union 
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Table 1.B Abbreviations 

2D two dimensional 

3D three dimensional 

AI artificial intelligence 

CC cross-correlation 

COM center of mass 

CMYK a color system in which cyan, magenta, yellow, and black are the basic colors 

CT computerized tomography 

CNNs convolutional neural networks 

Dist distance measure 

DL deep learning 

DSC dice score 

e.g. for example 

F1 F score 

FN false negative 

FP false positive 

GANs generative adversarial networks 

HD Hough distance 

IR image registration 

Inf Infimum 

i.e. that is 

J Jacobian 

JOCA the determinant of Jacobian 

MIR medical image registration 

ML machine learning 

MR magnetic resonance imaging 

MSE mean square error 

N No 

nCC normalized cross-correlation 

nLCC normalized local cross-correlation 

NN neural networks 

PET positron emission tomography 

Prox a proximity measure 

RGB a color system in which red, green, and blue are the basic colors 

RL reinforcement learning 

RMSE root mean square error 
ROI region of interest 

SDlogJ standard deviation of log Jacobian 

Sup Supremum 

TRE target registration error 

TN true negative 

TP true positive 

w/o Without 

US ultra-sound 

Y Yes 
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1.0 Image registration etymology 

 

1.1 Registration in Dictionaries 

When a novice human reads or hears the concept of "image registration" for the first time, the word "registration" may 

not provide a clue about what image registration engineers do. A curious non-native English speaker may look for a 

hint in a dictionary such as Oxford or Cambridge, but no related senses (Table 2). In the dictionary, the word 

"registration" is mainly associated with an entry in an official record or list, such as the addition of a new citizen to a 

national register or the enrollment of a student in a course (an entry in the record of enrolled students). Similarly, the 

license plate on a car is called a registration number in British English (an entry in the record of licensed cars). A 

related sense is found in Merriam-Webster's dictionary under the word "register," but not under the word "registration," 

which defines "register" (noun) as a correct alignment. 

Table 2. Registration in dictionaries (Oxford, Cambridge, Meriam Webster) 

Dictionary Word Link 
Oxford Registration https://www.oxfordlearnersdictionaries.com/definition/english/registration?q=registration 

Oxford Register (noun) https://www.oxfordlearnersdictionaries.com/definition/english/register_2 

Oxford Register (verb) https://www.oxfordlearnersdictionaries.com/definition/english/register_1?q=register 

Cambridge Registration https://dictionary.cambridge.org/dictionary/english/registration 

Cambridge Register https://dictionary.cambridge.org/dictionary/english/register 

Meriam webster Registration https://www.merriam-webster.com/dictionary/registration  

Meriam webster Register https://www.merriam-webster.com/dictionary/register 

 

1.2 Registration in the printing industry 

In the printing industry, registration is the process of getting an image printed at the same location on the paper each 

time. It also means the perfect alignment of printing components (e.g., dots, lines, colors) with respect to each other. 

Figure 1 shows an example of printing misalignments. The misalignment in early printing machines depended on the 

initial settings in addition to the movement of a paper while it runs through the printing machine. Hence, marks like 

crosshairs were used to be printed on paper boundaries to check a popper alignment/registration (Stallings, 2010). You 

may have seen a crosshair like the one shown on the right of Figure 1 in some old documents. In addition to ink 

printing on papers, registration covered other kinds of printing such as embossing and metallic foiling. 

In color printing, basic colors were printed one color after another. For example, the basic colors of the CMYK color 

model are cyan, magenta, yellow, and key/black, which form the acronym of CMYK. A misalignment between colors 

may result in overlapping replicas (Wikipedia 2023). 

 

 

  

Figure 1. An example of printing misalignment and a crosshair on the right boundary. Crosshairs were used in the 

early printing industry to check misalignments like the misalignment between copies/pages 

 

In summary, the concept of image registration in computer vision seems to have been influenced by the printing 

industry. In computer vision, it is common to call a computer image that will be aligned a “moving image” and the 

reference image a “fixed image”. The naming of a “moving” and a “fixed” image suit the movement of a paper in a 

printing process, however, it is still very common to read “moving image” and “fixed image” in computer image 

registration papers, despite the lack of a moving part as IR is done digitally by computer algorithms only. The sense 

of registration in the printing industry can be seen as a narrow case of an expanding IR arena. IR includes aligning 

https://www.oxfordlearnersdictionaries.com/definition/english/registration?q=registration
https://www.oxfordlearnersdictionaries.com/definition/english/register_2
https://www.oxfordlearnersdictionaries.com/definition/english/register_1?q=register
https://dictionary.cambridge.org/dictionary/english/registration
https://dictionary.cambridge.org/dictionary/english/register
https://www.merriam-webster.com/dictionary/registration
https://www.merriam-webster.com/dictionary/register
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identical images, aligning images of non-rigid objects, and aligning images of different objects and/or different 

dimensions (like aligning a 2D X-ray image with a 3D MRI image). 

In the previous paragraphs, a connection was drawn between the concept of IR and the registration printing industry. 

A potential, but less obvious, connection is between IR and registration in the music industry. Registration is known 

to organists (musicians who play organ) as the selection of organ stops. An organ stop is a part of an organ that controls 

the flow of the air to certain pipes, hence basically a musician combines stops to generate sounds. What is common 

between organ registration and IR is that both are processes of finding a configuration for an intended outcome. That 

outcome is a melody in the case of organ registration and an aligned image in the case of IR. Can organ registration 

be considered a type of IR? Answering such questions entails a full technical definition of image registration. 

 

2.0 Image registration definition 

 

Humans align objects mentally before deciding whether two rotated objects are similar or not according to cognitive 

psychology (Cooper, 1975). Likewise, it is easier for medical practitioners to compare aligned medical images. To 

demonstrate this, a reader can compare the left side and the right side of Figure 2. 

 

2.1 IR definitions in the literature 

Image registration definitions in the literature of medical image registration can be categorized into three main 

definitions: 

Definition 1: Finding a transformation between two images that are related to each other such that the images 

are of the same object or similar objects, the same region, or similar regions (Stewart et al., 2004). 

Definition 2: The process of overlaying two or more images of the same scene taken at different times, from 

different viewpoints, and/or by different sensors (Zitova et al., 2003). 

Definition 3: The process of transforming different images into one coordinate system with matched content 

(Chen, X., Wang, et al, 2022). 

Each definition imposed a constraint. The first definition limited registration to two images like the definitions in 

(Decuyper et al., 2021; Talwar et al., 2021; Fitzpatrick et al., 2000). The second definition limited registration to 

Before registration After registration 

   

Are they the same shoe? 

           

Rotational alignment 

  

 

 

 

Same size? 

 

 

 

Rotational and translational alignment 

Figure 2. Examples of mental alignment 
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images of the “same scene” like the definition in (Abbasi et al., 2022). The third definition entailed a “coordinate 

system” like the definitions in (Haskins et al., 2020; Chen, X. et al 2021).  

2.2 IR definition 

Briefly, Image registration is an alignment of images. The alignment is finding a space k (not necessarily a coordinate 

system) in which a correspondence relation is satisfied such that correspondent elements are in proximity. For instance, 

given an image 𝐼∅𝑖
𝑝

 = <𝑋∅𝑖
𝑝 , 𝑌∅𝑖

𝑝>, and 𝐼∅𝑗
𝑞

 = <𝑋∅𝑗
𝑞 , 𝑌∅𝑗

𝑞 > with a correspondence set between them 𝐶𝑖𝑗
𝑝𝑞 = {(𝑥𝑒∅𝑖

𝑝 , 𝑦𝑒∅𝑖
𝑝 )↔( 

𝑥𝑒∅𝑗
𝑞 , 𝑦𝑒∅𝑗

𝑞 )}, the images p and q can be registered if there is a space k in which the correspondent points are positioned 

at the same location or nearby locations. That can be expressed as in Equation 1. 

Tik(𝑥𝑒∅𝑖
𝑝 , 𝑦𝑒∅𝑖

𝑝 ) ≈ Tjk(𝑥𝑒∅𝑗
𝑞 , 𝑦𝑒∅𝑗

𝑞 ) for ∀ correspondence points ∈ 𝐶𝑖𝑗
𝑝𝑞    (1) 

where  

- (𝑥𝑒∅𝑖
𝑝 , 𝑦𝑒∅𝑖

𝑝 )↔( 𝑥𝑒∅𝑗
𝑞 , 𝑦𝑒∅𝑗

𝑞 )  are correspondent points between image p in space i, and image q in space j, 

- 𝑇 𝑖𝑘 , 𝑇 𝑗𝑘 transformations map spaces i, and j (respectively) to space k. 

An image is a representation of a function that maps a space/set X called domain to a space/set Y called co-domain. 

This definition may seem a generic definition that goes beyond digital graphics in the sense that a mathematical 

function y=x2 can be considered an image under this definition, which is true. The discussion of what is an image and 

what is not is beyond the scope of this document. However, interested readers are referred to (Mitchel, 1984) who 

provided an interesting discussion based on Wittgenstein’s philosophy, in which Mitchell thinks of a family of images 

that includes graphical, optical, mental, and verbal images. This definition aligns with the classical concept of a digital 

image. A digital graphical image, which is a discrete function, can be thought of as a set of samples (e.g., recorded by 

a sensor) from a continuous function. That continuous function is a scene/object/manifold in the world. However, a 

sensor is no longer essential to acquire a digital graphical image since digital graphical images can be created virtually, 

using graphics tools or deep learning (GANs for example). 

3.0 Introductory example 

Readers who have some knowledge of image processing or modern algebra are advised to skip this section which 

targets novice readers. This section demonstrates an image transformation pipeline using a simple example (see 

Figure 3). 

 
Figure 3. A transformation of an image from space i to space j 

 

3.1 Image representations 

Let P be a 2D digital image of 2x2 pixels in a Euclidean space as shown in Figure 4.  The domain values 𝑋∅𝑖
𝑝

 can be 

represented in a set of tuples {(m, n)} where m, n are integers, 0 ≤ 𝑚 < 2, 0 ≤ 𝑛 < 2. Explicitly 𝑋∅𝑖
𝑝

 = {(0,0), (0,1), 

(1,0), (1,1)}, where the first number in the tuple is the row and the second is the column in which a pixel is located 

such that counting starts from the top left corner of the image. The codomain values 𝑌∅𝑖
𝑝

 is a set of 2x2 = 4 items, each 

item represents a color. 𝑌∅𝑖
𝑝

 = {(a), (b), (c), (d)}. Colors in this example were represented as symbols for simplicity. 

There are multiple other ways to represent the domain/codomain values. For example, the codomain values of an RGB 

image consist of 3 numbers that represent the intensities of the basic colors (red, green, blue), which if mixed yield 

the color of the pixel. 
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A b 

D c 
 

 

𝐼∅𝑖
𝑝

 = {(0,0): a, (0,1): b, (1,0): d, (1,1): c} 

 

Euclidean representation Non-Euclidean representation 

  

Figure 4. Two representations of an image: Euclidean (left), and non-Euclidean (right). 

 

𝐹∅𝑖
𝑝

 is a mapping between 𝑋∅𝑖
𝑝  & 𝑌∅𝑖

𝑝
 like how the blue lines in Figure 5 connect elements in the left rectangle (domain 

values) to elements in the right rectangle (co-domain values). 𝐹∅𝑖
𝑝

 can be represented, in some other cases, by an 

algebraic expression between X and Y. 

3.2 Image transformation 

A toy example of image transformation is represented in Figure 5. Tij is a domain transformation that relocates pixels 

1 unit in a counterclockwise rotation. Tij shown in Figure 5B replaced the domain values with new ones. For example, 

the domain value (0,0) in Figure 5A became (1,1) in Figure 5C.  
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A b 

D c 

 
 

b c 

a d 

 

5A. Image P of domain values 𝑋∅𝑖
𝑝

 

inside the left rectangle, and co-

domain values 𝑌∅𝑖
𝑝

 inside the right 

rectangle. A mapping 𝐹𝑖𝑗
𝑝
 is 

represented by the blue lines. 

5B. A domain transformation that 

maps the domain values 𝑋∅𝑖
𝑝

 of 

space i (left rectangle) to 𝑋𝑖𝑗
𝑝

 in 

space j (right rectangle) 

5C. The wrapped image 

𝐼𝑖𝑗
𝑝 : <𝑋𝑖𝑗

𝑝 , 𝑌𝑖𝑗
𝑝
> in space j after the 

application of Tij 

Figure 5. An image transformation 

 

3.2.1 Image deformation using a displacement field 

A displacement field ∆X represents domain relocation distances (see Equation 2), such that a 2D displacement value 

of <1,-1> moves a pixel 1 unit on the horizontal axis and -1 unit on the vertical axis. 

𝑋𝑖−𝑗
𝑝 = 𝑇𝑖−𝑗(𝑋∅𝑖

𝑝
) =  𝑋∅𝑖

𝑝
+ ∆X      (2) 

 

Figure 6 shows a displacement field ∆X estimated by an algorithm given a pair of fixed and moving images. The 

moving image 𝐼∅𝑖
𝑝

 = {‘0,0’: a, ‘0,1’: b, ‘1,0’: d, ‘1,1’: c}.The displacement field estimated by a registration algorithm 

is ∆X = {‘0,0’: <1,0>, ‘0,1’: <0,-1>, ‘1,0’: <0,2>, ‘1,1’: <-1,0>}. The goal is to obtain a transformed image  𝐼𝑖𝑗
𝑝

 by 

deforming the moving image 𝐼∅𝑖
𝑝

. 

(1,0) 

(0,0) 

(1,1) 

(0,1) 

a 

b 

d 

c 

(0,0) 

(0,1) 

(1,0) 

(1,1) 

(1,0) 

(0,0) 

(1,1) 

(0,1) 

(0,0) 

(0,1) 

(1,0) 

(1,1) 

a 

b 

d 

c 

𝑋𝑖𝑗
𝑝

  -----------------------  𝑌𝑖𝑗
𝑝 

 

 

𝑋∅𝑖
𝑝

  -----------------------  𝑋𝑖𝑗
𝑝  

 

 

𝑋∅𝑖
𝑝

  ------------------------  𝑌∅𝑖
𝑝  
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fixed image 

  

  

 

a b 

d c 

Moving image 

 

The domain of the 

moving image 

 Displacement field  The new domain of the 

moving image 

𝑋∅𝑖
𝑝

 + ∆X →  𝑋𝑖−𝑗
𝑝  

 

 

0,0 0,1 

1,0 1,1 

 
 

<1,0> <0,-1> 

<0,2> <-1,0> 

  
 

1,0 0,0 

1,2 0,1 

 

The wrapping operation ‘o’ shown in Figure 6 consists of a domain deformation of a moving image followed by 

resampling. The replacement of the domain of the moving image 𝑋∅𝑖
𝑝

 by the domain of the wrapped image before any 

post-processing 𝑋𝑖−𝑗
𝑝

 yields a wrapped image 𝐼𝑖−𝑗
𝑝  shown below. Figure 7 demonstrates how 𝑋𝑖−𝑗

𝑝
 was obtained by the 

addition of ∆X to 𝑋∅𝑖
𝑝

. 

𝐼∅𝑖
𝑝

   = {‘0,0’: a, ‘0,1’: b, ‘1,0’: d, ‘1,1’: c} 

𝐼𝑖−𝑗
𝑝

  = {‘1,0’: a, ‘0,0’: b, ‘1,2’: d, ‘0,1’: c} 

3.3 post-processing 

A domain transformation may relocate pixels to locations that violate space constraints. A constraint that is commonly 

violated after a domain transformation of a digital graphical image is that domain values should be uniformly 

distributed integers. For example, a domain value of (0.3, 0.17) violates the mentioned constraint since 0.3 and 0.17 

are not integers. Such violations can be fixed in a post-processing step called ‘resampling’. Resampling estimates 

codomain values 𝑌𝑖𝑗
𝑝 for post-processed domain values 𝑋𝑖𝑗

𝑝
 that don’t violate the space constraints. The selection of 𝑋𝑖𝑗

𝑝
 

is known in the literature as ‘grid generation’. Resampling is done under the assumption that the post-processed image 

<𝑋𝑖𝑗
𝑝 , 𝑌𝑖𝑗

𝑝
> and the preprocessed image <𝑋𝑖−𝑗

𝑝 , 𝑌𝑖−𝑗
𝑝

> are discrete samples from the same function/manifold. Hence 𝑌𝑖𝑗
𝑝
 can 

be interpolated based on 𝑌𝑖−𝑗
𝑝

. The Interpolations list includes but is not limited to linear, bilinear, and spline 

interpolations. 

An example of post-processing is shown in Figure 8. Pixel d is out of the image boundaries. A potential fix is just to 

move the pixel d one step to the left to be in the empty cell at <1,1>. Another option is just to delete pixel d without 

filling the empty cell, another option is to fill the empty cell with the average of its surrounding pixels. 

   

𝐼𝑖−𝑗
𝑝   Option 1  Option 2  Option 3 

 

b c  

a  d 

  

 

b c 

a d 

   

 

b c 

a  

 
 

b c 

a (a+b+c+d)/4 

<1,0> <0,-1> 

<0,2> <-1,0> 
Algorithm 

Figure 7. The displacement field transforms the domain of the moving image. 

Figure 8. Examples of image interpolation 

Figure 6. A displacement field estimated by an algorithm is used to register a moving image. 

o 𝐼𝑖𝑗
𝑝
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4.0 Review criterion 

This work reviewed medical image registration (MIR). The list of surveyed work was collected by searching using 

the keywords medical image registration in the Scopus database. The search query was limited to open-access MIR 

papers written in English and published between 2021 and 2022. The number of retrieved records was 270, out of 

which 38 papers were excluded based on the abstract for their irrelevance (e.g., they are about medical images but not 

MIR). Other 41 papers were excluded as the authors could not find open-access versions of those papers as of 

December 2022. Out of 191 papers, 96 have been reviewed in addition to 10 papers published before 2021. The 

research questions and sub-questions of this work are shown in Table 3.  

Table 3. The questions of interest in this survey 

Research question Sub-questions 
What was the research pipeline of MIR in 
2021 and 2022? 

What were the proposed approaches of MIR? 

What were the evaluation criteria? 

What MIR datasets were used 

What were the applications/use cases of MIR? 

 

5.0 Related survey papers 

Table 4 compares this work to related survey papers that appeared in the search query in section 6. Two highly cited 

review papers (Zitova et al., 2003; Haskins et al., 2020) were added to the table although they were published before 

2021. 

It could be in the interest of novice readers to read about the evolvement of IR concept and its etymology (see section 

1) in addition to a simple numeric example that demonstrates the basics of IR (see section 3) since no review paper 

was found that addresses these parts to the best of the authors’ knowledge. Advanced users could be interested in the 

novel constraint-based analyses of IR introduced in the previous sections.  Different from other survey papers shown 

in Table 4 which were mainly descriptive with no or just a few equations, this survey introduced a symbolic framework 

of the IR components (see the nomenclature) that has been used to express tens of equations.  

Zitova et al. (2003) structured their paper based on the classical IR pipeline starting with feature detection, followed 

by feature matching, mapping function, image transformation, and resampling. 

Haskins, et al. (2020) tracked the development of MIR algorithms covering 1) deep iterative methods that are based 

on similarity estimation, 2) supervised transformation estimation which entails ground truth labels that are not easily 

affordable, and 3) unsupervised transformation estimation methods which overcome the challenge of ground truth 

labels. Finally, 4) weakly supervised approaches were discussed. 

Chen, X. et al. (2021) first provided a framework for image registration. Then explained the basic units of DL and 

reviewed DL methods such as deep similarity, supervised, unsupervised, weakly supervised, and RL. The authors 

discussed the challenges of MIR: 1) different preprocessing steps lead to different results, 2) a few studies quantify 

the uncertainty of predicted registration, and 3) limited data (small scale). Finally, possible research directions were 

highlighted: 1) hybrid models (classical methods and deep learning), and 2) Boosting MIR performance with priors. 

 

 

Scopus search query: 

Key words in title/abstract/keywords: medical “image registration” 

Source type: Journal or conference proceedings 

Year: 2021 and 2022 

Language: English 

open access 
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Table 4 Comparison of related MIR survey papers. 
Paper Review 

period 

Taxonomy/ survey criterion 

S
co

p
e 

li
m

it
 

E
ty

m
o
lo

g
y

 

E
q

u
a
ti

o
n

s 

sy
m

b
o
li

c 

fr
a
m

ew
o
rk

 

This 2021-

2022 

See the Taxonomy section and appendix - Y Y Y 

(Zitova et al., 

2003) 

1992-

2002 

- feature-based, intensity-based - N Y N 

(Haskins, et 

al. 2020) 

2012-

2020 

- MIR algorithms: deep iterative, supervised, unsupervised, 

- Deformability: rigid, deformable 

- Modality type: MR, CT,... 
- ROI 

- Dataset: real, synthetic 

- Loss function 

Intensity-based N N N 

(Chen, X. et 

al., 2021) 

2013-

2021 

- MIR algorithms: Deep similarity, supervised, unsupervised, 

weakly supervised, RL 
- Model 

- ROI 

- Modality: unimodal, multimodal 

- Modality type: MR, CT, … 

- Dimensionality: 2D, 3D 
- link to code 

- Datasets  

 N Y N 

(Dossun et al., 

2022) 

2010-

2022 

- Evaluation metrics: Overlap (e.g., DSC), Volume (e.g., |J|), 

information theory (e.g., mutual information), probabilistic (e.g., 

correlation), distance based 
- MIR tool: commercial, opensource, in-house 

- MIR algorithms: DL, Atlas, …. 

- Evaluation metrics 

- Threshold 

- Groundtruth (# observers) 
- Dosimetric analysis (Y/N) 

- Correlation among metrics (Y/N) 

- Year of publication 

Deformable 

MIR in 

radiotherapy 
treatment 

N N N 

(Abbasi et al., 
2022) 

2013-
2021 

- Deformability: rigid, deformable 
- Modality type: MR, CT,... 

- ROI 

- Datasets 

- Model 

- Similarity metrics 
- Evaluation metrics 

Unsupervised N N N 

(Xiao et al., 

2021) 

2016-

2020 

- ROI 

- Modality type: MR, CT,... 

- Evaluation metrics. 

- Datasets 
- Deformability: rigid, deformable  

- Method: deep iterative, supervised, unsupervised. 

3D N Y N 

(Chen, X., 

Wang et al, 

2022) 

2016-

2019 

-Year 

-Application 

-Model 
-Dataset 

-Contributions/ highlights 

 N N N 

(Huang et al., 

2022) 

1997-

2020 

- MIR algorithms: deep iterative, supervised, unsupervised. 

-Tumor type 

- Modality 
- Model 

- Evaluation metrics. 

- Result in numbers 

- Dataset size 

Brain tumor N N N 

(Decuyper et 
al., 2021) 

2016-
2020 

- MIR algo.: deep similarity metrics, supervised, unsupervised, RL 
- Summary 

Nuclear 
medicine and 

Radiology 

N Y N 

(Zhang, Y. et 

al., 2021) 

No info - Features: internal (image)/ external (info beyond image such as 

patient age) 

- Ground truth: expert labeling, simulation 

Breast cancer N N N 
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Dossun et al. (2022) reviewed the performance of deformable IR in radiotherapy treatments in real patients. First, the 

scope of the paper and the paper selection process were explained. Then a taxonomy of MIR evaluation metrics was 

mentioned but no explanation or formula was provided. A table of 7 pages compared the surveyed papers. Then, 

statistics and figures summarized the results showing, for example, that the distribution of the ROIs was 36% for the 

prostate, 33% for the head and neck, and 26% for the thorax. Another figure showed the most frequent evaluation 

metrics ordered as the following: DSC > HD > TRE. 

Abbasi et al. (2022) reviewed the evaluation metrics of unsupervised MIR in a sample of 55 papers. The statistics 

showed that: 1) the majority of papers were handling unimodal registration (82%), 2) a private dataset was more likely 

to be used than a publicly available dataset, 3) most papers worked with MR images (61%), and 4) the most researched 

ROI was the brain at 44%, then the heart at 15%.   

Xiao et al. (2021) started with a brief introduction to deep learning, then provided a statistical analysis of a selected 

sample of 3D MIR papers that covered the distribution of ROI (Brain 40%, lung: 24%), modality (MR-MR: 46%, CT-

CT: 24%), MIR methods: (unsupervised: 43%, supervised: 40%, deep iterative: 19%), and evaluation metrics (74% 

label based, 18% deformation based, 12% image-based). The MIR methods were reviewed based on the taxonomy 

(deep iterative methods, supervised, and unsupervised). 

Chen, X., Wang, et al. (2022) reviewed medical image analysis covering four areas: image classification, detection, 

segmentation, and registration. First, the paper gave an overview of deep learning and its methods: supervised, 

unsupervised, and semi-supervised. Then it addressed ideas of DL that were shown to improve the outcomes: attention, 

involvement of domain knowledge, and uncertainty estimation. Then the paper briefly reviewed classification, 

detection, segmentation, and registration. Finally, the paper highlighted ideas for future improvement that included 

the idea of a fully end-to-end deep learning model for MIR. In addition to the incorporation of domain knowledge. 

They also highlighted important points for large-scale applications of deep learning in clinical settings such as having 

large datasets publicly available as well as producible codes. They also highlighted the need for more clinical-based 

evaluation and the involvement of domain experts from the medical field in the evaluation rather than limiting the 

evaluation to theoretical evaluation metrics. 

Huang et al. (2022) reviewed AI applications in brain tumor imaging from a medical practitioner’s perspective. They 

pointed out the lack and the need for studies about the use of AI tools in routine clinical practice to characterize the 

validity and utility of the developed AI tools. 

Zhang, Y. et al. (2021) elaborated on AI registration success, and highlighted challenges 1) the lack of large databases 

with precise annotation, 2) the need for guidance from medical experts in some cases, 3) having different opinions of 

experts in the case of some ambiguous images. 4) excluding non-imaging data of the patient, like age,  and medical 

history, and 5) the interpretability of AI models. 

Decuyper et al. (2021) started with an explanation of DL components covering neural network layers (CNNs, 

activations, normalization, pooling, and dropout), and DL architecture (e.g., Resnet, GANs, U-Net). Then the paper 

explained medical image acquisition and reconstruction. After a brief elaboration on IR categories, the paper 

elaborated on their challenges: 1) traditional iterative methods work well with unimodal images but poorly with 

multimodal images, or in the presence of noise, 2) deep iterative methods imply non-convex optimization that is 

difficult to converge, 3) In RL, deformable transformation results in a high dimensional space of possible actions, 

which makes it computationally difficult to train RL agents. Most previous works dealt with rigid transformation (low 

dimensional search space), 4) supervised learning approaches need ground-truth labels, and 5) unsupervised 

approaches face difficulty in back-propagating the gradients due to the multiple different steps. Finally, specific 

application areas were reviewed: chest pathology, breast cancer, cardiovascular diseases, abdominal diseases, 

neurological diseases, and whole‑body imaging. 
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6.0 Taxonomies 

A registration algorithm consists of a set of assumptions (prior knowledge), and a margin of uncertainty (the unknown 

part), which is expressed using variables (e.g., model parameters). For example, if a programmer knows exactly how 

to register any images in a similar way to having a formula that finds the roots of any quadratic equation, then s/he 

will just embed that prior knowledge (the formulae) in the code. However, there is no such a generic formula yet for 

most IR cases. Accordingly, variables are made and adjusted using an optimization method. 

6.1 Deformation types 

Transformation functions in MIR can be categorized based on their deformability into rigid, affine, and deformable 

transformations as shown in Figure 9.  

 In physics, the shape and size of a rigid body do not change under force. When you push a small solid steel bar, the 

location and/or the orientation of the bar may change, but the bar itself remains the same (e.g., the same mass, shape, 

and size). Likewise, a rigid transformation preserves the distances between every pair of points. Accordingly, rotations 

and translations are rigid transformations or proper rigid transformations in the distinction of reflections which are 

called improper rigid transformations as they do not preserve the handedness.  

A rigid transformation Tij preserves the distances between any two points on the object of interest, such that the 

constraint ||𝑥𝑘∅𝑖
𝑝 − 𝑥𝑙∅𝑖

𝑝
|| = ||𝑥𝑘𝑖𝑗

𝑝 − 𝑥𝑙𝑖𝑗
𝑝

|| holds for every pair of points k, l ∈ the set Mp. A rigid transformation can 

be expressed as in Equation 6.  

𝑣~ =  𝑇𝑖𝑗(𝑣) = 𝑨 𝑣 + 𝑏     (6) 

Where v~ is a newly transformed vector after the application of a rigid transformation to a vector v, which could be a 

position of a point in Euclidian space. b is a translation vector, and A is an orthogonal transformation (see the appendix 

for definition) such as orientation. 

A rigid transformation is a subcategory of a bigger group of transformations called Affine transformations. Affine 

transformations preserve parallelism and lines, but no constraints on the preservation of distances.  Thus, it can be 

expressed as in Equation 6 above used earlier for rigid transformation except that A is a linear transformation/matrix 

with no orthogonality constraint. In an affine registration, the transformation Tij imposes the constraint 

𝑇𝑖𝑗  (𝑥𝑘∅𝑖
𝑝 − 𝑥𝑙∅𝑖

𝑝
) = 𝑇𝑖𝑗  (𝑥𝑘∅𝑖

𝑝
) − 𝑇𝑖𝑗  (𝑥𝑙∅𝑖

𝑝
) =  𝑥𝑘𝑖𝑗

𝑝 − 𝑥𝑙𝑖𝑗
𝑝   for every point k, l ∈ the set Mp. Scaling and shear 

mapping are examples of an affine, but not rigid, transformation. 

The formula of a 2D proper rigid transformation (rotation and translation) is shown in  Equation 7.  The variables 

are the rotation angle θ, the translation on the x-axis 𝑏𝑥, and the translation on the y-axis 𝑏𝑦. 

𝑣~ =  [
cos(θ) −sin(θ)
sin(θ) cos(θ)

]  𝑣 + [
𝑏𝑥
𝑏𝑦

]      (7) 

 

 

 

 

 

 

 

  

Transformation types Rigid transformation Affine transformation Deformable 

transformation 

Figure 9. Examples of deformation types 

Defor
mable

Affine

Rigid
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The formula of a proper rigid transformation in a 3D space consists of 6 unknown variables: 3 rotation angles 

(θx, θy, θz), and 3 translations (bx, by, bz) as shown in Equation 8, where the subscriptions x, y, z are 3 

perpendicular coordinates. 

𝑣~ = [

1 0 0
0 cos(θx) −sin(θx)
0 sin(θx) cos(θx)

] [
cos(θy) 0 sin(θy)

0 1 0
−sin(θy) 0 cos(θy)

] [
cos(θz) −sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

] 𝑣 + [
𝑏𝑥
𝑏𝑦
𝑏𝑧

]   (8) 

Transformations that do not preserve the rigidity or affinity constraints are called deformable transformations. 

6.2 Optimization phase 

Image registration entails an optimization step in which a model’s parameters are adjusted to minimize/maximize an 

objective function. Optimization can occur, as shown in Figure 10, 1) during the development phase as in DL 

approaches, or 2) during the running phase such as in iterative methods, or 3) in both e.g., active learning approaches, 

or a test-time training as called in (Zhu et al., 2021). The objective function of MIR is expressed in Equation 9 as a 

weighted sum of two components: the first quantifies the registration error that represents the proximity between the 

predicted registration and the correct one, and the second is a regularization component. 

Loss = registration_error + regularization    (9) 

The optimization methods such as gradient descent, evolutionary algorithms, and search are iterative. Hence the 

optimization step adds a time overhead to the phase in which it takes place. Thus, DL approaches take a long training 

time, but shorter registration time.  

Approaches that run optimization in both phases aim at further improving the registration despite a slight increase in 

the computation time. To reduce the run-time overhead, the bulk optimization of the model parameters occurs in the 

training phase while just slight finetuning occurs during the run phase to customize the results (Zhu et al., 2021). 

                              
Figure 10. Optimization phase 

 

6.3 MIR algorithms 

This section discusses selected registration algorithms. Mainly the algorithms that were used as baselines against 

which the performance of a new algorithm is compared. A taxonomy of MIR algorithms is shown in Figure 11. 

Parameters are 
optimized in

Training phase
typical DL 
approaches

Run phase
non-DL 
methods

Hybrid Active learning
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Figure 11. MIR methods taxonomy 

 

6.3.1 Deep learning approaches 

Deep learning approaches use multiple layers of neural networks. Neural networks can estimate the transformation 

function in the registration problem entirely using unknown variables (called neurons). Hence, the transformation 

function in this case is considered an implicit function in distinction with explicit transformation functions which 

assumes a tractable formula of the transformation functions such as rigid transformations shown in Equations 6-8. DL 

approaches were also called earlier “non-parametric methods”.  

a. directly supervised deep learning approaches. 

The diagram of directly supervised image registration approaches is shown in Figure 12. Initially, input 

images are fed to neural networks which produce a registration field. The registration field is applied to the 

fixed image to relocate its pixels in a process called spatial transformation represented as a yellow circle in 

the figures below.  

The main question is how neural networks learn to estimate the registration field. In the directly supervised 

approach, A ground truth label is provided during the training phase. The ground truth label could be the 

registration field as shown in Figure 12 (left), or the wrapped image as shown in Figure 12 (right). A challenge 

of directly supervised MIR approaches is their need for ground truth labels, which entails medical experts 

annotating a large number of images. To overcome ground truth labels, unsupervised MIR has been proposed. 

 

 

b. Unsupervised deep learning approach: Voxelmorph 

 

Unsupervised MIR approaches do not entail an external supervision signal. Instead, the fixed image (input) 

was assumed to replace the ground truth label of the registered image < 𝑋𝑖𝑗
𝑝 ′

, 𝑌𝑖𝑗
𝑝′

> ≈ < 𝑋∅𝑗
𝑝 , 𝑌∅𝑗

𝑝 > as in 

MIR algorithms

calssical 
methods

ICP, Demons, 
SyN,...

deep learning

Supervised

Unsupervised

w/o synthetic 
data generation

Voxelmorph

with synthetic 
data generation Synthrmorph

  

Figure 12. Supervised MIR approaches: supervision using ground truth output image (right), and supervision 

using ground truth registration field (left) 
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Voxelmorph (Balakrishnan et el., 2019). This assumption is useful when the fixed image and the moving 

image have similar modalities/co-domains. However, the assumption may not work well if the fixed image 

and the registered image are of different modalities (e.g., one is 3D MRI, and the other is 2D X-ray) unless a 

way is developed to bridge the gap between the two modalities. This has been reported by the results shown 

in Synthmorph (Hoffmann et al., 2021).  Even for images of the same modality, co-domain dissimilarities 

can be a problem with this approach. For example, if the contrast of the fixed image is different than that of 

the moving image, then the mean square error MSE(𝑌∅𝑗
𝑝

, 𝑌𝑖𝑗
𝑝
) may not represent the error adequately. 

However, another loss function like cross-correlation “CC” is more resilient against the contrast problem 

than MSE due to its scale invariance property. CC (Y1, Y2) = CC (Y1, α×Y2) where α is a scale number. 

 

MIR using Voxelmorph yielded results much faster than non-deep learning MIR methods without degradation 

of the registration quality. Voxelmorph cut the registration runtime to minutes/seconds compared to hours 

needed by non-deep learning methods used before Voxelmorph. Voxelmorph superseded non-deep learning 

methods when segmentation labels were added to the registration.  

 
Figure 13. Unsupervised MIR approach 

 

c. Unsupervised approach with synthetic data: Synthrmorph 

If it is difficult to get ground-truth labels, why not generate them? Synthmorph (Hoffmann et al., 2021) 

proposed training Voxelmorph on synthetic data (randomly generated fixed and moving images). Synthmorph 

generated images in two steps, first segmentation labels were generated randomly, then fixed, and moving 

images were generated given the segmentation label. The results yielded by Synthrmorph were superior to 

classical methods even when the images were of different modalities. 

6.3.2 non-deep learning methods: 

MIR methods that do not involve deep neural networks are called ‘non-deep learning methods’, ‘classical methods’, 

or ‘iterative methods.’  

a. Iterative Closest Point (ICP) 

ICP (Arun, 1987; Estépar, 2004; Bouaziz, 2013) alternates between two goals: the establishment of a 

correspondence 𝐶𝑖𝑗
𝑝𝑞

, and finding a transformation 𝑇𝑖𝑗 that optimizes a loss function. A loss function quantifies 

the quality of a registration (see section 7). A demonstration of the ICP process is shown in Figure 13. Let the 

moving image be a blue line of 4 marked points, and the fixed image a similar black line. The loss function can 

be a point-wise Euclidean distance. First, 1) a correspondence is established between the points on each line such 

that each point is matched with its closest neighboring point. Notice that the correspondence is not 1-to-1 as the 

two bottom black points are matched with the same point, and the top blue point is not matched, 2) the blue line 

was translated to minimize the distance between the two lines, 3) another correspondence was found (1-to-1 
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correspondence this time), and 4) the black line was transformed (rotation and translation) based on the new 

correspondence. 

ICP, like other iterative approaches, takes longer registration time than DL approaches. The establishment of a 

correspondence between nearest neighbors is straightforward but not always optimal and it sticks in local 

optima. 

 

b. Demons 

A deformable IR approach was proposed by Thirion (1996). The name of the Demons approach was influenced 

by Maxwell’s Demons paradox in Thermodynamics. Maxwell assumed a membrane that allows particles of type 

A to pass in one direction, while particles of type B can pass in the opposite direction, which will end up having 

all particles of type A on one side of the membrane and particles of type B on the other side as shown in Figure 

15. That state of organized particles corresponds to a decrease in entropy, which contradicts the second law of 

thermodynamics. The solution to that paradox was that the demons generate entropy to organize the particles 

resulting in a greater total entropy than that was before the separation of the particles. 

 

 
Figure 15. Maxwell’s membrane with demons 

 

Influenced by Maxwell’s demons, Thirion suggested distributing particles (demons) on the boundaries of an 

object (see Figure 16) such that a demon will push locally either inside or outside the object based on a prediction 

of a binary classifier. It has been shown that what Thirion’s demons do is object matching using optical flow.  

 

 

  

 

 

 

 

 

 

 

Correspondence Transformation Correspondence Transformation 

 

 

 

 

Figure 14. A demonstration of ICP registration. 

 
Figure 16. How demons work as explained in Thirion, J. P. (1996, June) 
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c. Symmetric Image normalization (SyN) 

The main idea of SyN is to assume a symmetric and invertible transformation. Instead of transforming space i to 

j, SyN symmetrically transforms both space i & space j to an intermediate space such that 𝑇𝑗𝑘 =  𝑇𝑖𝑘
−1. In this case  

𝑇𝑖𝑘 can be seen as half a step forward towards space j, and 𝑇𝑗𝑘  is half a step backward towards i (see Figure 17). 

The symmetric invertibility constraint of SyN can be expressed as in Equation 10 

 

 ∃𝑘 ∈ 𝑠𝑝𝑎𝑐𝑒 ∶   𝑇𝑖𝑗(𝐼𝑖 ) = 𝑇𝑘𝑗((𝑇𝑖𝑘(𝐼𝑖)), 𝑤ℎ𝑒𝑟𝑒  𝑇𝑘𝑗 = 𝑇𝑖𝑘
−1   (10) 

 

SyN was shown to supersede Demons in providing correlated results with human experts (Avants et al., 2008). 

 
Figure 17. A demonstration of symmetry in SyN. A Transformation Tij, which rotates an image 180 degrees 

counterclockwise, can be decomposed into 2 symmetric rotations each of 90 degrees. 

 

d. Registration software tools. 

NiftyReg is a publicly available software for image registration. The software was developed initially by 

University College London and then King’s College London. The software uses two methods: 1) Reg Aladin, 

which is a block matching algorithm for global registration based on Ourselin et. al. (2001). 2) RegF3D (fast free 

form deformation) based on Modat et al (2010). 

Advance Normalization Tools (ANT) is another stable software for MIR and statistical analysis. ANT yields stable 

results such that the registration does not change every time the software is run (Avants et al., 2014). A Python 

version of NiftyReg and ANTs was wrapped in a package called Nipype (Neuroimaging in Python pipelines & 

interfaces). 

ANTs on Github: https://github.com/ANTsX/ANTs 

Chen, T. et al., (2002) compared three registration tools: SPM12, FSL, and AFNI. SPM12 was recommended for 

novice users in the area of medical image analysis. It provided stable outcome images of “maximum contrast 

information” needed for tumor diagnosis. AFNI was recommended for advanced users and researchers due to the 

advanced capabilities needed for tasks such as volume estimation. FSL was considered for mid-level users. 

6.4 Correspondence space 

MIR alignment occurs in a correspondence space k. The correspondence space can be the space in which an input 

image is located (internal), or it can be a new space (external). MIR in an internal correspondence space has been the 

most common among MIR methods. Examples of MIR in an internal space can be seen in the methods mentioned 

earlier, which included a transformation from the space of a moving image (i) to the space of the fixed image (j). An 

example of MIR in external space is Atlas-based registration.  

 

 

https://github.com/ANTsX/ANTs
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Atlas-based registration 

An Atlas is a standard or a reference image that represents a population of images. One way to form an Atlas of a brain 

is by finding the average image of a population of brain images, which is expected to be smooth and symmetrical. 

However, that is not the only way. (Dey et al., 2021) suggested an atlas generated by GANS. Another way to form an 

atlas is by IR in an external correspondence space. An example of atlas-based registration is the Aladdin framework 

(Ding, Z. et al., 2022) shown in Figure 18. Aladdin transformations are bidirectional and invertible.  

 

• Invertibility: for a transformation 𝑇𝑖𝑗, there is an inverse transformation  𝑇𝑖𝑗
−1 

• Bidirectionality: A bidirectional registration maps spaces in both directions from i to k and vice versa ( 

𝑇𝑖↔𝑘: 𝑇𝑖𝑘, and 𝑇𝑘𝑖). Accordingly, a bidirectional IR model (Ding, W. et al.,2022; Ye et al.,2021) can yield two 

wrapped images 𝐼𝑖𝑗 , 𝐼𝑗𝑖. On the other side, a unidirectional registration maps a single space i into another j but 

not vice versa. An example of an invertible bidirectional MIR model in an internal correspondence space, 

namely Inversenet (Nazib et al., 2022), is shown in Figure 19. 

 
Figure 19. An example of a MIR model that estimates a transformation field and its inverse (InverseNet) 

 

The bidirectionality in an external correspondence space enables more transformation paths between spaces given 

three anchors as shown in Figure 18: fixed image Ii, moving image Ij, and an external correspondence space/Atlas Ik. 

Potential transformation paths were expressed in Equations 11-17 below. The dissimilarities between the left and right 

sides of the equations below were used as losses of an MIR model (Ding, Z. et al. 2022). 

  𝑇𝑘𝑖(𝑇𝑖𝑘( 𝐼∅𝑖)) = 𝐼∅𝑖       (11) 

 𝑇𝑘𝑖(𝑇𝑗𝑘( 𝐼∅𝑗)) ≈ 𝐼∅𝑖       (12) 

𝑇𝑘𝑖(𝐼∅𝑗) =  𝐼𝑘𝑖 ≈ 𝐼∅𝑖       (13) 

  𝑇𝑘𝑗(𝑇𝑗𝑘(𝐼∅𝑗)) = 𝐼∅𝑗       (14) 

 𝑇𝑘𝑗(𝑇𝑖𝑘(𝐼∅𝑖)) ≈ 𝐼∅𝑗       (15) 

𝑇𝑘𝑗(𝐼∅𝑘) =  𝐼𝑘𝑗 ≈ 𝐼∅𝑗       (16) 

 
Figure 18. Invertible bidirectional Atlas-based transformations 
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𝑇𝑘𝑖(𝐼∅𝑖) =  𝑇𝑗𝑘(𝐼∅𝑗)       (17) 

 

Figure 20 illustrates diagrams of IR in an internal correspondence space (left) and an external correspondence space 

(right). 

 

 

6.5 Correspondence relation 

 

Correspondence relations can be categorized into isomorphic and non-isomorphic. Isomorphism entails a one-to-one 

correspondence relation between images. A special case of isomorphism is diffeomorphism which entails invertible 

and differentiable transformation. An example of non-isomorphism is a change of the topology such as that shown in 

Figure 22. A special case of non-isomorphism is a many-to-many correspondence as in metamorphism. 

 

  

 

Figure 21. Correspondence relation taxonomy  Figure 22. An example of metamorphism 

 

The spatial transformation unit imposes isomorphism, since the registration field just maps a single pixel from one 

location to another single point only, which is a 1:1 correspondence. However, the resampling step can affect the 1:1 

correspondence relation, for example, if two nearby points are merged in the target image, which makes 

metamorphism possible but no guarantees. Diffeomorphism can be achieved by an integral ∫  before a spatial 

transformation.  

Metamorphosis (Maillard et al., 2022) is a deep learning model that addresses metamorphic registration. 

Metamorphosis estimated the wrapped image without an explicit spatial transformation unit. However, alternative 

constraints were added as 2 equations embedded in the network as layers. However, no information if a spatial 

transformation holds implicitly. Metamorphosis superseded diffeomorphic registration methods especially when the 

Correspondence  
relation

1:1 
isomorphic 

non-
isomorphic

Directionality Classical MIR (2 input images, internal  

correspondence space) 

Generic MIR (multiple input images, external 

correspondence space) 

Unidirectional 

 

 

 

 

 

 m images were transformed into a correspondence space k. 

k is an external correspondence space if k∉ {1…, m}. 

Bidirectional 

  
  m images were transformed into a correspondence space k, 

and an image in space k was transformed in the spaces 

{1…, m}.k is an external correspondence space if k∉ {1…, 

m}. 

 

Figure 20. diagrams of unidirectional and bidirectional IR in internal and external correspondence spaces 



20 
 

ground truth correspondence was metamorphic. However, its runtime was 10-20 times that of Voxelmorph. The 

runtime is defined in section 7 (evaluation measures). 

 

6.6 Multistage image registration 

 
Figure 23. Taxonomy of image registration stages 

 

Instead of solving the registration problem for high-resolution images entirely in a big dimensional space, the 

registration problem can be conquered into multiple registration problems of various scales. Figure 23 shows a 

taxonomy of multistage image registration. Multistage MIR approaches save computational resources and time in 

addition to the enhancement of registration results. 

6.6.1 Coarse-fine registration: 

A coarse-fine registration (Himthani et al., 2022; Naik et al., 2022; Saadat et al., 2022; Van Houtte et al.,2022) consists 

of two stages: The first stage is called coarse registration, which aims at finding a fast registration solution but not 

optimal. That solution is fine-tuned later in the second stage. For example, the coarse registration could be an affine 

registration that aligns the position and orientation while the fine-tuned registration could be a deformable registration 

method that aligns deformed parts. 

The parameters of a rigid transformation of a high-resolution image can be found using a downscaled version of the 

image, which would save computation time and energy. The parameters of a rigid transformation are either 

independent of the scale (e.g., rotation) or linearly dependent (translations). Assume an image of 1000x1000 pixels 

and its lower resolution version of 100x100 (downscaling by 10).  Scaling does not affect angles, hence if an object is 

rotated by 30 degrees in the downscaled image, it will be also rotated by the same angle in the high-resolution image. 

However, distances between objects do change according to a fixed scale. If the distance between 2 objects in the low-

resolution image is 25 units, then the equivalent distance in the high-resolution image will be 10×25 = 250, where 10 

is the scaling ratio between the two images. Hence a solution for a rigid registration problem can be solved in a 

downscaled version of the images and then transferred to the higher resolution image.  

6.6.2 Pyramid image registration. 

A pyramid consists of multi-scale images, where registration occurs at multiple stages. The idea of a pyramid 

representation has been well-studied in classical computer vision (Adelson et al., 1984) and utilized later in deep 

learning architectures such as Pyramid GANs (Denton et al., 2015; Lai et al., 2017). A pyramid registration (Wang et 

al., 2022; Chen, J. et al. 2022, Zhang, L. et al., 2021) starts with a downscaled version of the moving image followed 

by several operations of registration and upscaling as shown in Figure 24. After every registration step, the proximity 

between the wrapped image and the downscaled fixed image improves. Multi-stage registration can be seen as a sort 

of curriculum learning (Bengio et al., 2009) such that the first stages learn to solve easier problems and later stages 

learn the more difficult tasks. 
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Figure 24. Pyramid registration of three stages 

 

6.7 Space Geometry 

A taxonomy of spaces has been proposed GDL is shown in Figure 25. A space can be Euclidean-like RGB images 

(pixels distributed regularly in a rectangle). Non-Euclidean spaces are represented in sets, graphs, meshes, or 

manifolds. Examples of MIR for non-Euclidean data, specifically 3D point clouds, have been presented in (Terpstra 

et al., 2022; Su et al., 2021). 

                             
Figure 25. Space geometry taxonomy 

 

6.8 Other taxonomies 

6.8.1 Feature-based and pixel-based 

Feature-based and pixel-based taxonomy depends on the type of inputs to the registration algorithm.  A feature-based 

registration involves an explicit feature extraction or selection, thus the input to the registration algorithm is not the 

image itself but representative features of that image such as its histogram (Ban et al., 2022).  In pixel-based 

approaches, images are fed directly to the model without feature extraction. In general, DL registration approaches are 

pixel-based as neural networks can extract features implicitly. 

6.8.2 Medical imaging modalities 

Medical imaging modalities are imaging techniques (Kasban et al., 2015) used to visualize the body and its 

components. The main medical imaging modalities in MIR are:  

a. X-ray 

X-ray uses ionizing radiation (X-rays) to produce two-dimensional images of bones and dense tissues. X-rays are 

absorbed differently by different tissues, allowing visualization of structures like bones, lungs, and some organs. X-

rays are quick and relatively inexpensive, thus suitable for some diagnostic purposes, such as detecting fractures, lung 

infections, and dental issues. However, they provide limited details about soft tissues. 
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b. Computed Tomography (CT) scan 

CT scan, also known as CAT (Computerized Axial Tomography), is a non-invasive imaging technique that uses X-

rays to create detailed cross-sectional images of the body. A CT scan provides a more detailed view of bones, blood 

vessels, and solid organs compared to traditional X-rays. It is especially useful for imaging areas like the brain, chest, 

abdomen, and pelvis. However, they involve exposure to ionizing radiation, and repeated scans should be minimized 

to reduce radiation exposure. During a CT scan, the X-ray source rotates around the patient, and multiple X-ray images 

are captured from different angles. These images are then processed by a computer to create cross-sectional slices, 

allowing doctors to visualize the body in detail. CT scans are commonly used in emergencies, trauma cases, and cancer 

staging, among other applications. 

c. Magnetic Resonance Imaging (MR) 

MRI uses strong magnetic fields and radio waves to create detailed images of tissues, organs, and the central nervous 

system. It provides high-resolution, multi-planar images, making it ideal for diagnosing conditions in the brain, spinal 

cord, muscles, and joints. MRI does not use ionizing radiation, which makes it safer, but it can be more time-

consuming and expensive compared to X-rays and CT scans. 

d. Ultrasound (US) 

Ultrasound, also known as sonography, uses high-frequency sound waves to create real-time images of internal organs 

and structures. It is commonly used for imaging the abdomen, pelvis, heart, and developing fetus during pregnancy. 

Ultrasound is non-invasive and does not involve ionizing radiation. It provides real-time imaging and is excellent for 

assessing blood flow and certain soft tissue abnormalities. However, it may not provide as detailed images as MRI 

and CT. 

e. Positron Emission Tomography (PET) 

PET is a functional imaging technique that provides information about metabolic activity and cellular function. It 

involves the injection of a radioactive tracer that emits positrons. The interaction between the tracer and tissues 

produces gamma rays, which are detected by the PET scanner. PET is valuable in oncology (cancer imaging) and 

neurology (e.g., detecting Alzheimer's disease). PET can be combined with CT imaging to provide both functional 

and anatomical information in a single scan. 

MIR is considered “unimodal” when there are no modality differences between the images involved in the registration 

process, otherwise, the registration is considered “multimodal”. See Figure 26.  An example of a unimodal registration 

is when both moving and fixed images are X-rays. An example of multimodal registration is when a fixed image is of 

the T1-weighted MRI modality and the moving image of the T2-weighted MRI. T2-weighted MRI enhances the signal 

of the water and suppresses the signal of the fatty tissue while MRI/T1 does the opposite.  

                             
Figure 26. MIR taxonomy based on the modalities 

 

7.0 Evaluation measures 

IR evaluation measures can be categorized as shown in Figure 27 into 1) time-based measures that focus on the time 

needed to finish a task, 2) size-based measures that focus on the memory resources that an MIR algorithm occupies, 

3) smoothness measures that focus on the smoothness of the registration field (expressed by Jacobian), and 4) 

proximity-based measures that find the deviation of a registration outcome from the ground-truth. proximity can be 

expressed using distances between objects in a space, overlap between sets, or correlations between variables.  
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7.1 Time 

a) Average registration runtime RT: 

The runtime (RT) is the average registration time per image. The registration time is measured from the 

moment 𝑡𝑟,𝑠𝑡𝑎𝑟𝑡
𝑝

 at which an image p is loaded until obtaining the registered image at time 𝑡𝑟,𝑒𝑛𝑑
𝑝

 including 

the post-processing time. See Equation 18. Where N is the number of examples in a dataset. 

𝑅𝑇 =  
∑ (𝑡𝑟,𝑒𝑛𝑑

𝑝
− 𝑡𝑟,𝑠𝑡𝑎𝑟𝑡

𝑝
)𝑁

𝑝=1

𝑁
      (18) 

In practice, getting the registration outcome in a short time is a desired property. The Voxelmorph algorithm, 

which uses deep learning for medical image registration, has shown an RT reduction from hours to seconds 

while keeping almost the same performance. The computation time of a registration process depends on the 

software as well as the hardware (Alcaín et al., 2021). Thus, a fair comparison of registration algorithms 

entails testing the computation time on the same hardware. The shorter RT of Voxelmorph compared to 

iterative approaches can be attributed partially to the hardware, where matrix multiplication processes used 

in DL are faster when run with a GPU. However, even on CPUs, Voxelmorph remains faster than iterative 

methods on a scale of minutes for voxelmorph to hours for iterative methods. The main reason for the longer 

RT in iterative approaches is the optimization done during the runtime, however, Voxelmorph-like approaches 

do not optimize the variables during the run phase, instead, all the variables are optimized in the training 

phase before the run time. 

b) Average training time DT is the training time divided by the number of examples in the training 

dataset. 

 

7.2 Distance-based measures 

The distance can be chosen to be between co-domain values or domain values. The distance can be measured 

between selected points (landmarks) or all points. 
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a) Codomain distance: MSE, RMSE 

The Euclidean point-wise distance between codomain values can be calculated using the mean square 

error (MSE), and root mean square error (RMSE) measure as in Equations 19, and 20 respectively. 

𝑀𝑆𝐸 =
1

𝑁
 ∑

1

𝐿𝑝
∑ 𝐷𝑖𝑠𝑡(𝑦𝑒′𝑖𝑗

𝑝 , 𝑦𝑒𝑖𝑗
𝑝 )2𝐿𝑝

𝑒=1  𝑁
𝑝=1     (19) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸       (20) 

 

b) Domain distance: TRE 

 

 

 

Figure 28. TRE components 

 

TRE (target registration error) is a distance-based metric that measures the deviation between points of 

two domains. See the deviation between estimated and ground truth points in Figure 28. The distance is 

used to represent the registration error since a perfect registration would locate correspondent points 

ideally at the same position.  In the case of ground truth labels  𝑋𝑖𝑗
′  and predictions 𝑋𝑖𝑗, TRE is shown in 

Equation 21. 

 

TRE = RMSE (𝑋𝑖𝑗
′  , 𝑋𝑖𝑗) = √

1

𝑁
 ∑ 𝑒𝑟𝑟𝑜𝑟(𝑀′𝑖𝑗

𝑝 , 𝑀𝑖𝑗
𝑝 )2 𝑁

𝑝=1  =  √
1

𝑁
 ∑ ∑ 𝐷𝑖𝑠𝑡(𝑥𝑒′𝑖𝑗

𝑝 , 𝑥𝑒𝑖𝑗
𝑝  )2𝑀𝑝

𝑒=1  𝑁
𝑝=1   (21) 

 

where 𝑥𝑒𝑖𝑗
𝑝 ∈  𝑀𝑖𝑗

𝑝  , 𝑥𝑒′𝑖𝑗
𝑝 ∈  𝑀′𝑖𝑗

𝑝 , 𝑤𝑖𝑡ℎ 𝑎 𝑐𝑜𝑟𝑟𝑜𝑠𝑜𝑛𝑑𝑒𝑛𝑐𝑒 (𝑥𝑒′𝑖𝑗
𝑝 ↔ 𝑥𝑒∅𝑗

𝑝 ) 

 

c) Domain distance: NTRE 

TRE is affected by the scale of an image as well as the number of landmarks, the more landmarks in an 

image the higher the accumulative error could be. The normalized target to registration error (NTRE) is 

scale independent as shown in Equation 22. 

 

𝑁𝑇𝑅𝐸 =  √
1

𝑁
 ∑

∑ 𝐷𝑖𝑠𝑡(𝑥𝑒′
𝑖𝑗
𝑝

,𝑥𝑒
𝑖𝑗
𝑝

 )2𝑀𝑝
𝑒=1

∑ (𝑥𝑒′
𝑖𝑗
𝑝

 )2𝑀𝑝
𝑒=1

 𝑁
𝑝=1     (22) 

 

d) Domain distance: Hausdorff distance HD  

HD measures how far two sets are from each other as in Equations 23-24 below. 

𝐻𝐷(𝐴, 𝐵)  =  𝑚𝑎𝑥{ sup(
𝑎∈𝐴

inf
𝑏∈𝐵

(𝐷𝑖𝑠𝑡(𝑎, 𝑏))), sup(
𝑏∈𝐵

 inf
𝑎∈𝐴

(𝐷𝑖𝑠𝑡(𝑎, 𝑏)) }  (23) 

 

𝐻𝐷(𝑀′𝑖𝑗
𝑝 , 𝑀𝑖𝑗

𝑝 )  =  
1

𝑁
∑ 𝑚𝑎𝑥{ sup(

𝑚′𝑖𝑗
𝑝

∈𝑀′𝑖𝑗
𝑝

inf
𝑚

𝑖𝑗
𝑝

∈𝑀
𝑖𝑗
𝑝

(𝐷𝑖𝑠𝑡(𝑚′𝑖𝑗
𝑝 , 𝑚𝑖𝑗

𝑝
))), sup(

𝑚𝑖𝑗
𝑝

∈𝑀𝑖𝑗
𝑝

 inf
𝑚′

𝑖𝑗
𝑝

∈𝑀′
𝑖𝑗
𝑝

(𝐷𝑖𝑠𝑡(𝑚′𝑖𝑗
𝑝 , 𝑚𝑖𝑗

𝑝
)) 𝑁

𝑝=1  

           (24) 

Where  

- sup() is the supremum 

- inf() is the infimum 

- Dist (a,b) is the distance between point a in the first set and point b in the second set.  

inf
𝑏∈𝐵

(𝑑(𝑎, 𝑏)) is the infimum distance between point a and all the points in set B  

𝐻𝐷95 metric replaces the supremum in the equation by the 95 percentile, which results in less sensitivity to 

outliers. 
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e) Domain distance: Center of mass COM measures the displacement between two the center of two sets 

A, B as shown in Equations 25 and 26 

COM(A, B) = dist( Center(A), Center(B) )     (25) 

Center(A) =  mean(x), ∀𝑥 ∈ 𝐴      (26) 

7.3 Segmentation measures 

a) The dice similarity coefficient (DSC) measures the overlap between two segmentation sets 𝐿∅𝑗
𝑝

, 𝐿𝑖𝑗
𝑝

 as 

in Equation 27 below. 

𝐷𝑆𝐶(𝐿∅𝑗
𝑝 , 𝐿𝑖𝑗

𝑝 ) =
2 |𝐿

∅𝑗
𝑝

∩ 𝐿
𝑖𝑗
𝑝

|

|𝐿∅𝑗
𝑝

|+| 𝐿𝑖𝑗
𝑝

|
      (27) 

DSC is equivalent to the F1 score used in classification problems, where the segmentation problem is a 

classification problem on the pixel level, in which a pixel/point is assigned to a segmentation label that 

could be true or false. F1 = 2TP/(FP+FN +2TP). 

b) The daccard coefficient is similar to DSC with a slight modification shown in Equation 28. 

𝐷𝑎𝑐𝑐𝑎𝑟𝑑(𝐿∅𝑗
𝑝 , 𝐿𝑖𝑗

𝑝 ) =
 |𝐿∅𝑗

𝑝
∩ 𝐿𝑖𝑗

𝑝
|

|𝐿∅𝑗
𝑝

 ∪ 𝐿𝑖𝑗
𝑝

|
      (28) 

7.4 Correlation measures 

It has been reported that cross-correlation is a better objective function than MSE, and RMSE for image registration 

(Zitova et al., 2003; Haskins et al., 2020). cross-correlation “CC” is more resilient against the contrast problem than 

MSE due to its scale invariance property. CC (Y1, Y2) = CC (Y1, α×Y2) where α is a scale number. 

7.5 The smoothness of the registration field 

A non-smooth registration field can relocate a pixel far away from all its adjacent pixels after registration, however, a 

smooth registration field is more likely to keep nearby pixels relatively close to each other after relocation.  The 

smoothness can be expressed using the determinant of the Jacobian |  𝐽(  φ  ) |     

7.6 Model size 

A model size can be expressed by the number of bytes that a model occupies in a storage device or the total number 

of its parameters. 

7.7 Clinical-based evaluation  

Virtual evaluation using computer-based metrics (above) may not always align perfectly with the practical evaluation 

by medical experts. Thus, clinical-based evaluation and involvement of domain experts from the medical field have 

been recommended by Chen, X., Wang et al. (2022) to characterize the reliability of MIR tools (Huang et al., 2022). 

The challenges of MIR assessment included 1) the lack of ground truth labels in practical scenarios makes it difficult 

to evaluate an MIR outcome convincingly. 2) Medical experts’ assessment could be subjective and may vary among 

experts. 3) Instable outcomes of some MIR algorithms, which yield different outcomes of different registration 

qualities for the same input image. 4) the quality of data can have a substantial impact on registration results, making 

it challenging to compare algorithms across datasets with varying quality (Chen, T. et al.,2022). 
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8.0 Medical imaging datasets 

A list of public datasets used in the literature was summarized in Table 5. The datasets were categorized based on the 

region of interest (ROI) such as brain, chest, …etc., and the medical imaging type. 

Table 5. Medical images datasets 

ROI Modality Dataset Link 
Brain MR OASIS: Open Access Series of Imaging Studies https://www.oasis-brains.org/ 

MR LPBA40: The LONI Probabilistic Brain Atlas https://www.loni.usc.edu/research/atlases 

MR ADNI:  Alzheimer’s Disease Neuroimaging 

Initiative 

https://adni.loni.usc.edu/ 

MR IXI https://brain-development.org/ixi-dataset/ 

MR IBIS  

MR IBSR: The Internet Brain Segmentation Repository https://www.nitrc.org/projects/ibsr 

MR ADHD-200: Attention Deficit Hyperactivity Disorder http://fcon_1000.projects.nitrc.org/indi/adhd200/ 

MR PPMI https://www.ppmi-info.org/access-data-

specimens/download-data/ 

MR CUMC12, MGH10 https://www.synapse.org/#!Synapse:syn3207203 

MR ABIDE: Autism Brain Imaging Data Exchange http://fcon_1000.projects.nitrc.org/indi/abide/ 

MR BraTS2017: Brain Tumor Segmentation https://www.med.upenn.edu/sbia/brats2017/data.html 

MR Mindboggle https://mindboggle.info/data.html 

MR 

simulated 

BrainWeb https://brainweb.bic.mni.mcgill.ca/brainweb/ 

MR / US BITE: Brain Images of Tumors for Evaluation 

database 

https://nist.mni.mcgill.ca/data/ 

MR / US CuRIOUS2018 https://curious2018.grand-challenge.org/Data/ 

MR / US RESECT: a clinical database of pre-operative MRI 

and intra-operative ultrasound in low-grade glioma 
surgeries 

https://archive.norstore.no/pages/public/datasetDetail.jsf

?id=10.11582/2017.00004 

Prostate MR Prostate-3T https://wiki.cancerimagingarchive.net/display/Public/Pro

state-3T 

MR PROMISE12: Prostate MR Image Segmentation 2012 https://zenodo.org/record/8026660 

MR Prostate Fused-MRI-Pathology https://wiki.cancerimagingarchive.net/pages/viewpage.a
ction?pageId=23691514 

Spine CT, MR 

depending 

on the 

dataset 

SpineWeb library http://spineweb.digitalimaginggroup.ca/Index.php?n=M

ain.Datasets 

Knee MR OAI https://nda.nih.gov/oai/ 

Chest CT NLST https://cdas.cancer.gov/datasets/nlst/ 

CT SPARE https://image-x.sydney.edu.au/spare-challenge/ 

XRAY NIH ChestXray14 https://nihcc.app.box.com/v/ChestXray-NIHCC 

XRAY JSRT: Japanese Society of Radiological Technology http://db.jsrt.or.jp/eng.php 
 

http://imgcom.jsrt.or.jp/minijsrtdb/ 

XRAY Tuberculosis image datasets https://lhncbc.nlm.nih.gov/LHC-

downloads/downloads.html#tuberculosis-image-data-

sets 

Lung CT POPI https://www.creatis.insa-lyon.fr/rio/popi-

model_original_page 

CT NLST https://cdas.cancer.gov/datasets/nlst/ 

CT SPARE https://image-x.sydney.edu.au/spare-challenge/ 

Heart MR/CT MM-WHS: Multi-Modality Whole Heart 
Segmentation 

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mm
whs/ 

MR SCD: The Sunnybrook Cardiac Data  https://www.cardiacatlas.org/sunnybrook-cardiac-data/ 

Liver CT sliver07 https://sliver07.grand-challenge.org/Home/ 

Kidney CT KITS23  https://kits-challenge.org/kits23/ 

Pancreas CT Pancreas-CT https://opendatalab.com/Pancreas-CT_Dataset 

https://wiki.cancerimagingarchive.net/display/public/pan
creas-ct 

Abdomen 

(kidney, 

liver, 

Spleen, 
Pancreas) 

CT Anatomy3 https://visceral.eu/benchmarks/anatomy3-open/ 

10 ROIs MR or CT  Medical Segmentation Decathon challenge https://decathlon-10.grand-challenge.org/ 
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9.0 Medical applications 

Changing the frame of reference might mislead humans (like the phenomenon of not recognizing an object if it has 

been flipped (e.g., old/young lady face in Figure 2). Hence, it is easier for medical practitioners to evaluate a medical 

image in a standard reference frame (e.g., orientation, scale). Thus, registration is an essential part of medical 

diagnoses that depend on imaging technologies. IR was applied in retina imaging (Ho et al., 2021), breast imaging 

(Ringel et al., 2022; Ying et al., 2022), HIFU treatment of heart arrhythmias (Dahman et al., 2022), and cross-staining 

alignment (Wang et al., 2022). Selected applications of MIR are discussed below. 

9.1 Image-guided surgery 

Image-guided surgery (IGS) incorporates imaging modalities such as CT, and US to assist surgeons during surgical 

procedures. For example, surgeons can visualize internal anatomy, pinpoint the location of tumors or lesions, and 

determine optimal incision points. Image-guided surgery enables surgeons to precisely target specific areas, and avoid 

critical structures during a procedure. 

Before an IGS, a patient's preoperative images are loaded into a software or surgical navigation system. The collected 

images are then aligned with images taken during the surgery (inter-operative) using registration algorithms. Having 

images with key points/landmarks improves the registration process in terms of speed and precision. The landmarks 

can be selected manually by medical experts on computer software (Schmidt et al., 2022; Wang, Y. et al., 2022), or 

they could be fiducial markers, which are small devices placed in a patient’s body such as the injection of gold seeds 

to mark a tumor before radiation therapy. The number of landmarks needed for a precise registration can be reduced 

by the integration of semantic segmentation in addition to the use of a standard template (atlas) instead of preoperative 

images as shown by (Su et al., 2021). An alignment with no landmarks was tested by (Robertson et al., 2022) for 

catheter placement in non-immobilized patients. 

To mention some examples of the use of MIR for IGS, 2D inter-operative and 3D preoperative images were aligned 

in real-time surgical navigation systems (Ashfaq et al., 2022). A similar alignment of 2D-3D was needed for the deep 

brain stimulation procedure which involves the placement of neuro-electrodes into the brain to treat movement 

disorders such as Parkinson, and Dystonia (Uneri et al., 2021). A real-time biopsy navigation system was developed 

by (Dupuy et al., 2021) to align 2D US inter-operative images with 3D TRUS preoperative images and to estimate in 

real-time the biopsy target of a prostate based on its previous trajectory. 

9.2 Tumor diagnosis and therapy 

A tumor is an abnormal mass or growth of cells in the body. Tumors can develop in various tissues or organs and can 

be either benign or malignant. Benign tumors are non-cancerous and typically do not invade nearby tissues or spread 

to other parts of the body.  Benign tumors are generally not life-threatening, but medical attention and/or treatment are 

still required. Malignant tumors, on the other side, are cancerous. They have the potential to invade surrounding tissues 

and can spread to other parts of the body through the bloodstream or lymphatic system. Malignant tumors grow rapidly 

and can be life-threatening. Medical experts often diagnose a tumor and plan therapy depending on the tumor’s growth 

over time as recorded in aligned medical images. Accordingly, MIR has been used for radiotherapy (Fu et al., 2022; 

Vargas-Bedoya et al., 2022) and proton therapy (Hirotaki et al., 2022). 

9.3 Motion processing 

The human body experience normal deformation over time, some deformations occur at a slower pace such as the 

growth of bones over a lifetime (e.g., a human height grows from afew feet in newborns to several feet in adults) while 

some deformations occur at a faster pace such as heartbeats. The heart experiences alternating contractions and 

relaxations while pumping blood at a frequency of 1-3 beats per second. MIR helps to analyze such temporospatial 

deformations and resulting movements. 

The cardiac motion was tracked by (Ye et al., 2021) using tagging magnetic resonance imaging (t-MRI), where an 

unsupervised bidirectional MIR model estimated the motion field between consecutive frames. (Upendra et al., 2021) 

focused on motion extraction from 4D cardiac CMRI (Cine Magnetic Resonance Imaging), mainly the development 

of patient-specific right ventricle (RV) models based on kinematic analysis. A DL deformable MIR was used to 

estimate the motion of the RV and generate isosurface meshes of cardiac geometry. 
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Respiratory movement can affect the quality of medical imaging by causing motion blur. To overcome this (Hou et 

al., 2022) proposed an unsupervised MIR framework for respiratory motion correction in PET (Positron Emission 

Tomography) images. (Chaudhary et al., 2022) focused on lung tissue expansion which is typically estimated by 

registering multiple scans. To reduce the number of needed scans, Chaudhary et al., (2022) proposed the use of 

generative adversarial learning to estimate local tissue expansion of lungs from a single CT scan. 

2D-3D motion registration of bones was addressed in (Djurabekova et al., 2022) by manipulating segmented bones 

from static scans and matching digitally reconstructed radiographs to X-ray projections. The bones were, particularly 

foot and ankle structure. 

10.0 Other research directions 

10.1 Transformers 

Transformers are a DL architecture that uses the attention mechanism solely dispensing with conventional and 

recurrent units (Vaswani et al., 2017). Transformers have contributed to noticeable improvements in computer vision, 

audio processing, and language processing tasks (Lin et al, 2022). The improvement can be seen in products like GPT-

2, and ChatGPT which are examples of Generative Pre-trained Transformers (GPT). Transformers can be decomposed 

into basic/abstract mathematical components that distinguished them from recurrent and convolutional networks: 1) 

the position encoding, which explicitly feeds the position of a token as an input, 2) the product operation between 

features which is manifested explicitly in the product between the key and the query of the attention mechanism, and 

implicitly within the exponential function of the SoftMax (𝑒𝑎+𝑏 =  𝑒𝑎 ×  𝑒𝑏). 3) the exponential function which 

represents a transformation into another space. 

In MIR, (Mok et al., 2022) proposed the use of the attention mechanism for affine MIR such that multi-head attention 

was used in the encoder, and convolutional units in the decoder. Transformers were embedded partially for deformable 

MIR in Transmorph (Chen, J. et al., 2022). Transmorph is a coarse-fine IR such that affine alignment is conducted in 

the first stage followed by deformable alignment in the second stage. The latter stage is a Voxelmorph-like registration 

with U-Net architecture except that the encoder part consists of transformers instead of ConvNets. Transmorph 

introduced transformers (self-attention blocks) as a part of the encoder only but not the decoder. Ma et al. (2022) 

attributed the difficulty of developing transformers for MIR to the large number of trainable parameters of a 

transformer unit compared to convolutional units. To reduce the number of parameters, the authors proposed the use 

of both convolution units and transformer units in an MIR model - SymTrans (Ma et al., 2022). SymTrans embedded 

transformers in both the encoder and the decoder (2 blocks in the encoder and 2 in the decoder).  

The utilization of transformers in MIR was not as fast and revolutionary as it was in other domains. That could be 

attributed to the relatively small number of images in MIR datasets compared to other tasks. For example, millions of 

images were used for the ViLT model (Kim et al., 2021), and up to 0.8 billion images for the GiT model (Wang, J. et 

al., 2022).  

10.2 No Registration  

Another potential research direction is the elimination of the image registration step from the medical image analysis 

pipeline. In theory, an end-to-end deep learning model learns an automatic medical image analysis task (e.g., disease 

detection) without an explicit registration step. In (Chen, X., Zhang, et al, 2022), the authors proposed the elimination 

of the registration step entirely by the development of a breast cancer prediction model using vision transformers and 

multi-view images. 

11.3 Other research directions explored before include Fourier transform-based IR (Zitova et al., 2003), Reinforcement 

learning based IR (Chen, X. et al., 2021; George et al., 2021; Sutton et al., 1994), and GANs-based MIR (Xiao et al., 

2021; Chaudhary et al., 2022; Dey et al., 2021; Goodfellow et al., 2020). There could be further research interest in 

the mentioned MIR research directions in the future. 
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Appendix A: Definitions 
 

Affine transformation a geometric transformation that preserves parallelism and lines, but not necessarily angles and Euclidean 

distances. 

Automorphism An Isomorphism from a structure to itself. 

Bidirectional 

transformation 

𝑇𝑖↔𝑘  maps spaces in both directions from i to k and vice versa. 

Diffeomorphism An isomorphism of manifolds that is invertible and differentiable. 

Geometric deep learning unified geometric principles that provide a framework to study neural network architectures and that also 

incorporate prior physical knowledge into neural networks. 

Invariance A property that an outcome remains unchained after transformations. For example, the area of an object is 

invariant to rigid transformations (rotation, translation). 

Invertibility 𝑇𝑖𝑗 is an invertible transformation if  ∃ 𝑇𝑖𝑗
−1 

Isomorphism is a mapping that preserves the structure and can be inverted such as a 1:1 correspondence between two sets.  

Isosurface a 3D surface representation of points with equal values in a 3D data distribution. 

Metamorphism the correspondence between a fixed image and a moving image is not 1:1. 

Multimodal registration input images are of different modality kinds. 

Orthogonal 

transformation 

A linear transformation preserves the inner product such that for a transformation T applied to vectors a and 

b, the inner product of the newly transformed vector <a’,b’> = <a,b>. 

Rigid transformation is an affine transformation that preserves distances. 

Structure a set with features (e.g., operations). 

Symmetric Invertibility  ∃𝑘 ∈ 𝑠𝑝𝑎𝑐𝑒 ∶   𝑇𝑖𝑗 = 𝑇𝑘𝑗 ∘  𝑇𝑖𝑘, 𝑤ℎ𝑒𝑟𝑒  𝑇𝑖𝑘 = 𝑇𝑗𝑘
−1  

Unimodal registration input images are of the same modality 
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Appendix B: Comparison table of surveyed papers 

 

Paper Modality Modals Dimensionality Data Deformability Directionality Invertibility Tx 

function 

#input 

images 

Input Correspondence Stages Approach ROI Application 

(Andreadis et al., 2022) Unimodal 
 

3D Both Deformable Uni N 
 

2 Intensity 1-to-1 1 Classical Bladder 
 

(Ashfaq et al., 2022) Multimodal MR 2D Real Affine Uni N Matrix 2 Intensity 1-to-1 1 Classical Brain 
 

(Ban et al., 2022) Multimodal CT-Xray 2D-3D Real Affine Uni N 
 

2 Feature 1-to-1 1 Classical Head Image-guided surgery 

(Bashkanov et al., 2021) Multimodal MR - TRUS 3D Real Deformable Uni N NN 2 Intensity 1-to-1 Coarse-f. Supervised     Prostate 
 

(Begum et al., 2022) Multimodal CT - MR 2D Real 
 

Uni N 
     

Classical Brain & 

Abdomen 

 

(Burduja et al., 2021) Unimodal CT 3D Real Deformable Uni N NN 2 Intensity 1-to-1 1 Unsupervised Liver Curriculum learning for image registration 

(Chaudhary et al., 2022) Unimodal CT 
 

Real Deformable Uni N NN 1 Intensity 1-to-1 1 Unsupervised Lung Local tissue expansion of the lung 

(Chen, J. et al., 2022) 
   

Real Deformable Uni N NN 2 Intensity 1-to-1 Pyramid Unsupervised Brain 
 

(Dahman et al., 2022) Multimodal US - CT 2D Synthetic Affine Uni N NN 2 Intensity 1-to-1 1 Supervised     Heart Hifu treatment of the heart arrhythmias 

(Dey et al., 2021) Unimodal MR 3D Real Deformable Uni N NN 1 Intensity 1-to-1 
 

Unsupervised Brain Registration with a template generated by GANs 

(Dida et al., 2022) Unimodal CT 2D Real Affine Uni N Matrix 2 Intensity 1-to-1 1 Classical Lung Covid-infection 

(Ding, W. et al., 2022) Multimodal CT - MR 3D Real Deformable Bi N NN N Intensity 1-to-1 1 Unsupervised 
  

(Ding, Z. et al., 2022) Unimodal MR 3D Real Deformable Bi Y NN 2 Intensity 1-to-1 1 Unsupervised Knee Atlas-building 

(Djurabekova et al., 
2022) 

Multimodal 2D - 3D 2D-3D Real Affine Uni N Matrix 2 Intensity 1-to-1 1 Classical Bones 2d-3d motion registration of bones 

(Dupuy et al., 2021) Multimodal US - TRUS 2D-3D Real Affine Uni N 
 

2 Feature 1-to-1 1 Supervised     Prostate Real-time prostate biopsy navigation 

(Fu et al., 2022) Unimodal CT 
 

Real Deformable Uni N 
     

Software Liver Radiotherapy without fiducial marks 

(Gao et al., 2022) Unimodal CT 3D Real Both Uni N NN 2 Intensity 1-to-1 Coarse-f. Unsupervised Spine 
 

(George et al., 2021) Unimodal 
 

2D Real Affine Uni N NN 2 Intensity 1-to-1 1 RL Eye 
 

(Himthani et al., 2022) Unimodal MR 3D Both Deformable Uni N 
 

2 Intensity 1-to-1 Coarse-f. Classical Brain 
 

(Hirotaki et al., 2022) Multimodal CT-Xray 2D-3D Real Affine Uni N 
 

2 
 

1-to-1 1 Software Lung, head, 

neck 

Proton therapy 

(Ho et al., 2021) Unimodal 
 

2D Real Deformable Uni N NN 2 Feature 1-to-1 Coarse-f. Unsupervised Eye Retinal image registration 

(Hou et al., 2022) Unimodal PET 3D Real Deformable Uni N 
 

2 Intensity 1-to-1 1 Unsupervised Heart Respiratory motion correction 

(Kujur et al., 2022) Multimodal MR 2D Real Affine Uni N Matrix 2 Intensity 1-to-1 1 Classical Brain 
 

(Lee et al., 2022) Unimodal CT 3D Real Deformable Uni N NN 2 Intensity 1-to-1 1 Supervised     Kidney 
 

(Li et al., 2022) Unimodal MR 3D Real Deformable Uni N NN 2 Intensity 1-to-1 1 Unsupervised Brain 
 

(Liu et al., 2021) Unimodal 
 

3D Real Deformable Uni N 
  

Feature 1-to-1 1 Classical Tissues Histopathology 

(Ma et al., 2022) Unimodal MR 3D Real Deformable Uni N NN 2 Intensity 1-to-1 1 Unsupervised Brain 
 

(Maillard et al., 2022) Unimodal MR 2D Both Deformable Uni N NN+ 

equation 

layers 

2 Intensity Metamorphic m:n 1 Neuro-symbolic Brain 
 

(Meng et al., 2022) Unimodal MR 3D Real Deformable Uni N NN 2 Intensity 1-to-1 1 Unsupervised Brain 
 

(Mok et al., 2022) Unimodal MR 3D Real Affine Uni N NN 2 Intensity 1-to-1 Coarse-f. Unsupervised Brain 
 

(Naik et al., 2022) Multimodal CT-Xray 2D-3D Real Affine Uni N Matrix 
 

Intensity 1-to-1 Coarse-f. Classical Spine Vertebral localization in spine surgery 

(Nazib et al., 2021) Unimodal MR 3D Real Deformable Bi Y NN 2 Intensity 1-to-1 1 Unsupervised Brain 
 

(Park et al., 2022) Unimodal CT/MR 2D Real Deformable Uni N NN 2 Intensity 1-to-1 1 Unsupervised 
  

(Ringel et al., 2022) Unimodal MR 3D Both Both Uni N 
 

2 Both 1-to-1 1 Classical Breast Breast image registration 

(Robertson et al., 2022) Multimodal CT/MR - video 3D 
     

2 Intensity 1-to-1 Coarse-f. Software Head Neuronavigational and catheter placement w/o 

remarks  

(Saadat et al., 2022) Multimodal CT-Fluoroscopy 2D-3D 
 

Affine Uni N Matrix 2 Intensity 1-to-1 Coarse-f. Classical Bones 
 

(Saiti et al., 2022) Multimodal CT 3D Synthetic Affine Uni N NN 2 Feature 1-to-1 1 Supervised     
  

(Santarossa et al., 2022) Multimodal IR-FAF/OCT 2D-3D Real Affine Uni N 
 

2 Feature 1-to-1 1 Classical Eye 
 

(Schmidt et al., 2022) 
   

Real Deformable Uni N NN 2 Both 1-to-1 Coarse-f. Unsupervised Veins Sonographic guidance for CVC (central venous 

catheters) insertion on veins 

(Su et al., 2021) Unimodal CT/MR 3D Both Affine Uni N Matrix 2 Domain 1-to-1 
 

Classical 
 

Neurosurgery navigation 
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(Terpstra et al., 2022) 
 

MR 2D Real Deformable Uni N Matrix 
  

1-to-1 1 Supervised     Abdomen 
 

(Uneri et al., 2021) Unimodal 
 

2D-3D Real Deformable Uni N 
   

1-to-1 
 

Classical Brain Guiding neuroelectric placement in the brain 

(Upendra, & Hasan et al., 

2021) 

 
MR 4D Real Deformable Uni N NN 2 Intensity 1-to-1 1 Unsupervised Heart Motion extraction from 4d cardiac MRI 

(Upendra, & Hasan et al., 
2021) 

Unimodal MR 2D Real Affine Uni N NN 2 Intensity 1-to-1 1 Supervised     Blood 
 

(Van et al., 2022) Multimodal CT-Xray 2D-3D Real Deformable Uni N NN 3 Intensity 1-to-1 Coarse-f. Unsupervised Bones 
 

(Vargas-Bedoya et al., 

2022) 

Unimodal CT 4D Real Deformable Uni N Iterative 

matching 

2 Intensity 1-to-1 1 Classical Brain & 

Abdomen 

Radiotherapy treatment planning 

(Vijayan et al., 2021) Multimodal CT 2D-3D Real Affine Uni N Matrix 2 Intensity 1-to-1 1 
 

Bones Image-guided robot surgery 

(Wang, C. et al., 2022) Unimodal 
 

2D Real Affine Uni N Matrix 2 Feature 1-to-1 Coarse-f.+ 

pyramid 

Classical Breast & 

prostate 

Cross-staining alignment 

(Wang, H. et al., 2022) Unimodal IR 3D Real Deformable Uni N Iterative 
matching 

2 Feature 1-to-1 1 Classical Breast 
 

(Wang, D. et al., 2022) Unimodal CT 
 

Both Affine Uni N Matrix 2 Both 1-to-1 Coarse-f. Classical Bones Surgery navigation 

(Wang, Z. et al., 2022) Unimodal MR 4D Real 
         

Brain Template construction 

(Wu et al., 2022) Unimodal MR 3D Both Deformable Uni N NN+ode 1 Domain 1-to-1 1 Classical Brain 
 

(Xu et al., 2021) Multimodal CT - MR 3D Real Deformable Uni N NN 2 Intensity 1-to-1 Coarse-f. Unsupervised Abdomen 
 

(Yang, Q. et al., 2021) Unimodal MR 3D Real Deformable Uni N NN 2 Feature 1-to-1 1 Unsupervised Prostate Morphological change of prostate glands 

(Yang, Y. et al., 2021) Unimodal greyscale 2D Real Deformable Uni N NN 2 Both 1-to-1 Coarse-f. Classical Brain 
 

(Yang et al., 2022) Multimodal MR 3D Real Deformable Uni N NN 3 Intensity 1-to-1 1 Unsupervised Prostate 
 

(Ye et al., 2021) Unimodal MR 3D Real Deformable Bi Y NN 2 Intensity 1-to-1 1 Unsupervised Heart Cardiac motion tracking 

(Ying et al., 2022) Unimodal MR 3D Real Deformable Uni N NN 2 Intensity 1-to-1 1 Classical Breast Breast density segmentation 

(Zhang, G. et al., 2021) Unimodal 
 

3D Real Deformable Uni N NN 2 Intensity 1-to-1 Pyramid Unsupervised Brain 
 

(Zhang, L. et al., 2021) Unimodal MR 3D Real Deformable Uni N NN 2 Intensity 1-to-1 Pyramid Unsupervised Brain 
 

(Zhu et al., 2021) Unimodal MR 3D Real Deformable Uni N NN 2 Intensity 1-to-1 Pyramid Unsupervised Head 
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Appendix C: Statistics in figures 

 

 

  
Figure 29. Multistage registration statistics Figure 30. DL architecture statistics 

 

 

 

 
 

Figure 31. Deformability statistics Figure 32. Modality statistics 
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Figure 33. Invertibility statistics Figure 34. Dimensionality statistics  
 

 

 

 

  

Figure 35. IR approach statistics Figure 36. Data type statistics 
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Figure 37. Modals statistics 

 

 
Figure 38. ROIs statistics 
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