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Abstract- Three new approximate symmetry theories are proposed. The approximate 
symmetries are contrasted with each other and with the exact symmetries. The theories are 
applied to nonlinear ordinary differential equations for which exact solutions are available. It 
is shown that from the symmetries, approximate solutions as well as exact solutions in some 
restricted cases can be retrievable. Depending on the specific approximate theory and the 
equations considered, the approximate symmetries may expand the Lie Algebra of the exact 
symmetries, may be a perturbed form of the exact symmetries or may be a subalgebra of the 
exact symmetries. Exact and approximate solutions are retrieved using the symmetries.  
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1. Introduction 

 Lie Group theory [1-3] is a systemized and unified approach in search of analytical 
solutions of differential equations. It is a generalized approach for finding solutions of 
especially nonlinear differential equations and has the capability of producing results obtained 
by other ad-hoc methods. Perturbation method [4] is another powerful technique employed in 
search of approximate symmetries for over a century. Attempts to combine these powerful 
techniques appeared in the literature. In case of perturbed equations, depending on the specific 
equation, the exact symmetries may not be sufficient to extract enough solutions. To extend 
the Lie Algebra and to construct further solutions, many approximate symmetry theories were 
proposed.  

 There are three main theories of approximate symmetries and a number of variants of 
these methods. The first method (Method I) is due to Baikov et al. [5,6] in which the 
symmetry generator is expanded in a perturbation series without expanding the depending 
variable. On the contrary, in the second method due to Fushchich and Shtelen [7] (Method II), 
the dependent variable is expanded in a perturbation series and the equations form a coupled 
system when separated with respect to orders. The approximate symmetry is then defined to 
be the exact symmetry of these coupled systems. In this method, since the number of 
dependent variables increase, the algebra for determining symmetries become rather involved. 
By assuming a linear unperturbed part and a nonlinear perturbed part for the differential 
equations, the hierarchical equations appearing in a separated block can be viewed as a linear 
non-homogenous equation with a known function for the non-homogenous part. This 

https://doi.org/10.32388/JUPE8T 

mailto:pakdemirli@gmail.com


assumption reduces drastically the algebra and the approximate symmetries of the nonlinear 
perturbed equation corresponds to the exact symmetries of the linear non-homogenous 
equation [8, 9] (Method III). The three methods were contrasted with each other and the 
advantages and disadvantages were outlined by applying the methods to the potential Burgers 
equation [8], creeping flow equations of a second-grade fluid [8] and an ordinary differential 
equation with quadratic nonlinearity [9]. A more theoretical basis for the comparisons of 
Method I and Method II were later presented [10].  

 Many papers appeared in the literature applying the three methods to differential 
equations arising from mathematical physics. While a complete list of all work on the 
applications of the symmetry methods is beyond the scope of this study, a partial list will be 
given for the applications: Method I is applied in references [11-19], Method II in references 
[19-32] and Method III in references [33-35]. A Matlab package [36] was developed to 
symbolically compute approximate symmetries for all the three methods. Noetherian 
symmetries are another alternative to the conventional Lie Group symmetries which involve 
Lagrangians. Approximate Noether symmetries were also calculated for mathematical physics 
models [37-42]. Exterior calculus is the other alternative to the classical Lie Group methods 
for calculating symmetries. The pioneering work on the topic is due to Harrison and 
Estabrook [43] and later employed by others [44-47]. The approximate symmetry version of 
the exterior calculus approach was also presented [48, 49]. Approximate Homotopy 
Symmetry method is another approach developed in search of approximate symmetries [50-
52].  

 In this work, three new approximate symmetry definitions are given for the first time. 
The exact symmetries and the approximate symmetries by the new three methods are 
contrasted with each other for sample ordinary differential equations whose exact solutions 
are known. Exact and approximate group invariant solutions are derived using the symmetries 
of each method. The new methods may extend the Lie Algebra, may be perturbed expansions 
of the exact symmetries, or maybe a subgroup of the exact symmetries depending on the 
method used and the specific equation considered. The approximate symmetries are capable 
of retrieving approximate solutions as well as exact solutions.  

 

2. Approximate Symmetry Theories 

 Three new definitions for approximate symmetries will be given in this section for the 
first time. The definitions have some differences from each other which leads to different 
symmetry generators. To distinguish them from the Approximate Symmetry Theorems I-II 
and III discussed in the introduction, the new ones are numbered as IV-V and VI.  

 

Approximate Symmetry Definition IV 

For the k’th order perturbed nonlinear ordinary differential equation  

 𝐹"𝑥, 𝑦, 𝑦¢, 𝑦¢¢, … 𝑦("), e' = 0                 (2.1) 

with 𝜀 being the perturbation parameter and the Lie Group transformation parameter, the first 
order approximate symmetry corresponds to  



 𝐹|$%& + 𝜀𝑋𝐹|$%& = 0                 (2.2) 

where  

 𝑋 = 𝜉(𝑥, 𝑦) '
'(
+ 𝜂(𝑥, 𝑦) '

')
+ 𝜇 '

'$
+ 𝜂* '

')!
+⋯+ 𝜂" '

')"
+ 𝜇 '

'$
            (2.3) 

is the approximate symmetry generator extended to k’th order with the group transformations 

 𝑥∗ = 𝑥 + 𝜀𝜉(𝑥, 𝑦, 𝜀) 

 𝑦∗ = 𝑦 + 𝜀𝜂(𝑥, 𝑦, 𝜀) 

 𝑦*∗ = 𝑦* + 𝜀𝜂*(𝑥, 𝑦, 𝑦*, 𝜀)               (2.4) 

  ⋮ 

 𝑦"∗ = 𝑦" + 𝜀𝜂"(𝑥, 𝑦, 𝑦*, … , 𝑦" , 𝜀) 

 𝜇∗ = 𝜀𝜇 

where  

𝑦" = 𝑦("), 𝜂" = ,-"#!

,(
− 𝑦"

,.
,(

 , ,
,(
= '

'(
+ 𝑦*

'
')
+ 𝑦/

'
')!

+⋯+ 𝑦"0*
'
')"

  �         (2.5) 

 

Note that in determining the approximate symmetry generator, the whole block of (2.2) is 
used. In the case of exact symmetries, equation (2.2) separates into two equations and the Lie 
Group transformation parameter is different from the perturbation parameter.  

 A slightly different definition is suggested below as the Symmetry Definition V.  

 

Approximate Symmetry Definition V 

For the k’th order perturbed nonlinear ordinary differential equation  

 𝐹"𝑥, 𝑦, 𝑦¢, 𝑦¢¢, … 𝑦("), e' = 0                 (2.6) 

with 𝜀 being the perturbation parameter and the Lie Group transformation parameter, the first 
order approximate symmetry corresponds to  

 𝑋𝐹|$%& = 0  when   𝐹|$%& = 0             (2.7) 

where  

 𝑋 = 𝜉(𝑥, 𝑦) '
'(
+ 𝜂(𝑥, 𝑦) '

')
+ 𝜇 '

'$
+ 𝜂* '

')!
+⋯+ 𝜂" '

')"
+ 𝜇 '

'$
           (2.8) 

is the approximate symmetry generator extended to k’th order with the group transformations 

 𝑥∗ = 𝑥 + 𝜀𝜉(𝑥, 𝑦) 

 𝑦∗ = 𝑦 + 𝜀𝜂(𝑥, 𝑦) 

 𝑦*∗ = 𝑦* + 𝜀𝜂*(𝑥, 𝑦, 𝑦*)              (2.9) 



  ⋮ 

 𝑦"∗ = 𝑦" + 𝜀𝜂"(𝑥, 𝑦, 𝑦*, … , 𝑦") 

 𝜇∗ = 𝜀𝜇 

where  

𝑦" = 𝑦("), 𝜂" = ,-"#!

,(
− 𝑦"

,.
,(

 , ,
,(
= '

'(
+ 𝑦*

'
')
+ 𝑦/

'
')!

+⋯+ 𝑦"0*
'
')"

  �      (2.10) 

In the above version, the block, i.e. Eq. (2.2), is separated into two parts. It is still different 
from the exact symmetry definition, since the Lie Group transformation parameter is different 
from the perturbation parameter in the exact symmetry case. Also, in the exact case 𝐹 = 0, 
whereas in this definition, the unperturbed equation satisfies the condition 𝐹|$%& = 0 which is 
merely an approximation of the original equation, namely the unperturbed equation itself.  
Note also that the infinitesimals 𝜉(𝑥, 𝑦) and 𝜂(𝑥, 𝑦) do not contain the perturbation parameter 
as an argument, while this is not the case for Approximate Symmetry Method IV.  

 A variant of the fourth definition may also be proposed where the Lie Group 
parameter is not the perturbation parameter.  

  

Approximate Symmetry Definition VI 

For the k’th order perturbed nonlinear ordinary differential equation  

 𝐹"𝑥, 𝑦, 𝑦¢, 𝑦¢¢, … 𝑦("), e' = 0                 (2.11) 

with 𝜀 being the perturbation parameter and 𝛼 being the Lie Group transformation parameter, 
the first order approximate symmetry corresponds to  

 𝐹|1%& + 𝛼𝑋𝐹|1%& = 0                 (2.12) 

where  

 𝑋 = 𝜉(𝑥, 𝑦) '
'(
+ 𝜂(𝑥, 𝑦) '

')
+ 𝜂* '

')!
+⋯+ 𝜂" '

')"
             (2.13) 

is the approximate symmetry generator extended to k’th order with the group transformations 

 𝑥∗ = 𝑥 + 𝛼𝜉(𝑥, 𝑦, 𝜀) 

 𝑦∗ = 𝑦 + 𝛼𝜂(𝑥, 𝑦, 𝜀) 

 𝑦*∗ = 𝑦* + 𝛼𝜂*(𝑥, 𝑦, 𝑦*, 𝜀)               (2.14) 

  ⋮ 

 𝑦"∗ = 𝑦" + 𝛼𝜂"(𝑥, 𝑦, 𝑦*, … , 𝑦" , 𝜀) 

where  

𝑦" = 𝑦("), 𝜂" = ,-"#!

,(
− 𝑦"

,.
,(

 , ,
,(
= '

'(
+ 𝑦*

'
')
+ 𝑦/

'
')!

+⋯+ 𝑦"0*
'
')"

  �         (2.15) 

 



If the two terms in (2.12) are separated, then one obtains the exact symmetries. The idea here 
is not to separate the block in search of approximate symmetries. This definition indeed is not 
an approximate symmetry definition in the sense that it does not extend the Lie Algebra of the 
exact symmetries, rather produces a subgroup of the exact symmetries. It is included for 
comparison reasons and for outlining the importance of selecting the perturbation parameter 
as the Lie Group parameter as was done in definitions V and VI.  

 

3. Approximate Symmetry Calculations 

 For a number of ordinary differential equations, symmetries corresponding to the three 
methods are calculated together with the exact symmetries (Table 1).  

 

Table 1- Exact and Approximate Symmetries 
Equation Exact Symmetry Approximate Symmetry IV Approximate Symmetry V Approximate Symmetry VI 

𝑦¢ + 𝜀𝑦 = 0 Unsolvable 
𝜂! + 𝜀*𝜂 − 𝑦𝜂" + 𝑦𝜉!-
− 𝜀#𝜉"𝑦# = 0 

𝜉 = −
𝜇
2
𝑥# + 𝑎$𝑥 + 𝑎# 

𝜂 = 2−𝜇𝑥 + 𝑎$ −
1
𝜀
4 𝑦 + 𝑏 

𝜉 = 𝜉(𝑥, 𝑦) 
𝜂 = −𝜇𝑥𝑦 + 𝑎(𝑦) 

𝜉 = 𝑎 + 𝑏𝑒%&! 
𝜂 =-(𝜀𝑏𝑒%&! + $

'
)𝑦 +

𝑐𝑒%&! 
𝑦¢ + 𝑒&" = 0 Unsolvable 

𝜂! − 𝑒&"*𝜂" − 𝜉! − 𝜀𝜂-
− 𝜉"𝑒#&" = 0 

𝜉 = −
𝜇
2
𝑥# + 𝑎$𝑥 + 𝑎# 

𝜂 = 2−𝜇𝑥 + 𝑎$ −
1
𝜀
4 𝑦 

−
1
𝜀
𝑥 + 𝑏$ 

𝜉 = 𝜉(𝑥, 𝑦) 

𝜂 = −𝜉 + 𝜇
𝑦#

2
+ 𝑎(𝑥 + 𝑦) 

𝜉 =
1
𝛼
𝑥 + 𝑏 

𝜂 = −
1
𝜀𝛼

 

𝑦¢¢ + 𝜀𝑦¢	# = 0 𝜉 = (𝑎𝑥 + 𝑏)𝑒&" + 𝑐𝑥# 
+𝑑𝑥 + 𝑒 

𝜂 = =𝑓𝑒%&" +
𝑐
𝜀
? 𝑥 

+𝑔𝑒%&" + ℎ +
𝑎
𝜀
𝑒&" 

𝜉 = 𝑎𝑥 + 𝑏 

𝜂 = 22𝑎 −
1
𝜀
4 𝑦 + 𝑐𝑥 + 𝑑 

𝜉 = (𝑎#𝑥 + 𝑎))𝑦 
+𝑐$𝑥# + 𝑏$𝑥 + 𝑏# 

𝜂 = (2𝑎# − 𝜇)
𝑦#

2
 

+(𝑐$𝑥 + 𝑐#)𝑦 + 𝑑$𝑥 + 𝑑# 

𝜉 =
1
2𝛼

𝑥 + 𝑎 

𝜂 = 𝑏 

𝑦¢¢ − 2𝜀𝑦𝑦¢	 = 0 𝜉 = 𝑎𝑥 + 𝑏 
𝜂 = −𝑎𝑦 

𝜉 = 𝑎#𝑥 + 𝑎) 

𝜂 = 22𝑎# −
1
𝜀
4 𝑦 

+𝑏$𝑥 + 𝑏# 

𝜉 = =
𝜇
3
𝑥# + 𝑎#𝑥 + 𝑎)? 𝑦 

+𝑐$𝑥# + 𝑏$𝑥 + 𝑏# 

𝜂 = 2
2𝜇
3
𝑥 + 𝑎#4 𝑦# 

+(𝑐$𝑥 + 𝑐#)𝑦 
+𝑑$𝑥 + 𝑑# 

 

𝜉 = 𝑎𝑥 + 𝑏 
𝜂 = −𝑎𝑦 

𝑦¢¢ − 𝑦 + 𝜀𝑦#	 = 0 𝜉 = 𝑎 
𝜂 = 0 

𝜉 = 𝑎 

𝜂 = −
1
𝜀
𝑦 + 𝑏$𝑒! + 𝑏#𝑒%! 

𝜉 = (𝑎$𝑒! + 𝑎#𝑒%!)𝑦 
+𝑏$ + 𝑏#𝑒#! + 𝑏)𝑒%#! 
𝜂 = (𝑎$𝑒! − 𝑎#𝑒%!)𝑦# 
+(𝑐$ + 𝑏#𝑒#! − 𝑏)𝑒%#!)𝑦 

𝑑$𝑒! + 𝑑#𝑒%! 

𝜉 = 0 
𝜂 = 0 

𝑦¢¢¢ = 𝜀𝑓(𝑦¢, 𝑦¢¢	) 𝜉 = 𝑎 
𝜂 = 𝑏 

𝜉 = 𝑎$𝑥 + 𝑎# 

𝜂 = 23𝑎$ −
1
𝜀
4𝑦 

+𝑏$𝑥# + 𝑏#𝑥 + 𝑏)	
 

𝜉 = 𝑎$𝑥# + 𝑎#𝑥 + 𝑎) 
𝜂 = (2𝑎$𝑥 + 𝑎# + 𝑐)𝑦 
+𝑏$𝑥# + 𝑏#𝑥 + 𝑏)	

 

𝜉 = 0 
𝜂 = 0 

 

From the symmetries, for the specific problems considered, some conclusions can be given: 

For first order equations; 

• In case of exact symmetries, usually the determining equation for the infinitesimals 
cannot be separated and remains unsolvable, unless some further simplifying 
assumptions are made.   

• On the contrary, the infinitesimals are solvable for the approximate symmetries.  
• Among the symmetries, the richest symmetry corresponds to the approximate 

symmetry V case for first order equations 

For the higher order equations; 



• For the equation 𝑦¢¢ + 𝜀𝑦¢	/ = 0, while the exact and approximate symmetry V possess 
8-parameter Lie Group transformations, the other symmetries possess less parameters.  

• For the equation 𝑦¢¢ + 𝜀𝑦¢	/ = 0, if the exact symmetry is expanded in a Taylor series 
up to O(e), the approximate symmetry V result can be retrieved.  

• For the last 3 equations, approximate symmetries IV and V are richer than the exact 
symmetries. For the equation	𝑦¢¢ − 𝑦 + 𝜀𝑦/	 = 0,	while	the	exact	symmetries	are	
one	parameter,	the	approximate	symmetry	IV	contains	3	parameter	and	the	
approximate	symmetry	V	contains	8	parameter	Lie	Group	transformations.	 

• As	a	general	rule,	approximate	symmetry	VI	is	a	subalgebra	of	exact	symmetries	
if	not	equal.	 

• As	a	general	rule,	approximate	symmetry	V	produces	the	richest	symmetries	
among	the	approximate	ones.	 

 

4. Solutions 

 Using the symmetries, group invariant solutions are constructed for the four problems 
and listed in Table 2. In the table, the exact and one-correction term approximate solutions of 
the problem are given first and the specific symmetries to retrieve the results are given. The 
equation to be solved is  

 3(
.((,))

= 3)
-((,))

  .                (4.1) 

Substituting the outcome to the original equation to satisfy it and then applying the initial 
conditions, the approximate and exact solutions are obtained.  

 

Table 2- Group Invariant Solutions 
Equation Exact and 

Approximate 
Solutions 

Exact Symmetry Approximate 
Symmetry IV 

Approximate Symmetry V Approximate 
Symmetry VI 

𝑦¢ + 𝜀𝑦 = 0 
𝑦(0) = 1 

𝑦* = 𝑒%&! Retrievable 𝜉 = 𝑎# 

𝜂 = −
1
𝜀
𝑦 

𝜉 = 𝑏 
𝜂 = 𝑦 

𝜉 = 𝑏𝑒%&! 
𝜂 =-𝜀𝑏𝑒%&!𝑦 

𝑦+ = 1 − 𝜀𝑥 Not directly retrievable 𝜉 = 𝑎# 
𝜂 = 𝑏 

𝜉 = 1 
𝜂 = 𝑎 

Not directly retrievable 

𝑦¢ + 𝑒&" = 0 
𝑦(0) = 0 𝑦* = −

1
𝜀
ln	(1 + 𝜀𝑥) Not directly retrievable Not directly retrievable Not directly retrievable 𝜉 =

1
𝛼
𝑥 + 𝑏 

𝜂 = −
1
𝜀𝛼

 

𝑦+ = −𝑥 + 𝜀
𝑥#

2
 

Not directly retrievable 𝜉 = 𝑎# 

𝜂 = −
1
𝜀
𝑥 + 𝑏$ 

Not directly retrievable Not directly retrievable 

𝑦¢¢ + 𝜀𝑦¢	# = 0 
𝑦(0) = 0 
𝑦¢(0) = 1 

𝑦* =
1
𝜀
ln	(1 + 𝜀𝑥) 𝜉 = 𝑑𝑥 + 𝑒 

𝜂 = ℎ 
𝜉 = 𝑎𝑥 + 𝑏 
𝜂 = 𝑑 

𝜉 = 𝑏$𝑥 + 𝑏# 
𝜂 = 𝑑# 𝜉 =

1
2𝛼

𝑥 + 𝑎 

𝜂 = 𝑏 

𝑦+ = 𝑥 − 𝜀
𝑥#

2
 

𝜉 = 𝑒 
𝜂 =

𝑐
𝜀
𝑥 + ℎ 

𝜉 = 𝑏 
𝜂 = 𝑐𝑥 + 𝑑 

𝜉 = 𝑏# 
𝜂 = 𝑑$𝑥 + 𝑑# 

Not directly retrievable 

𝑦¢¢ − 2𝜀𝑦𝑦¢	 = 0 
𝑦(0) = 1 
𝑦¢(0) = 𝜀 

𝑦* =
1

1 − 𝜀𝑥
 𝜉 = 𝑎𝑥 + 𝑏 

𝜂 = −𝑎𝑦 
𝜉 = 𝑎#𝑥 + 𝑎) 

𝜂 = 22𝑎# −
1
𝜀
4 𝑦 

𝜉 = 𝑏$𝑥 + 𝑏# 
𝜂 = 𝑐#𝑦 

 

𝜉 = 𝑎𝑥 + 𝑏 
𝜂 = −𝑎𝑦 

𝑦* = 1 + 𝜀𝑥 Not directly retrievable 𝜉 = 𝑎) 
𝜂 = 𝑏# 

𝜉 = 𝑏# 
𝜂 = 𝑑# 

 

Not directly retrievable 

 

Regarding the retrieval of solutions, approximate symmetry IV and V performs better than the 
approximate symmetry VI in most of the cases. Approximate symmetry VI cannot produce 



approximate solutions for all the problems considered since it produces a subgroup of the 
exact symmetries. In most of the cases, the approximate symmetries lead to the exact 
solutions also. This is because of the fact that the dependent variable is not expanded in a 
perturbation series, a feature observed in Approximate Symmetry I theory due to Baikov et. 
al. [5, 6] also, which can be questioned from the perturbation theory point of view [8]. In 
contrast to this similarity, the main difference between the mentioned Method I [5, 6] and the 
approximate symmetry theories presented here is that the generator is expanded in a 
perturbation series in the former case while it is not expanded in a series in the ones presented 
here.    

 

5. Concluding Remarks 

Based on this study and the previous work on approximate symmetry theories [5-10], the 
following conclusions can be made 

• If the goal is to produce only the approximate solutions, Method II [7] and Method III 
with a less algebra [8] is recommended, since those methods are more consistent with 
the perturbation theory and directly leads to the approximate solutions.   

• If the goal is to produce both the approximate and exact solutions, Method I [5, 6] and 
Method IV and V presented in this study can be employed.  

• Among the new three approximate methods, Method V is recommended for second 
and higher order equations most, since it leads to richer symmetries.  

• For first order differential equations, however, Method IV leads to simpler and 
solvable symmetry infinitesimals than those of exact symmetry and Method V cases.   

• Method VI corresponds to the subgroup of the exact symmetries which leads to the 
group invariant solutions.  

• The work can be extended directly to include partial differential equations. A 
comparison of the symmetries and solutions for partial differential equations is a 
further research topic in the future.   
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