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Abstract

We visualize the process of value function iteration and convergence. We

also clarify the conditions under which value function iteration converges to

a unique value function, which are often glossed over in practice.
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1 Introduction

In various disciplines we encounter the concept of value function iteration. The

main goal of this paper and the companion video is to visualize the process of

value function iteration and convergence. We also wish to clarify the conditions

under which value function iteration converges to a unique value function, which

are often glossed over in practice. We use the classic optimal growth model and

optimal savings problem for this purpose.

For many of us, visualization is a powerful tool for understanding mathematical

concepts (Arcavi, 2003). For example, suppose you had never seen a circle. You

could be shown the equation x2 + y2 = 1 and be told this is the equation for a

circle in two-dimensional Euclidean space, with its center at the origin and with

a radius of 1. You could also be shown a picture of the circle represented by this

equation. Many of us would find that this picture gives us a deeper and more

confident understanding of the concept of a circle than the equation by itself.
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The audience we have in mind for this paper is mainly first-year graduate

students in Economics and their instructors. We hope, however, that our paper

will be useful to anyone who wants to take the mystery out of value function

iteration and convergence.

The paper is organized as follows. Section 2 discusses basic facts on Banach’s

contraction mapping theorem. Sections 3 and 4 study the optimal growth model

and optimal savings model and visualize the convergence of value function itera-

tion. Section 5 discusses useful tricks in dynamic programming.

2 Preliminaries

2.1 Metric space

We start from a review of basic concepts. Let V be a set. (We use the uncommon

notation V because it will later be the set of candidate value functions.) We say

that the function d : V × V → R is a metric (or distance) if it is nonnegative

(d(v1, v2) ≥ 0 for all v1, v2 ∈ V with equality if and only if v1 = v2), symmet-

ric (d(v1, v2) = d(v2, v1) for all v1, v2 ∈ V), and satisfies the triangle inequality

(d(v1, v3) ≤ d(v1, v2) + d(v2, v3) for all v1, v2, v3 ∈ V). We call a set V endowed

with a metric d a metric space and denote by (V, d). If the metric d is understood,

we often just refer to V as the metric space. We say that a sequence {vn}∞n=1

converges to v if d(vn, v) → 0 as n → ∞, so the distance between vn and the limit

v tends to zero. We denote convergence by limn→∞ vn = v or vn → v, etc.

2.2 Complete metric space and Banach space

Sometimes we would like to characterize convergence without specifying the limit.

We say that a sequence {vn}∞n=1 is Cauchy if the terms approach each other as the

indexes tend to infinity, or more formally, for all ϵ > 0 we can take N such that

d(vm, vn) < ϵ whenever m,n > N . If {vn}∞n=1 is convergent, it is clearly Cauchy.

When the converse is also true, i.e, every Cauchy sequence is convergent, we say

that the metric space (V, d) is complete. Intuitively, a complete metric space is a

metric space without “holes”. For instance, both the set of rational numbers Q
and the set of real numbers R are metric spaces with the metric d(x, y) = |x− y|,
but R is complete while Q is not.

We list a few examples of common complete metric spaces. We omit the proofs

as they can easily be found in standard textbooks.
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Example 1. The Euclidean space V1 = RN equipped with the usual Euclidean

distance is a complete metric space.

Below, let X be a subset of a Euclidean space.

Example 2. Let V2 be the space of bounded functions v : X → R, so v ∈ V2 if

and only if supx∈X |v(x)| < ∞. For v1, v2 ∈ V2, define the sup metric

d(v1, v2) = sup
x∈X

|v1(x)− v2(x)| . (2.1)

Then (V2, d) is a complete metric space.

The space of bounded functions is very large. Sometimes we may want to add

more structure such as continuity as in the following example.

Example 3. Let V3 be the space of bounded continuous functions v : X → R
equipped with the sup metric (2.1). Then (V3, d) is a complete metric space.

Sometimes, imposing boundedness is too strong. If we would like to work with

functions that are not bounded but are known to be close to a given function, the

following space might be useful.

Example 4. Let u : X → R be given and V4 be the space of functions whose

differences from u are bounded, so

V4 =

{
v : X → R : sup

x∈X
|v(x)− u(x)| < ∞

}
. (2.2)

If we let d be the sup metric (2.1), then (V4, d) is a complete metric space.

The Euclidean space as well as V2,V3 in Examples 2 and 3 equipped with

the norm ∥v∥ = supx∈X |v(x)| are also vector spaces (spaces on which addition

and scalar multiplication are defined), which are called normed spaces. As V2,V3

are complete, they are complete normed spaces, a more common name being the

Banach space. Note that the complete metric space V4 in Example 4 need not

have a vector space structure, so it is generally not a Banach space.1

1A variant of the space V4 in Example 4 is used to solve the optimal savings problem by
policy function iteration as in Section 4; see Li and Stachurski (2014) and Ma et al. (2020).
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2.3 Contraction mapping theorem

Let (V, d) be a complete metric space. We say that an operator T : V → V is a

contraction with modulus β ∈ [0, 1) if for all v1, v2 ∈ V we have

d(Tv1, T v2) ≤ βd(v1, v2).

That is, a contraction is a map such that the distance between two elements

shrinks by factor at least β ∈ [0, 1) each time we apply the map. What makes a

contraction useful is that it allows us to establish the existence of a unique fixed

point, which is known as the contraction mapping theorem or the Banach fixed

point theorem.

Theorem 2.1 (Contraction Mapping Theorem). Let (V, d) be a complete metric

space and T : V → V be a contraction with modulus β ∈ [0, 1). Then the following

statements are true.

(i) T has a unique fixed point: there exists a unique v∗ ∈ V such that Tv∗ = v∗.

(ii) Iterates of T converge to v∗. For any v ∈ V, define the sequence {vn}∞n=0

by v0 = v and vn = Tvn−1 = · · · = T nv0. Then vn → v∗, with d(vn, v
∗) =

O(βn).

Proof. We omit the proof as it is standard. See Stachurski (2009) for a textbook

treatment.

Often the contraction mapping theorem is proved under the more restrictive

condition that (V, d) is a Banach space. We avoid this restriction so that we

can apply the contraction mapping theorem when, for example, V is the space of

increasing functions or the space of concave functions, neither of which is Banach.

2.4 Blackwell’s sufficient conditions

The contraction mapping theorem allows us to establish the existence and unique-

ness of a fixed point of an operator T and a numerical algorithm to approximate

the fixed point. To this end, we need to verify that T is indeed a contraction.

Blackwell (1965)’s sufficient conditions are very useful in this respect. Let X be a

set and V be a space of functions v : X → R equipped with the sup metric (2.1).

Let us say that V has the upward shift property if for any v ∈ V and nonnegative

constant κ ≥ 0, we have v + κ ∈ V, that is, if v is in V, the function obtained by
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adding a nonnegative constant is also in V. We are deliberately vague in specify-

ing V: depending on the context, V could be a space of bounded functions (V2 in

Example 2), of bounded continuous functions (V3 in Example 3), or some other

space. For our purpose, all that matters is that the distance is the sup metric

(2.1).

We say that an operator T : V → V is monotone if v1 ≤ v2 implies Tv1 ≤ Tv2.

More precisely, if v1(x) ≤ v2(x) for all x ∈ X, then (Tv1)(x) ≤ (Tv2)(x) for all

x ∈ X. We say that T satisfies the discounting property with modulus β ∈ [0, 1) if

T (v + κ) ≤ Tv + βκ for all v ∈ V and κ ≥ 0.

Proposition 1 (Blackwell’s sufficient conditions). If V is a complete metric space

of functions v : X → R with upward shift property and T : V → V is monotone

and satisfies the discounting property with modulus β, then T is a contraction with

modulus β.

Proof. Let v1, v2 ∈ V. For any x ∈ X, by the definition of the sup metric we have

v1(x)− v2(x) ≤ d(v1, v2) =: κ.

Therefore v1 ≤ v2+κ. By the upward shift property, we have v2+κ ∈ V. Applying

T to both sides and using the monotonicity and the discounting property of T , we

obtain

Tv1 ≤ T (v2 + κ) ≤ Tv2 + βκ.

Therefore (Tv1)(x)− (Tv2)(x) ≤ βκ for all x ∈ X. Changing the role of v1, v2, we

obtain (Tv2)(x)− (Tv1)(x) ≤ βκ, so

d(Tv1, T v2) = sup
x∈X

|(Tv1)(x)− (Tv2)(x)| ≤ βκ = βd(v1, v2).

3 Optimal growth model

3.1 Informal description of the problem

Imagine that you are Robinson Crusoe marooned on a desert island. Potatoes

grow on the island but each season you need to manage how much to eat and

how much to plant for the next season. The problem is how to eat and cultivate

potatoes optimally.

More formally, time is discrete and indexed by t = 0, 1, 2, . . . . You start with

some available resources of potatoes, denoted by a > 0. If you consume 0 ≤ c ≤ a,
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then you get utility u(c), where u is a utility function. If you plant k = a − c

potatoes, you get a new harvest of f(k) next period, where f is a production

function.

Let a0 > 0 be the initial endowment of potatoes and c0, c1, c2, . . . be the

consumption over time. At time t, because you cannot consume more than the

available resources, denoted by at, the consumption ct must satisfy

at+1 = f(at − ct), (3.1a)

0 ≤ ct ≤ at. (3.1b)

The lifetime utility is then

u(c0) + βu(c1) + β2u(c2) + · · · =
∞∑
t=0

βtu(ct), (3.2)

where β ∈ [0, 1) is the discount factor. Your goal is to maximize the lifetime utility

(3.2) subject to the feasibility constraints (3.1), given the initial endowment a0.

This model is often called the Ramsey model because Ramsey (1928) intro-

duced a continuous-time version of this model and qualitatively studied its solu-

tion using calculus of variations. Cass (1965) and Koopmans (1965) introduced

technological and population growth and so the model is also known as the optimal

growth model.

3.2 Value function iteration

To solve the optimal growth model, we can apply value function iteration, which

is based on Bellman’s principle of optimality and Banach’s contraction mapping

theorem.

Given the initial endowment a0 = a, let V (a) be the maximum lifetime utility

(the maximum of (3.2) over all possible consumption plans {ct}∞t=0), which is called

the value function that for now we assume to exist. Imagine what would happen

to the lifetime utility if you choose an arbitrary consumption c0 = c this period

but you stick to the optimal plan from the next period on. By choosing c0 = c, you

first receive flow utility u(c) and the next period’s resource becomes a′ = f(a− c)

by (3.1a). Since by assumption you stick to the optimal plan from next period on,
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the sum of the remaining terms in lifetime utility becomes

βu(c1) + β2u(c2) + β3u(c3) + · · · = β
(
u(c1) + βu(c2) + β2u(c3) + · · ·

)
= βV (a′) = βV (f(a− c)),

because c1, c2, . . . are chosen optimally given a1 = a′ = f(a − c). Therefore the

lifetime utility under this alternative plan is

u(c0) + βu(c1) + β2u(c2) + · · · = u(c) + βV (f(a− c)).

But c0 = c is arbitrary, and choosing it optimally leads to the maximum lifetime

utility. Thus we obtain

V (a) = max
0≤c≤a

{u(c) + βV (f(a− c))} , (3.3)

which is called the Bellman equation.

For an arbitrary function V defined on the set of nonnegative real numbers

[0,∞), the right-hand side of (3.3),

max
0≤c≤a

{u(c) + βV (f(a− c))} ,

defines another function. So the right-hand side of (3.3) can be interpreted as an

operation T that acts on the set of functions and outputs a new function TV from

an input function V . The formal definition of T , called the Bellman operator, is

(TV )(a) = max
0≤c≤a

{u(c) + βV (f(a− c))} . (3.4)

Using the Bellman operator T , the Bellman equation (3.3) can be compactly

written as

V = TV. (3.5)

Equation (3.5) shows that the value function is a fixed point of the Bellman op-

erator T (a function that remains unchanged by applying T ). Under certain

conditions, the Bellman operator T becomes a contraction, which guarantees the

existence and uniqueness of a value function V and the uniform convergence of

V (n) := T nV (0) to V for any initial guess V (0) as the number of iterations n tends

to infinity. We summarize the formal result in the following proposition.

Proposition 2. Let V = bcR+ be the space of bounded continuous functions de-

7



fined on R+ equipped with the supremum norm ∥V ∥ = supx≥0 |V (x)| for V ∈ V.

Suppose that (i) u ∈ V, (ii) f : R+ → R+ is continuous, and (iii) 0 ≤ β < 1.

Then the following statements are true.

(a) The Bellman operator T is a contraction on V with modulus β.

(b) T has a unique fixed point V ∈ V.

(c) The approximation error
∥∥V (n) − V

∥∥ is O(βn).

Proof. It suffices to show that T is a contraction. To this end we verify Blackwell’s

sufficient conditions (Proposition 1). If V1, V2 ∈ V and V1 ≤ V2, then by the

definition of the Bellman operator (3.4) we obtain

(TV1)(a) = max
0≤c≤a

{u(c) + βV1(f(a− c))}

≤ max
0≤c≤a

{u(c) + βV2(f(a− c))} = (TV2)(a),

so TV1 ≤ TV2 and T is monotonic. Clearly V satisfies the upward shift property.

If V ∈ V and κ ≥ 0, we obtain

(T (V + κ))(a) = max
0≤c≤a

{u(c) + β(V (f(a− c)) + κ)}

= max
0≤c≤a

{u(c) + βV (f(a− c))}+ βκ

= (TV )(a) + βκ,

so T satisfies the discounting property (with equality) with modulus β.

Proposition 2 implies that the value function V can be approximated arbitrarily

well by starting from any initial guess V (0) and repeatedly applying the Bellman

operator T . As an illustration, suppose that the utility function u is increasing

and we use the zero function V (0) ≡ 0 as the initial value.2 Using the definition

of the Bellman operator (3.4), after one iteration we obtain

V (1)(a) = (TV (0))(a) = max
0≤c≤a

{
u(c) + βV (0)(f(a− c))

}
= max

0≤c≤a
u(c) = u(a),

2Using zero as the initial value is natural because the n-th iterate V (n) = Tn0 is exactly the
value function when the agent lives for n periods and the economy ends. Thus, by setting V (0) =
0 and iterating the Bellman operator, we would solve the optimal growth model corresponding
to various time horizons.
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which is just the utility function. After two iterations, we obtain

V (2)(a) = (TV (1))(a) = max
0≤c≤a

{
u(c) + βV (1)(f(a− c))

}
= max

0≤c≤a
{u(c) + βu(f(a− c))} .

Except for special cases, V (2) (and more generally V (n) for n ≥ 2) does not ad-

mit a closed-form expression and needs to be computed numerically. A standard

approach is to define a grid {ag}Gg=1 with a1 < · · · < aG, define V
(n−1) on R+ by in-

terpolation and extrapolation using the values
{
V (n−1)(ag)

}G

g=1
, and compute the

next values
{
V (n)(ag)

}G

g=1
as V (n)(ag) = (TV (n−1))(ag) by numerically maximizing

the right-hand side of (3.4).

The assumption in Proposition 2 that the utility function u is bounded is

often undesirable because it rules out common utility functions such as u(c) =

log c. Although it is not simple to allow functions that are unbounded below

(such as u(c) = log c; see Le Van and Morhaim (2002) for a treatment of such

cases), unboundedness from above can be easily handled if the production function

exhibits a certain type of decreasing returns to scale.

Proposition 3. Suppose that (i) u : R+ → R is continuous and bounded below,

(ii) f is increasing and there exists k̄ > 0 such that f(k) ≤ k for all k ≥ k̄, and

(iii) 0 ≤ β < 1. Take any ā ≥ k̄ and let V be the space of bounded continuous

functions defined on [0, ā]. Then the conclusions of Proposition 2 hold.

Proof. We only need to verify that V (f(a−c)) is well-defined. Since by assumption

f is increasing, f(k) ≤ k for k ≥ k̄, 0 ≤ c ≤ a, a ∈ [0, ā], and ā ≥ k̄, we have

f(a− c) ≤ f(a) ≤ f(ā) ≤ ā.

Therefore f(a− c) ∈ [0, ā] and V (f(a− c)) is well-defined.

3.3 Stochastic growth model

The stochastic (optimal) growth model is an extension of the optimal growth model

with uncertainty, introduced by Brock and Mirman (1972) and quantitatively

studied by Kydland and Prescott (1982). Imagine a situation where Robinson

Crusoe’s harvest of potatoes depends not only on the amount of potatoes planted

but also on other factors outside his control such as rainfall and temperature, or his

well-being depends on factors such as temperature and sunshine. For convenience,
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we suppose that these factors take finitely many values indexed by z ∈ Z. Suppose

that this exogenous state evolves according to a Markov chain with transition

probability P (z, z′) = Pr(zt+1 = z′ | zt = z).

In this situation, the utility and value functions u, V may depend on the current

exogenous state z, and the production function f may depend on two consecutive

states (z, z′). If Robinson Crusoe wishes to maximize the expected utility, then

the Bellman equation (3.3) becomes

V (a, z) = max
0≤c≤a

{
u(c, z) + β

∑
z′∈Z

P (z, z′)V (f(a− c, z, z′), z′)

}
, (3.6)

where u(c, z) is the utility function in state z and f(k, z, z′) is the production func-

tion when transitioning from state z to z′. Propositions 2 and 3 easily generalize

to this setting by changing the assumptions on u and f to those on u(·, z) and

f(·, z, z′), so we omit the precise statement.

3.4 Numerical illustration

As a numerical illustration, we solve the stochastic growth model. Let Z be a

finite set. For state z ∈ Z, suppose that the utility function takes the form

u(c, z) =
(c+ ϵ)1−γ(z)

1− γ(z)
,

where ϵ > 0 can be thought of an exogenous source of consumption (e.g., coconuts

and fish) and γ(z) > 0 is the coefficient of relative risk aversion. (The case

γ(z) = 1 corresponds to log utility.) This exogenous consumption prevents the

utility function from being unbounded below when γ(z) > 1. (We can set ϵ = 0 if

γ(z) < 1.) The production function takes the form

f(k, z, z′) = A(z′)kα + (1− δ)k,

where A(z′) > 0 is the productivity in the next state, α ∈ (0, 1) is the elasticity

of output with respect to capital, and δ ∈ (0, 1] is the capital depreciation rate.

Because our purpose is to visualize the contraction mapping theorem, we con-

sider a simple specification for the stochastic growth model. We consider a two-

state Markov chain with Z = {1, 2} with transition probability P (z, z′) = 0.8 if

z = z′ and P (z, z′) = 0.2 if z ̸= z′. The productivity is (A(1), A(2)) = (1.1, 0.9),

so state 1 is the high-productivity state. We set α = 0.36 and δ = 0.08, which
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are standard values. The discount factor is β = 0.95 and the exogenous consump-

tion is ϵ = 0.1. For the relative risk aversion, we consider two values γ = 1.5

and γ = 0.5 because the cases γ ≷ 1 are qualitatively different (we have u ≶ 0

according as γ ≷ 1).

In this setup, we can easily verify that the assumptions of Proposition 3 are

satisfied, so a value function uniquely exists. In particular, solving f(k, z, z′) = k

for k > 0, we obtain k = (A(z′)/δ)
1

1−α , so we can choose any ā with ā ≥ k̄ :=

(A(1)/δ)
1

1−α . Below, we set ā = 2k̄ and use a 100-point exponential grid on [0, ā]

to numerically solve the stochastic growth model by value function iteration.3

We now illustrate four specifications. The first specification is γ(z) ≡ 1.5, and

we start the value function iteration from the initial guess V (0) ≡ 0. Figures 1a and

1b show the value and consumption functions, respectively. Figure 1c shows the

evolution of value functions along the iterations (for state 1 only for visibility),

where the color changes from light green to blue as we increase the number of

iterations n. For this specification, because the utility function is negative, the

value function monotonically converges from above.

The second specification is the same as the first except that we set the relative

risk aversion to γ(z) ≡ 0.5 (Figure 2). For this specification, because the utility

function is positive, the value function monotonically converges from below.

The third specification is the same as the first except that we set the initial

guess V (0) to an unnatural function, namely the sine curve flipped upside down

(Figure 3). Although the initial guess is artificial (setting V (0) ≡ 0 is natural

as discussed in Footnote 2), the mathematical theory still applies and the value

function converges (but in an erratic manner).

The fourth specification is an intermediate case of the first and second, where

(γ(1), γ(2)) = (0.5, 1.5). This specification implies that the agent is less risk averse

during the high-productivity state (Figure 4). Unlike the first two specifications,

when the risk aversion is state-dependent, the value and consumption functions

are quite different across states.

3See Gouin-Bonenfant and Toda (2023, §4.6) for the specific details on constructing the
exponential grid. We use the median grid point k∗/2 and spline interpolation for computing
value functions off the grid points.

11



(a) Value function. (b) Consumption function.

(c) Evolution of value functions.

Figure 1: Stochastic growth model with γ = 1.5 and V (0) ≡ 0.

4 Optimal savings problem

4.1 Informal description of the problem

The optimal savings problem is the optimization problem of a single agent that

receives income and has access to the financial market for saving. Standard ref-

erences for the optimal savings problem are Schechtman and Escudero (1977)

and Chamberlain and Wilson (2000), who study the theoretical properties of the

optimal consumption assuming a bounded utility function. Mathematically, the

optimal savings problem is a special case of the stochastic growth model with

production function

f(k, z, z′) = R(z, z′)k + Y (z, z′),

12



(a) Value function. (b) Consumption function.

(c) Evolution of value functions.

Figure 2: Stochastic growth model with γ = 0.5 and V (0) ≡ 0.

Figure 3: Evolution of value functions with γ = 1.5 and sine curve V (0).
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(a) Value function. (b) Consumption function.

(c) Evolution of value functions.

Figure 4: Stochastic growth model with (γ(1), γ(2)) = (0.5, 1.5) and V (0) ≡ 0.

where R(z, z′) ≥ 0 is the gross return on savings and Y (z, z′) > 0 is the non-

financial income when transitioning from state z to z′.

4.2 Policy function iteration

Although the optimal savings problem is mathematically a special case of the

stochastic growth model, establishing the existence of a solution and studying its

properties is not simple when the utility function is unbounded (which is prac-

tically almost always the case) and mathematically rigorous results have been

obtained only recently by Li and Stachurski (2014) and Ma, Stachurski, and Toda

(2020). The reason is that the marginal product of capital f ′(k, z, z′) = R(z, z′)

equals the gross return, which could well exceed 1 (imagine a positive interest rate

or high stock returns). Then the trick of truncating the state space as in Propo-

sition 3, which relies on marginal product less than 1, is no longer applicable.
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To solve the optimal savings problem, we can apply policy function iteration

instead of value function iteration. We illustrate the idea using the optimal growth

model without uncertainty. Consider the Bellman equation (3.3). Assuming that

u, f, V are all differentiable and the optimal consumption is interior, the first-order

condition for optimality is

0 = u′(c)− βV ′(f(a− c))f ′(a− c) = 0. (4.1)

Differentiating both sides of (3.3) with respect to a and applying the envelope

theorem, we obtain

V ′(a) = βV ′(f(a− c))f ′(a− c).

Combining (4.1) and (4.2), we obtain

u′(c) = V ′(a). (4.2)

Now let c = ct and a = at be the consumption and resource at time t. Noting that

f(a− c) = f(at − ct) = at+1 is the next period’s resource (see (3.1a)), combining

(4.1) (for c = ct) and (4.2) (for c = ct+1), it follows that

u′(ct) = βu′(ct+1)f
′(at − ct), (4.3)

which is known as the Euler equation. For the stochastic growth model, a similar

calculation yields the Euler equation

u′(ct) = Et[βu
′(ct+1)f

′(at − ct, zt, zt+1)], (4.4)

where Et denotes the expectation conditional on time t information.

Coleman (1990) proposed a solution algorithm called policy function iteration

that exploits the Euler equation (4.4). Suppose that we have a guess of the

consumption function c(a, z) and would like to update its value, denoted by ξ.

Let at = a, zt = z, zt+1 = z′, and ct = ξ. Using the candidate consumption

function c and the feasibility constraint (3.1a), we have

ct+1 = c(at+1, zt+1) = c(f(a− ξ, z, z′), z′).

Therefore the Euler equation (4.4) becomes

u′(ξ) = Ez[βu
′(c(f(a− ξ, z, z′)), z′)f ′(a− ξ, z, z′)], (4.5)
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where Ez denotes the expectation conditional on zt = z. Thus given the candidate

consumption function c(a, z), we can update it by the value ξ that solves (4.5).

Repeating this process until convergence is called policy function iteration.

A key advantage of policy function iteration over value function iteration is

that it involves only root-finding, which tends to be numerically more stable than

maximization.4 A disadvantage is that the Coleman operator (the operation of

updating the policy function) is not necessarily a contraction and proving theorems

is significantly more challenging than value function iteration; see Mirman et al.

(2008) for a rigorous treatment in the context of the stochastic growth model.

However, for the optimal savings problem, the marginal product

f ′(a− c, z, z′) = R(z, z′)

depends only on the exogenous states and the analysis becomes simpler. Li and

Stachurski (2014) apply policy function iteration to the optimal savings problem

assuming that the gross return on saving is constant at R. When the utility

function satisfies the standard properties such as u′ > 0 (monotonicity), u′′ < 0

(concavity), and u′(0) = ∞ (Inada condition), they show that the Euler equation

(4.5) becomes

u′(ξ) = max {Ez[βRu′(c(R(a− ξ) + Y (z, z′), z′))], u′(a)} . (4.6)

(The reason why we take the maximum with u′(a) is to take into account the

possibility that the constraint ξ ≤ a binds.) Furthermore, when we define the

distance between two candidate consumption functions c1, c2 by

ρ(c1, c2) = sup
a,z

|u′(c1(a, z))− u′(c2(a, z))| (4.7)

using the marginal utility, they show that the Coleman operator T is a contraction

with modulus βR when βR < 1. Although this approach is specific to the optimal

savings problem, the utility function u could be unbounded above and/or below,

which is almost always the case in practice.

Stachurski and Toda (2019, 2020) apply policy function iteration to establish a

4A variant of policy function iteration that uses a grid on savings s = a− ξ instead of asset a
(and hence makes the asset grid endogenous), which is called the endogenous grid point method
(Carroll, 2006), even avoids root-finding and substantially reduces computing time when the
inverse marginal utility function (u′)−1 is available in closed-form. Examples are the constant

relative risk aversion (CRRA) utility u(c) = c1−γ

1−γ or the constant absolute risk aversion (CARA)

utility u(c) = 1
γ e

−γc, for which (u′)−1(m) = m−1/γ and (u′)−1(m) = − 1
γ logm, respectively.
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linear lower bound on the consumption function when the utility function exhibits

bounded relative risk aversion to show that wealth inherits the tail behavior of

income when saving is risk-free as in Aiyagari (1994) models. Ma et al. (2020)

generalize the approach of Li and Stachurski (2014) to the case with stochastic

returns and discounting. In this case T is not necessarily a contraction but some

iterate T k is under some conditions. Toda (2021) shows that T is a generalization

of a contraction called Perov contraction, which enables to significantly simplify

the proof of Ma et al. (2020). Ma and Toda (2021) apply policy function iteration

to prove the asymptotic linearity of consumption functions when the utility func-

tion is homothetic, and Ma and Toda (2022) further generalize this result when

the marginal utility asymptotically behaves like a power function.

4.3 Numerical illustration

As in the case with the stochastic growth model, we only consider a simple opti-

mal savings problem. The utility function exhibits constant relative risk aversion

γ, so the marginal utility is u′(c) = c−γ, where we set γ = 1.5. The discount

factor is β = 0.95. We consider a two-state Markov chain with Z = {1, 2} with

transition probability P (z, z′) = 0.5 for all (z, z′), so the process is independent

and identically distributed over time. We suppose that the agent invests fraction

θ ∈ [0, 1] of wealth in the stock market with expected return µ and volatility σ,

and invests the rest in a risk-free asset with risk-free rate rf . Therefore we can

model the gross return on wealth as

R(z, z′) =

{
(1− θ)erf + θeµ−σ2/2+σ if z′ = 1,

(1− θ)erf + θeµ−σ2/2−σ if z′ = 2.

We set rf = 0.01, µ = 0.05, σ = 0.2, and θ = 0.5. Finally, we suppose that

income is constant at Y (z, z′) ≡ 1. Let B be the 2 × 2 matrix whose (z, z′)-

th entry equals βP (z, z′)R(z, z′). Toda (2021, §3.3) shows that if the spectral

radius (largest absolute value of all eigenvalues) of B satisfies ρ(B) < 1, then the

Coleman operator becomes a Perov contraction when we use a (vector-valued)

metric similar to (4.7). In our specification we have ρ(B) = 0.9791 < 1, so policy

function iteration is guaranteed to converge.

Figure 5 shows the consumption function and the evolution of consumption

functions along the iterations when we use the initial guess c(0)(a, z) = a.5 For

5To numerically solve the model, we use a 100-point exponential grid on [0, 100] with a median
grid point of 10 and linear interpolation/extrapolation to compute the consumption functions
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this specification, the consumption function monotonically converges from above.

(a) Consumption function. (b) Evolution of consumption functions.

Figure 5: Optimal savings problem with V (0) ≡ 0.

For policy function iteration, the initial guess c(0) needs to be increasing and

satisfy c(0)(a, z) ≤ a; see Ma et al. (2020). Setting c(0)(a, z) = a is natural6 but

not necessarily computationally efficient because the asymptotic slope of the true

consumption function c(a, z) is far smaller than 1. Ma and Toda (2022) discuss

how to choose the initial guess to improve computational efficiency. However, the

theory tells us that any initial guess c(0) that is increasing and satisfies c(0)(a, z) ≤ a

would work. To illustrate this point, we now consider an unnatural initial guess

given by c(0)(a, z) = (sin(a) + a)/4. Figure 6 shows that the convergence is non-

monotonic.

5 Some useful tricks

This section discusses various tricks that are useful for studying dynamic program-

ming problems.

5.1 Establishing properties of value function

In many applications, we are not just interested in establishing the existence of

a solution to a dynamic programming problem but often would like to establish

some properties of the solution. For instance, In Figure 1 we see that the value

off the grid.
6Because c = a is the optimal consumption when the agent lives for one period, the n-th

iterate c(n) = Tnc(0) is exactly the consumption function when the agent lives for n+ 1 periods
by the same reason as in Footnote 2. Thus Figure 5b shows the optimal consumption functions
for various time horizons.
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Figure 6: Evolution of consumption functions with c(0)(a, z) = (sin(a) + a)/4.

function is increasing and concave. But how can we establish the monotonicity

and concavity of the value function v if we cannot solve for v explicitly? The

following proposition is useful in such settings.

Proposition 4. Let (V, d) be a complete metric space and T : V → V be a

contraction with a unique fixed point v∗ ∈ V. If V1 ⊂ V is a nonempty closed set

and TV1 ⊂ V1, then v∗ ∈ V1.

Proof. Since V1 ⊂ V is closed, (V1, d) is a complete metric space. Since T : V → V

is a contraction and TV1 ⊂ V1, T is also a contraction on V1. Therefore there

exists a unique v∗1 ∈ V1 such that Tv∗1 = v∗1. Since V1 ⊂ V, v∗1 is also a fixed point

of T in V, and the uniqueness implies v∗ = v∗1 ∈ V1.

Although Proposition 4 is almost trivial, it has many applications. Suppose we

would like to show that the value function in Figure 1 is increasing. To establish

this, we only need to assume that f is increasing.

Proposition 5. Let everything be as in Proposition 2 and suppose f is increasing.

Then the value function V is increasing.

Proof. Let V = bcR+ be the space of bounded continuous functions and V1 =

{V ∈ V : V is increasing}. Since monotonicity is preserved by taking limits, V1 is

closed. If V ∈ V1 and a1 ≤ a2, then the definition of the Bellman operator (3.4)
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implies

(TV )(a1) = max
0≤c≤a1

{u(c) + βV (f(a1 − c))}

≤ max
0≤c≤a1

{u(c) + βV (f(a2 − c))}

≤ max
0≤c≤a2

{u(c) + βV (f(a2 − c))} = (TV )(a2),

where the first inequality follows from the monotonicity of f and V and the second

inequality follows from the fact that taking the maximum on a larger set yields a

larger value. Therefore TV1 ⊂ V1, and Proposition 4 yields the conclusion.

An argument along these lines is used, for example, to show the monotonicity

of the consumption and saving functions in Ma et al. (2020, Proposition 2.3).

Similarly, suppose that we would like to establish a lower bound v ≥ v
¯
for the value

function. For this purpose we may consider the closed set V1 = {v ∈ V : v ≥ v
¯
}.

An application along these lines can be found in Ma and Toda (2021, Theorem

3) for proving the asymptotic linearity of consumption functions and Phelan and

Toda (2022, Proposition 3.1) for ranking various value functions.

As another application of Proposition 4, suppose we would like to show that

the value function in Figure 1 is concave. To establish this, we only need to assume

that u is concave and f is increasing and concave.

Proposition 6. Let everything be as in Proposition 2 and suppose u is concave

and f is increasing and concave. Then the value function V is increasing and

concave.

Proof. Let V = bcR+ be the space of bounded continuous functions and V1 =

{V ∈ V : V is increasing and concave}. Since monotonicity and concavity are pre-

served by taking limits, V1 is closed. We have already shown that T preserves

monotonicity. Therefore it suffices to show that T preserves concavity.

Let V ∈ V, a1, a2 ≥ 0, and t ∈ [0, 1]. Since f is increasing and concave, so is

V ◦ f . To see this, note that the concavity of f implies

f((1− t)a1 + ta2) ≥ (1− t)f(a1) + tf(a2),

and applying V to both sides and using the monotonicity and concavity of V , we
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obtain

V (f((1− t)a1 + ta2)) ≥ V ((1− t)f(a1) + tf(a2))

≥ (1− t)V (f(a1)) + tV (f(a2)).

Fix cj ∈ [0, aj] for j = 1, 2 and let c = (1− t)c1 + tc2 and a = (1− t)a1 + ta2 for

t ∈ [0, 1]. Then the concavity of u and V ◦ f implies

u(c) + βV (f(a− c))

≥ (1− t)(u(c1) + βV (f(a1 − c1))) + t(u(c2) + βV (f(a2 − c2))).

Since cj ∈ [0, aj], we have c ∈ [0, a]. Therefore taking the maximum of the left-

hand side over c ∈ [0, a], we obtain

(TV )(a) ≥ (1− t)(u(c1) + βV (f(a1 − c1))) + t(u(c2) + βV (f(a2 − c2))).

Taking the maximum of the right-hand side over cj ∈ [0, aj], we obtain

(TV )((1− t)a1 + ta2) ≥ (1− t)(TV )(a1) + t(TV )(a2),

so TV is concave. Therefore T preserves concavity.

5.2 Transformation of the Bellman equation

Consider the Bellman equation for a stochastic dynamic programming problem.

As a concrete example, consider the Bellman equation for the stochastic growth

model (3.6):

V (a, z) = max
0≤c≤a

{u(c, z) + β Ez V (f(a− c, z, z′), z′)} , (5.1)

where Ez denotes the expectation conditional on z. Define the function

g(a, c, z) := β Ez V (f(a− c, z, z′), z′).

Then clearly

V (a, z) = max
0≤c≤a

{u(c, z) + g(a, c, z)} .
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Changing the notation a, c, z to a′, c′, z′ and setting a′ = f(a − c, z, z′), it follows

from the definition of g that

g(a, c, z) = β Ez max
0≤c′≤f(a−c,z,z′)

{u(c′, z′) + g(f(a− c, z, z′), c′, z′)} . (5.2)

Note that the transformed Bellman equation (5.2) now involves only the unknown

function g. This kind of transformation may be useful because the expectation has

a smoothing effect and g could be better behaved than V . See Ma and Stachurski

(2021) and Ma et al. (2022) for more discussion and examples.
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