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It is widely believed that one of the main causes of the replication crisis in scienti�c research is some

of the most commonly used statistical methods, such as null hypothesis signi�cance testing (NHST).

This has prompted many scientists to call for statistics reform. As a practitioner in hydraulics and

measurement science, the author extensively used statistical methods in environmental engineering

and hydrological survey projects. The author strongly concurs with the need for statistics reform.

This paper o�ers a practitioner’s perspective on statistics reform. In the author’s view, some

statistical methods are good and should withstand statistics reform, while others are �awed and

should be abandoned and removed from textbooks and software packages. This paper focuses on two

methods derived from the t-distribution: the two-sample t-test and the t-interval method for

calculating measurement uncertainty. We demonstrate why both methods should be abandoned. We

recommend using advanced estimation statistics in place of the two-sample t-test and an unbiased

estimation method in place of the t-interval method. Two examples are presented to illustrate the

recommended approaches.

1. Introduction

In recent years, the scienti�c community has become increasingly concerned about the replication

crisis. Many scientists believe that one of main causes of the replication crisis is some of the most

commonly used statistical methods. Speci�cally, null hypothesis signi�cance testing (NHST) and its

produced p-values, and claims of statistical signi�cance, have come in most to blame[1].

Siegfried[2] remarked, “It’s science’s dirtiest secret: The ‘scienti�c method’ of testing hypotheses by

statistical analysis stands on a �imsy foundation.” Siegfried[3] further claimed, “statistical techniques

for testing hypotheses …have more �aws than Facebook’s privacy policies.”
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In response to these concerns, many scientists have called for the retirement or abandonment of

statistical signi�cance and p-values (e.g.[4][5][6][7][8]). For instance, since 2015, Basic and Applied

Social Psychology has banned NHST procedures and p-values[9]. Furthermore, many scientists have

advocated for statistics reform (e.g.[10][11][12]). Cumming[13]  and Cumming and Calin-

Jageman[14]  proposed the “New Statistics”, which primarily involves (1) abandoning NHST

procedures and (2) using e�ect sizes and con�dence intervals. Normile et al.[15] introduced the “New

Statistics” in classroom settings. Claridge-Chang and Assam[16]  suggested replacing signi�cance

testing with estimation statistics. A co-published editorial of 14 physiotherapy journals[17] “… advises

researchers that some physiotherapy journals that are members of the International Society of

Physiotherapy Journal Editors (ISPJE) will be expecting manuscripts to use estimation methods

instead of null hypothesis statistical tests.” More recently, Tra�mow et al.[18][19]  proposed using a

two-step process comprising the APP (a prior procedure) and gain-probability analyses to replace the

traditional two-step process comprising the power analysis and NHST. Although some authors

continue to defend NHST and p-values (e.g.[20][21][22][23]) and the debate persists (e.g.[24][25]), Berner

and Amrhein[26] noted that “A paradigm shift away from null hypothesis signi�cance testing seems in

progress”.

As a practitioner in hydraulics and measurement science, the author extensively used statistical

methods in environmental engineering and hydrological survey projects (citation omitted). In

particular, the author processed thousands of small samples collected during stream�ow

measurements using acoustic Doppler current pro�lers (ADCPs). Typically, an ADCP stream�ow

measurement involves only a few observations (usually around 4). According to the Guide to the

Expression of Uncertainty in Measurement (GUM; JCGM[27]), the uncertainty of the sample mean from a

small sample should be calculated using the t-interval method. However, the author found that the t-

based uncertainty (i.e. the half-width of the t-interval) was unrealistic and misleading, leading to the

so-called “uncertainty paradox”[28][29] and a high false rejection rate in the quality control of ADCP

stream�ow measurements[30].

The author is not alone in questioning the validity of the t-interval method for calculating

measurement uncertainty. Jenkins[31] also found that the t-based uncertainty can exhibit signi�cant

bias and precision errors. D’Agostini[32] provided a striking example: “…having measuring the size of

this page twice and having found a di�erence of 0.3 mm between the measurements… Any rational
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person will refuse to state that, in order to be 99.9% con�dence in the result, the uncertainty interval

should be 9.5 cm wide (any carpenter would laugh…). This may be the reason why, as far as I known,

physicists don’t use the Student distribution.” Furthermore, Ballico[33]  reported a notable

counterinstance during a routine calibration at the CSIRO National Measurement Laboratory (NML),

Australia. In this instance, a thermometer was calibrated for a 1 mK range (higher precision) and a 10

mK range (lower precision); the uncertainty was calculated using the WS-t approach (which combines

the Welch–Satterthwaite formula with the t-interval). Intuitively, one would expect the thermometer

in the higher precision range to have a lower uncertainty than in the lower precision range. However,

the WS-t approach gave a counterintuitive result: the uncertainty for the 1 mK range was 37.39,

compared to 35.07 for the 10 mK range. This counterintuitive result became known as the Ballico

paradox[34].

Practitioners in science and industry rely on statistical methods in their work, and the use of �awed

methods can have signi�cant negative impacts. Ziliak and McCloskey[35]  demonstrated in their

extensive 322-page volume that “Statistical signi�cance is an exceptionally damaging one.” However,

over the years, the author has observed that practitioners are frequently accused of misunderstanding

and misusing certain statistical methods, particularly NHST procedures and p-values, even though

the root issue may lie with the methods themselves. In the author's view, if a statistical method or

concept is so prone to misunderstanding and misusing that even educational institutions struggle to

teach it e�ectively, then there is likely something inherently wrong with that method or concept.

Tra�mow[36]  argued that, “NHST is problematic anyway even without misuse.” And “There is

practically no way to use them [p-values] properly in a way that furthers scienti�c practice.” While the

debate about NHST procedures and p-values persists, one fact remains clear: after roughly 100 years,

NHST procedures and p-values have not withstood the test of time.

We understand that no statistical method is perfect, nor can any method be applied without

limitations or conditions. However, in the experience of the author and other practitioners, some

statistical methods, such as the least squares method and point estimation, have proven to be good

and useful. In contrast, other methods, such as the t-interval method for calculating measurement

uncertainty, have demonstrated serious �aws. The coexistence of sound and problematic methods can

be confusing to practitioners, many of whom may not realize that some methods are �awed or

controversial and continue to use them inadvertently.
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Therefore, the author strongly concurs with the need for statistics reform. This paper o�ers a

practitioner's perspective on statistics reform. We argue that good methods should be preserved,

while �awed methods should be abandoned and removed from textbooks and software packages. This

paper focuses on two methods derived from the t-distribution: the two-sample t-test and the t-

interval method for calculating measurement uncertainty. We will present arguments for why these

two methods should be abandoned and propose alternatives.

The rest of the paper is organized as follows. Section 2 brie�y reviews examples of good statistical

methods that should withstand statistics reform. Section 3 discusses why the two-sample t-test

should be abandoned, while Section 4 describes an alternative to this test. Section 5 discusses why the

t-interval method for calculating measurement uncertainty should be abandoned, while Section 6

describes an alternative to the t-interval method. Section 7 provides conclusion and recommendation.

2. Examples of good statistical methods that should withstand

statistics reform

In the author’s opinion, a good statistical method should possess the following characteristics: (a) it

should have clear mathematical meaning and be easily understood, even by those without advanced

training in statistics; (b) it should yield realistic results in real-world applications; and (c) it should be

relatively uncontroversial in the scienti�c community. Furthermore, ideally, a good statistical method

would be related to a physical principle, thereby giving it with physical meaning. Many good statistical

methods meet these criteria. Four examples are listed below.

Method of least squares

Method of maximum likelihood

Central Limit Theorem

Akaike information criterion (AIC)

Perhaps, the least squares method is one of the widely used statistical methods in practice. It is hardly

controversial in the scienti�c community, and importantly, it conforms to the principle of minimum

energy, a fundamental concept in physics. In this context, the sum of squared errors can be

interpreted as representing the internal noise energy of the system under consideration, which

naturally tends to a minimum value at equilibrium.
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The method of maximum likelihood is another widely used statistical methods. It is also hardly

controversial in the scienti�c community. The method of maximum likelihood is intuitive in nature;

as Fisher[37]  stated, “The likelihood supplies a natural order of preference among the possibilities

under consideration.” In other words, the mode of a likelihood function corresponds to the most

preferred parameter value given the data[38]. This idea is straightforward and does not require

advanced statistical knowledge to understand. In addition, the method of maximum likelihood is

essentially consistent with the least squares method.

The Central Limit Theorem states that, given a su�ciently large sample size, the sampling

distribution of the sample mean will approximate a normal distribution, regardless of the original

distribution. Since measurement error is de�ned as the di�erence between the true value and the

measured value (e.g. the sample mean), the Central Limit Theorem aligns with the law of error, which

is one of the foundational principles in statistics and measurement science.

The Akaike information criterion (AIC) is based on the concept of entropy in information theory. A

model with the minimum AIC minimizes information loss among a set of candidate models.

Essentially, the AIC is consistent with the maximum likelihood method and the least squares method.

Of course, good statistical methods like the four motioned above should withstand statistics reform.

3. Why should the two-sample t-test be abandoned?

Perhaps the two-sample t-test is the most widely used procedure among NHST procedures. Therefore,

if we are to abandon NHST procedures, the two-sample t-test should be abandoned �rst. However, the

literature rarely provides an explicit discussion of the reasons for abandoning the two-sample t-test,

and usually o�er only general debates about the problems with NHST procedures and p-values. It is

important to note that p-values are outputs of statistical methods such as the two-sample t-test.

Thus, p-value problems are not solely with p-values but with the statistical methods that produce

them. In this section, we address two main issues with the two-sample t-test: logic and performance.

We argue that these shortcomings provide compelling reasons for its abandonment.

3.1. Logic issue: the two-sample t-test is philosophically �awed and misleading

The two-sample t-test is philosophically �awed and misleading. Consider two datasets (groups):

Group A from treatment A and Group B from treatment B. We are interested in determining whether

treatment A is superior to treatment B (or vice versa). In the standard NHST framework, we begin with
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a null hypothesis, a “strawman”, that the unknown population means of the two groups are the same,

and an alternative hypothesis that they di�er. Then, we use the two-sample t-test to generate a p-

value. If p<0.05, we conclude that the deference between the two means is “statistically signi�cant”

and the null hypothesis is rejected, i.e. the “strawman” is disproven. However, this approach does not

answer the question of superiority between treatments A and B. Instead, it misleads us to focus on

whether the groups di�er in a statistically signi�cant manner, based on an arbitrary p-value threshed.

In reality, simply examining the data or comparing the group means often su�ces to show that

treatment A is di�erent from treatment B. We should directly assess the practical signi�cance of the

observed di�erence using our domain knowledge. There is no intrinsic need to construct a

“strawman” (the null hypothesis) and then try to disprove it.

3.2. Performance issues: uncertainty, inconsistency, and dependence on sample size

Even if we accept its logic and use it for comparing the means of two groups, the two-sample t-test

does not provide reliable results. This can be understood by examining the behaviors of the p-value

produced by the test. First, as with any sample statistics, the p-value itself is subject to uncertainty.

Halsey et al.[23] discussed the uncertainty associated with the p-value of two-sample t-tests through

simulations. They demonstrated that “a major cause of the lack of repeatability is the wide sample-

to-sample variability in the P value.” They stated that, “As we have demonstrated, however, unless

statistical power is very high (and much higher than in most experiments), the P value should be

interpreted tentatively at best. Data analysis and interpretation must incorporate the uncertainty

embedded in a P value.” Moreover, Lazzeroni et al.[39] introduced p-value con�dence intervals for the

“true population P value” or π value, which they de�ned as the value of P when parameter estimates

equal their unknown population values. They emphasized that, “P values are variable, but this

variability re�ects the real uncertainty inherent in statistical results.”

Second, the two-sample t-test may produce inconsistent results for essentially the same evidence.

Bonovas and Daniele[40]  illustrated this issue with two trials of a new drug. In a single-center,

randomized, double-blind, placebo-controlled trial, the two-sample t-test produced a p-value of 0.11,

suggesting “no di�erence” between the active drug and placebo. In contrast, a multi-center trial

yielded a p-value of 0.001, indicating a “signi�cant di�erence.” Despite these con�icting p-values,

the risk ratio was the same in both trials: 0.70, indicating that the e�cacy of the experimental drug

was the same. This discrepancy highlights a critical shortcoming of the two-sample t-test: its reliance

qeios.com doi.org/10.32388/JVYEJZ.2 6

https://www.qeios.com/
https://doi.org/10.32388/JVYEJZ.2


on p-values can lead to inconsistent and potentially misleading conclusions, even when the e�ect size

is consistent.

Third, the p-value produced by a two-sample t-test is highly dependent on the sample size; it

decreases as the sample size increases. Therefore, p-values can be easily “hacked” through “N-

chasing” (a term coined by Stansbury[41]), which guarantees “statistical signi�cance” at any pre-

speci�ed threshold even if the e�ect size (e.g. the di�erence between the means of two groups) is

trivial and lacks practical signi�cance. “N-chasing” is one of the most e�ective ways of p-hacking. In

the author’s opinion, the only viable solution to combat “N-chasing” or p-hacking is to abandon the

two-sample t-test.

4. Alternative to the two-sample t-test: advanced estimation

statistics

We recommend using advanced estimation statistics as in place of the two-sample t-test. This

framework emphasizes a comprehensive presentation of a set of statistics, including the observed

e�ect size (ES), relative e�ect size (RES), standard uncertainty (SU), relative standard uncertainty

(RSU), signal-to-noise ratio (SNR), signal content index (SCI), exceedance probability (EP), and net

superiority probability (NSP). Each of these eight statistics has a clear mathematical or physical

meaning and is easy to understand.

In this advanced estimation statistics framework, the superiority of treatment A over treatment B (or

vice versa) is measured by the observed ES (or RES) along with the EP (or NSP). The reliability of the

observed ES (or RES) is then assessed using the SU, RSU, SNR, and SCI. Importantly, we do not specify

a �xed threshold for any of these statistics; instead, we make scienti�c inferences, rather than purely

statistical inferences, based on domain knowledge while considering these statistics.

Moreover, this advanced estimation statistics framework avoids the terminology and language

associated with the NHST paradigm. Terms such as null hypothesis, alternative hypothesis, p-values,

statistical signi�cance, and statistical power are eliminated.

4.1. Observed e�ect size (ES) and relative e�ect size (RES)

The observed e�ect size (ES), denoted by  , is de�ned as the absolute deference between the two

group means (  and  , respectively)

Δ

x̄̄̄A x̄̄̄B
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It is important to note that the observed ES represents the “simple” e�ect size. It is the raw di�erence

between the means of two groups, expressed in the original physical unit of the quantity of interest.

This is in contrast to standardized e�ect sizes, such as Cohen’s d, which is dimensionless. Because the

simple e�ect size retains the original physical unit, it is nearly always more meaningful than

standardized e�ect size[42]. Schäfer[43] argued that in their unstandardized form, e�ect sizes are easy

to calculate and to interpret. Standardized e�ect sizes, on the other hand, bear a high risk for

misinterpretation. In real-world applications, practitioners’ domain knowledge is inherently tied to

the physical units of the quantity of interest. Therefore, it is more intuitive for practitioners to assess

the practical signi�cance using simple e�ect sizes. As Baguley[42] noted, “For most purposes simple

(unstandardized) e�ect size is more robust and versatile than standardized e�ect size.” Therefore, we

do not recommend using standardized e�ect sizes such as Cohen’s d in the advanced estimation

statistics framework.

Note also that the observed ES represents the absolute magnitude of the treatment e�ect. In practice,

we are often interested in the relative magnitude of the treatment e�ect, i.e. the relative e�ect size

(RES). According to Huang[38], RES is de�ned as the ratio of the observed ES to a baseline measure,

such as the average of the two group means. That is,

where   can be calculated as the inverse-variance weighted-average

where    and  ;    and    are the sample standard deviation of

Group A and Group B, respectively; nA and nB are the sample size of Group A and Group B, respectively.

The RES is usually expressed as a percentage.

The observed ES or RES is independent of sample size. As such, it only emphasizes the treatment

e�ect. Unlike the two-sample t-test, which confounds the treatment e�ect with sample size,

increasing the sample size does not alter the observed ES or RES but rather improves its reliability.

Therefore, in contrast to p-values from t-tests, which are vulnerable to "N-chasing", the observed ES

or RES cannot be hacked through “N-chasing”.

Δ = − |.|x̄̄̄A x̄̄̄B (1)

RES =  ,
| − |x̄̄̄A x̄̄̄B

x̄̄̄w
(2)

x̄̄̄w

=  ,x̄̄̄w

+
x̄̄̄A

Var( )x̄̄̄A

x̄̄̄B,D

Var( )x̄̄̄B

+1

Var( )x̄̄̄A

1

Var( )x̄̄̄B

(3)

V ar ( ) = /x̄̄̄A s2
A

nA V ar ( ) = /x̄̄̄B s2
B nB sA sB
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4.2. Standard uncertainty (SU), relative standard uncertainty (RSU), signal-to-noise

ratio (SNR), and signal content index (SCI)

The observed ES is a point estimate of the unknown true e�ect size. Its reliability must be quanti�ed

and assessed. To this end, statistics such as the standard uncertainty (SU), relative standard

uncertainty (RSU), signal-to-noise ratio (SNR), and signal content index (SCI) are employed. These

statistics collectively provide a comprehensive assessment of the reliability of the observed ES.

Let    denote the SU of the observed ES  .    is de�ned as the standard deviation of 

In measurement science,    is often used as a measure of the precision of a measurement. If we

treat the observed ES    as a measurement result, then    measures its precision. Note that 

 has the same physical unit as  .

In practice, we are also interested in the relative standard uncertainty (RSU) (if applicable) de�ned as

The signal-to-noise ratio (SNR) is de�ned as the ratio of signal energy to noise energy. Although it is

commonly used in electrical engineering, the concept applies to any signal[44]. For comparing the

means of two groups, the observed ES   represents the signal, while the SU   represents the noise.

Therefore, the SNR is given by

Moreover, the signal content index (SCI) is de�ned as[44]

The SCI has a clear physical meaning; it is the relative amount of signal energy contained in the

measurement result[44].

Either the SNR or the SCI can be used to measure the reliability of the observed ES. However, because

the SCI is bounded between 0 and 1, its interpretation is more intuitive. A high SCI value (e.g. close to 1)

indicates that the observed ES is reliable, while a low SCI value (e.g. close to 0) indicates that the

observed ES is unreliable due to noise.

u(Δ) Δ u(Δ)

Δ = − ||x̄̄̄A x̄̄̄B

u(Δ) = =  .V ar(Δ)
− −−−−−

√ V ar ( ) + V ar( )x̄̄̄A x̄̄̄B
− −−−−−−−−−−−−−−−

√ (4)

u(Δ)

Δ u(Δ)

u(Δ) Δ

RSU =  .
u(Δ)

Δ
(5)

Δ u(Δ)

SNR = = =  .
Esignal

Enoise

Δ2

(Δ)u2

− )(x̄̄̄A x̄̄̄B
2

V ar ( ) + V ar( )x̄̄̄A x̄̄̄B
(6)

SCI = = =  .
Esignal

Esignal+Enoise

Δ2

(Δ)+ uΔ2 2

SNR

1 + SNR
(7)
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It should be noted that, unlike the observed ES or RES, which is independent of sample size, the

reliability measures such as the SU, RSU, SNR, and SCI are functions of sample size. As sample size

increases, the SU and RSU decrease, while the SNR and SCI increase. This establishes a clear

distinction between the observed ES and its reliability measures.

It should also be noted that we do not use con�dence interval to quantify the uncertainty (or

precision) of the observed ES. This is because the concept of con�dence intervals has long been

controversial and subject to debate in the scienti�c community (e.g.[45][46][47][48][49]). In particular,

the t-interval, which is a con�dence interval traditionally used for small samples, is problematic and,

as discussed in Section 5, should be abandoned.

4.3. Exceedance probability (EP) and net superiority probability (NSP)

The observed ES measures the di�erence, on average, between the two treatments A and B. In other

words, when we assume that    0, the observed ES quanti�es the average superiority of

treatment A over treatment B. However, in practice, we are also interested in assessing superiority at

the individual level. This means comparing the individual scores in the two groups to determine how

often individuals in Group A outperform those in Group B.

The probability that Group A is superior to Group B at the individual level is known as exceedance

probability (EP) and is de�ned as[38]

where   and   represent the scores of individuals in Groups A and B, respectively, and   is the

probability density function for the quantity  .

The meaning of the exceedance probability    is essentially the same as that of several other

statistics, including the common language e�ect size (CLES)[50], the probability of superiority (PS)[51]

[52], and the area under the receiver operating characteristic curve (AUC) or its nonparametric version

(A)[53][54]. However, it is important to note that calculating the CLES requires assumptions of

population normality and equal variances, whereas   does not require these assumptions. In

this sense, the CLES is an approximation of   . Additionally, the term "CLES" can be

misleading, as it might imply that it is an e�ect size, when in fact it represents a probability.

− >x̄̄̄A x̄̄̄B

= Pr ( ≥ ) = p(y)dy,EP ≥XA XB
XA XB ∫

∞

0
(8)

XA XB p(y)

−Y = XA XB

EP ≥XA XB

EP ≥XA XB

EP ≥XA XB
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Assume that both   and   are normally distributed with unknown means and unknown variances.

The estimated distributions of XA and XB are   and  , respectively, where   is

the bias correction factor,  , and Г(.) stands for Gamma function[55]. In addition,

the estimated distribution of   is also a normal distribution

Then, the exceedance probability of   is given by[56]

where e’ is given by

The exceedance probability of   is given by

Furthermore, the net superiority probability (NSP), denoted by , is related to the exceedance

probabilities as[56]

Although Eq. (13) is based on the normality assumption, it is considered as a general de�nition of the

NSP for any types of distributions of XA and XB
[56].

It is important to note that the EP or NSP is only a very weak function of sample sizes due to the bias

correction factor  . Therefore, similar to the observed ES or RES, the EP or NSP is resistant to

manipulation via "N-chasing."

The above probabilistic analyses rely on probability distributions. However, these analyses can also be

performed without assuming speci�c distributions, in what is known as nonparametric comparison of

two groups. In the distribution-free analysis, the exceedance probability of   ( ) is given

by[56]

And the exceedance probability of   ( ) is given by

XA XB

N( , )x̄̄̄A
sA

c4,nA
N( , )x̄̄̄B

sB
c4,nB

c4,n

=c4,n
2

n−1

− −−
√

Γ( )n

2

Γ( )
n−1

2

−Y = XA XB

Y ∼ N [( − ), ] .x̄̄̄A x̄̄̄B V ar ( ) + V ar( )XA XB

− −−−−−−−−−−−−−−−−
√ (9)

≥XA XB

= Pr(Z ≥ − ) = 1 − Φ(− ) = Φ( ) ,EP ≥XA XB
e

′
e

′
e

′
(10)

=  .e′ −x̄̄̄A x̄̄̄B

+( )
sA

c4,nA

2
( )

sB
c4,nB

2− −−−−−−−−−−−−−−
√

(11)

≥XB XA

= Pr(Z ≥ ) = 1 − Φ( ) = Φ(− ) .EP ≥XB XA
e

′
e

′
e

′
(12)

 ξ

ξ = − .EP ≥XA XB
EP ≥XB XA

(13)

c4,n

A ≥ B EPA≥B

=  ,EPA≥B

UA≥B

nAnB
(14)

B ≥ A EPB≥A
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where   or   is the U statistic in the Mann–Whitney U test.

Accordingly, the NSP of Group A over Group B is given by

It should be noted that the concept of exceedance probability (EP) is essentially equivalent to the gain-

probability (G-P) proposed by Tra�mow et al.[18][19]. Moreover, EP and its analysis have been used

across various engineering �elds. For instance, the U.S. EPA[57]  established a probabilistic chronic

toxics standard of EP = 0.0037 to protect aquatic life. Di Toro[58] conducted EP analysis of river quality

a�ected by runo�. Huang and Fergen[59] applied EP analysis to assess river BOD (biochemical oxygen

demand) and DO (dissolved oxygen) concentrations in response to point load. Krishnamoorthy et al.

[60]  also utilized EP analysis to assess exposure levels in work environments. Furthermore, the

concept of exceedance probability is closely related to the term “return period” commonly used in

hydraulic engineering and hydrology. For example, a 100-year �ood corresponds to an exceedance

probability of 1%. Therefore, practitioners in engineering �elds are typically more familiar with the

concept of exceedance probability than with terms like the CLES, AUC, or A.

4.4. Example: comparison of old and new �avorings for a beverage

Zaiontz[61]  considered the following problem: a marketing research �rm conducted experiments to

evaluate the e�ectiveness of a new �avoring for a beverage. In the study, eleven people in Group A1

and ten people in Group A2 tasted the beverage with the new �avoring, while ten people in Group B

tasted the beverage with the old favoring. After tasting, all participants took a questionnaire to

evaluate how enjoyable the beverage was. The scores obtained for the new �avoring (Group A1 and

Group A2) and old �avoring (Group B) are shown in Table 1, and the corresponding sample means and

standard deviations are presented in Table 2.

=  ,EPB≥A

UB≥A

nAnB
(15)

UA≥B UB≥A

ξ = − =  .EPA≥B EPB≥A

  −  UA≥B UB≥A

nAnB
(16)
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New �avoring (Group A1) New �avoring (Group A2) Old �avoring (Group B)

13 20 12

17 32 8

19 2 6

10 25 16

20 5 12

15 18 14

18 21 10

9 7 18

12 28 4

15 40 11

16    

Table 1. Scores of the three groups in the beverage �avor taste experiments

  New �avoring (Group A1) New �avoring (Group A2) Old �avoring (Group B)

Sample mean 14.91 19.80 11.10

Sample standard deviation 3.59 12.27 4.33

Table 2. Sample means and standard deviations of the three groups in the beverage �avor taste

experiments

Zaiontz[61] applied the two-sample t-test (two-tailed) to compare the e�ectiveness of a new �avoring

versus the old �avoring. For the comparison between Group A1 (new �avoring) and Group B (old

�avoring), he obtained a p-value of 0.04, which led him to reject the null hypothesis at the α = 0.05
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level and conclude that the new �avoring was signi�cantly more enjoyable. However, for the

comparison between Group A2 (new �avoring) and Group B (old �avoring), the p-value was 0.05773,

and he could not reject the null hypothesis. It is peculiar that Zaiontz[61] did not address or comment

on these contradictory results from the two t-tests.

We examined this example using the advanced estimation statistics. Table 3 shows the estimated

e�ect sizes and their reliability measures. Table 4 shows the results of the probabilistic analysis based

on the distribution-based comparison, while Table 5 shows the results based on the nonparametric

comparison.

Statistic
Comparison between Group A1 and

Group B

Comparison between Group A2 and

Group B

Observed e�ect size (ES): Eq. (1)

Relative e�ect size (RES): Eq. (2) 28.52% 72.12%

Standard uncertainty (SU): Eq. (4) 1.75 4.12

Relative standard uncertainty

(RSU): Eq. (5)
45.84% 47.31%

Signal-to-noise ratio (SNR): Eq.

(6)
4.76 4.47

Signal content index (SCI): Eq. (7) 0.83 0.82

Table 3. Estimated e�ect sizes and their reliability measures for the comparison of beverage �avoring

Δ =3.81 Δ =8.70
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Comparison between Groups A1

and B

Comparison between Groups A2

and B

Estimated distribution of Y: Eq. (9)

Exceedance probability (EP)  :

Eq. (10)

Exceedance probability (EP)  :

Eq. (12)

Net superiority probability (NSP): Eq.

(13)

Table 4. Results of the probabilistic analysis based on the distribution-based comparison

 
Comparison between Group A1 and

Group B

Comparison between Group A2 and

Group B

Exceedance probability (EP) 

: Eq. (14)

Exceedance probability (EP) 

: Eq. (15)

Net superiority probability (NSP):

Eq. (16)

Table 5. Results of the probabilistic analysis based on the nonparametric comparison

As can be seen from Table 3, the observed ES is 3.81 and the RES is 28.52% for the comparison of Group

A1 versus Group B, while the observed ES is 8.70 and the RES is 72.12% for the comparison of Group A2

versus Group B. Our domain knowledge and common sense in this case suggests that the di�erence

Y ∼ N(3.81,  5.78) Y ∼ N(8.70,  13.38)

(A ≥ B)
= 0.745EP ≥XA XB

= 0.742EP ≥XA XB

(B ≥ A)
= 0.255EP ≥XB XA

= 0.258EP ≥XB XA

ξ = 0.490 ξ = 0.484

(A ≥ B)
= 0.741EPA≥B = 0.725EPA≥B

(B ≥ A)
= 0.259EPB≥A = 0.275EPB≥A

ξ = 0.482 ξ = 0.450
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between the two �avorings is practically signi�cant. Although the RSUs are large (45.84% and 47.31%)

due to the small sample sizes, the SNRs are high (4.76 and 4.47), and the SCIs are also high (0.83 and

0.82). These values indicate that the observed ES are reliable and that the experimental data are

credible.

It can be seen from Tables 4 that, the estimated distributions of Y for the two comparisons: Group A1

versus Group B and Group A2 versus Group B are signi�cantly di�erent, with    for

the former and    for the latter. However, the di�erence in the values of the RSU,

SNR, SCI, EP, and NSP between these two comparisons are not signi�cant. Thus, the two comparisons

should lead to the same conclusion: the new �avoring is superior to the old �avoring.

Note that the values of the EP and NSP from the distribution-based comparison (Table 4) are

consistent with those obtained from the nonparametric comparison (Table 5).    = 0.745,

0.742, and NSP=0.490, 0.484 based on the distribution-based comparison, while    =0.741,

0.725, and NSP=0.482, 0.450 based on the nonparametric comparison.

5. Why should the t-interval method for calculating measurement

uncertainty be abandoned?

In measurement science, the half-width of the t-interval is de�ned as the Type A expanded

uncertainty for a measurement with a small number of observations[27]. It is referred to as the t-based

uncertainty. In this section, we discuss two main issues with the t-interval and t-based uncertainty:

rationale and methodology, which together explain why the t-interval method for calculating

measurement uncertainty should be abandoned. We also examine problems associated with the t-

distribution, which is the basis for the t-interval and t-based uncertainty.

5.1. Rationale issue: “coverage” is a misleading concept

The rationale behind using the t-interval method for calculating measurement uncertainty is based on

the concept of “coverage”. Coverage, expressed as the con�dence level or coverage probability, is the

central concept in Neyman con�dence interval theory[62][63]. However, it is important to note that the

con�dence level is not a probability in the strict mathematical sense; rather, it represents the “long-

term success rate”[64] or “capture rate”[65]. In Monte Carlo simulation of the t-interval, the success

or capture rate asymptotically approaches the nominal con�dence level  ). That is,

Y ∼ N(3.81,  5.78)

Y ∼ N(8.70,  13.38)

EP ≥XA XB

EPA≥B

(1 − α
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where m is the total number of simulated t-intervals and k is the number of the intervals that capture

the true value μ.

Therefore, strictly speaking, the con�dence level is not a mathematical probability that satis�es

Kohnogorov’s axioms of probability calculus; rather, it is a relative frequency. However, as

Bunge[66]  noted, “… frequencies alone do not warrant inferences to probabilities …” because “…

whereas a probability statement concerns usually a single (though possible complex) fact, the

corresponding frequency statement is about a set of facts and moreover as chosen in agreement with

certain sampling procedures.” Bunge[66]  further argued that, “… the frequency interpretation [of

probability] is mathematically incorrect because the axioms that de�ne the probability measure do

not contain the (semiempirical) notion of frequency.”

It is important to note that the “coverage” (the frequency of “success” or “capture”) is a property of

the con�dence interval procedure (e.g. the t-interval procedure). This coverage can only be realized in

the long run through repeated sampling or simulation; it is meaningless for a con�dence interval

computed from a single sample.

We must distinguish between the result of a procedure and the coverage of the procedure. In

measurement uncertainty analysis, our focus is on the estimated uncertainty given by the procedure.

As Kempthorne[67]  stated, “…a statistical method should be judged by the result which it gives in

practice.” However, the concept of coverage does not represent a result produced by the method.

Therefore, it is inappropriate and even paradoxical to judge an uncertainty estimation method by its

coverage[68].

It should be emphasized that, a con�dence interval procedure is merely a mechanism to generate a

collection of intervals (or “sticks”) with a stated capture rate for the unknown true value[65]. In other

words, the t-interval method provides an “exact” answer to the question: “What is the interval

procedure with which the population mean μ would be captured by 1-α of all intervals generated in the

long-run of repeated sampling?” However, this is the wrong question for measurement uncertainty

analysis. The purpose of measurement uncertainty analysis is to determine (or estimate) the

measurement precision with a given sample. The correct question is: “How do we estimate

measurement precision with a given sample?”[69]. In this context, the t-interval procedure is not an

appropriate method for inferring measurement precision. Morey et al.[47]  argued, “Claims that

success or captrue rate = = 1 − α ,lim
m→∞

k

m
(17)
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con�dence intervals yield an index of precision, that the values within them are plausible, and that the

con�dence coe�cient can be read as a measure of certainty that the interval contains the true value,

are all fallacies and unjusti�ed by con�dence interval theory.” Therefore, the t-interval method is

actually misused in measurement uncertainty analysis because it gives an “exact” answer to the

wrong question[69].

5.2. Methodological issue: the t-interval or t-based uncertainty is a distorted mirror of

physical reality

The half-width of the t-interval is given by    (the t-based uncertainty), where n is the

number of observations, s is the sample standard deviation, and    is the t-score. In contrast, the

true expanded uncertainty of the sample mean, assuming that the population standard deviation   is

known, is given by   , which is called the z-based uncertainty, where   is the z-score.

The t-based uncertainty arti�cially dilates the uncertainty. The arti�cial dilation can be quanti�ed by

a ‘dilation factor’, de�ned as the ratio between the expectation of the t-based uncertainty and the true

expanded uncertainty. That is[65],

The dilation factor is extremely high when the sample size is small. For example, when n=2, the

dilation factor is 5.17 for the nominal coverage probability   and 19.72 for  . As

the sample size increases, the dilation factor decreases signi�cantly. At n=30, the dilation factor is

only 1.03 for   and 1.06 for  .

It is important to note that the z-based uncertainty   expresses a physical law, known as

the -1/2 power law, which describes how the random uncertainty of the sample mean decreases as the

sample size increases, i.e. in proportion to   . In contrast, the expectation of the t-based

uncertainty is given by  . For small sample sizes, the expected t-based uncertainty

signi�cantly deviates from the −1/2 power law as illustrated in Figure 1. Therefore, the t-based

uncertainty or the t-interval acts as a distorted mirror of the physical reality.

= tUt α/2
s

n√

tα/2

σ

=Uz zα/2
σ

n√
zα/2

Dilation factor = =  .
E ( )Ut

UZ

c4,ntp

zp
(18)

1 − α = 0.95 1 − α = 0.99

1 − α = 0.95 1 − α = 0.99

=Uz zα/2
σ

n√

1/ n−−√

) =E(Ut c4,ntα/2
σ

n√
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Figure 1. Uz and   (normalized by   at 1-α=0.95) on the log-log scales[65]

It is worth noting that prior to Student (William Sealy Gosset), the expanded uncertainty (referred to

as the “probable error” in Student’s 1908 paper) was calculated using the maximum-likelihood

estimate of the population variance. This approach signi�cantly underestimates the uncertainty when

the sample size is small, with relative biases of -43.6%, -20.2%, -7.7% at n=2, 4, and 10, respectively.

To correct for this underestimation, Student[70]  invented the t-distribution. However, the t-based

uncertainty Ut, derived from the t-distribution, leads to an overestimation of the uncertainty, as

evidenced by the dilation factor. Interestingly, Ziliak and McCloskey[71] remarked that “Student used

his t-tables a teensy bit…” and noted that “We have learned recently, by the way, that “Student”

himself—William Sealy Gosset—did not rely on Student’s t in his own work.” 

)E(Ut σzα/2
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5.3. Issues with the t-distribution

The t-interval and t-based uncertainty are constructed using the t-distribution. Therefore, the

methodological issues associated with the t-interval and t-based uncertainty must ultimately be

traced back to the t-distribution, or its non-standard version: the scaled and shifted t-distribution

(referred to as the location-scale t-distribution in Wikipedia).

First, the t-distribution is subject to what Huang[29] termed the “t-transformation distortion.” The t-

statistic is computed as the ratio between the sample error and the standard error of the sample mean,

which transforms the original ε-s space Ω(ε, s) into a distorted t-space Ω(t). The t-transformation

itself is mathematically valid, and thus the t-distribution is also mathematically sound. However, the

inferences made using the t-distribution (such as constructing t-intervals) may not be valid because

the inferences are actually performed in the distorted t-space Ω(t)[69]. To illustrate, consider that

plums are dried to make prunes. The drying process alters the shape and characteristics of the plums,

which is analogous to the “t-transformation distortion”. Just as one cannot accurately infer the

original shape of plums from the dried prunes, we cannot reliably infer the true properties of the

original data from inferences made in the distorted t-space Ω(t).

Second, the scaled and shifted t-distribution is not an appropriate sampling distribution for the

sample mean of n observations. According to the Central Limit Theorem, the sampling distribution for

the sample mean approximates the normal distribution (or the scaled and shifted z-distribution),

regardless of the original distribution. The Central Limit Theorem does not support using the scaled

and shifted t-distribution. Moreover, among three candidate distributions: the scaled and shifted t-

distribution, the scaled and shifted z-distribution, and the Laplace distribution,

Huang[72] demonstrated that the scaled and shifted z-distribution is the best choice according to the

minimum entropy criterion, while[73] demonstrated that it is also the best according to the maximum

informity criterion. The informity metric is the counterpart of the entropy metric; it can be used as an

alternative measure to assess distributions[73]. In summary, the Central Limit Theorem, the entropy

metric, and the informity metric, all support the use of the scaled and shifted z-distribution instead of

the scaled and shifted t-distribution. There is no mathematical or physical principle that justi�es the

use of the t-distribution or its scaled and shifted version for this purpose.

It is worth mentioning that the statistics textbook by Matlo�[74]  does not even cover the t-

distribution and t-intervals. In fact, Matlo�[75]  stated, “I advocate skipping the t-distribution, and
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going directly to inference based on the Central Limit Theorem.” This perspective further emphasizes

the argument that inference should be based on the more robust and intuitive foundation provided by

the Central Limit Theorem, rather than relying on the t-distribution.

6. Alternative to the t-interval method for calculating

measurement uncertainty: unbiased estimation method

6.1. Unbiased estimation method

Again, for a measurement with a small number of observations, when σ is known, the z-based

uncertainty Uz is the true expanded uncertainty. In practice, σ may be known from manufacturer’s

precision speci�cation for a measuring instrument. Thus, Uz can be regarded as the true precision.

When σ is unknown, however, the true precision cannot be determined. In such cases, the purpose of

uncertainty analysis is to estimate the true precision based on the available sample data. According to

the theory of point estimation, when σ is unknown, it can be replaced by a sample-based estimator  .

Accordingly, Uz can be replaced by a sample-based estimator  . We want    to equal Uz on average,

meaning that   should be an unbiased estimator of Uz. Note that   is an unbiased estimator of σ.

Thus,   is an unbiased estimator of Uz. This unbiased estimator   conforms to the -1/2

power law.

Hirschauer[76] stated,

“What we can extract – at best – from a random sample is an unbiased point estimate

(signal) of an unknown population e�ect size and an unbiased estimation of the

uncertainty (noise), caused by random error, of that point estimation, i.e., the standard

error, which is but another label for the standard deviation of the sampling

distribution.”

Indeed, the sample mean    (e�ect size) and the unbiased standard error    are “what we can

extract – at best – from a random sample…”

The unbiased estimation method can provide realistic uncertainty estimates. The “uncertainty

paradox” caused by the t-interval method disappears when using the unbiased estimation method.

For the “carpenter’s laugh” scenario described by D’Agostini[32] (mentioned in the introduction), the

σ̂

Û Û

Û s/c4,n

=Û zα/2
s

c4,n n√
Û

ȳ̄̄ s

c4,n n√
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t-score at the nominal coverage probability (1-α)=0.999 is 636.62 due to severe t-transformation

distortion at n=2, leading to the absurd uncertainty estimate   = 95 mm . In contrast, the z-score at

(1-α)=0.999 is 3.29 and the bias correction factor c4,n at n=2 is 0.7979. The unbiased estimation

method gives  = 0.62 mm, which is far more realistic. Moreover, unlike the t-based uncertainty  ,

which is unsuitable for measurement quality control due to its high false rejection rate, the unbiased

estimator    can be reliably used for measurement quality control. Importantly, this unbiased

estimation method has been adopted in the ISO standard for stream�ow measurements with acoustic

Doppler current pro�ler[77].

It should be emphasized that the unbiased estimation method is based on the theory of point

estimation and the unbiasedness criterion. Unlike the t-interval method, which is an interval

procedure based on con�dence interval theory and the “coverage” criterion, the unbiased estimation

method is not designed to generate intervals that capture the true value at a speci�ed long-term

success rate. These two approaches are mutually incompatible and incommensurable. Therefore, the

“coverage” criterion should not be applied to the unbiased estimation method. In other words, the

performance of the unbiased estimation method should not be judged by the long-term success or

capture rate that is commonly used to evaluate con�dence interval procedures[65][78].

Statistics textbooks often claim that interval estimation is more informative than point estimation.

However, this claim can be misleading. Suppose we employ a statistical distribution model (e.g.

normal distribution) in our analysis. If the model parameters are obtained by a valid method (such as

maximum likelihood) applied to a given dataset, we can derive an estimated distribution. This

estimated distribution, in turn, enables us to construct any probability interval we desire. For

example, with n observations, the sample mean    and the unbiased standard error    serve as

estimates of the location and scale parameters, respectively. Then, the estimated sampling

distribution of the sample mean    is  [79]. This complete estimated distribution is

inherently more informative than any single con�dence interval constructed from it, as it provides a

full probabilistic description of the uncertainty surrounding the parameter estimate rather than a

mere interval estimate.

The unbiased estimation method has been extended to cases involving multiple uncertainty

components in measurement uncertainty analysis. This extension is referred to as the WS-z

Ut

Û Ut

Û

ȳ̄̄ s

c4,n n√

Y
¯ ¯̄̄ N( , )ȳ̄̄ s2

nc2
4,n
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approach[34]. The WS-z approach resolves the Ballico paradox that arises from the WS-t approach

(mentioned in the introduction), by providing more realistic and consistent uncertainty estimates.

6.2. Example: a comparison of the WS-z and WS-t approaches

Consider two random variables X and Y. We assume that X is normally distributed with unknown mean

and unknown variance, and Y is normally distributed with mean 0 and variance σY. We have n

observations from X:{x1, x2, ..xn} and one observation from Y:{y}. Then,    is the estimator

for Z=X+Y and the variance of Z is given by

where   is the sample standard deviation of the n observations {x1, x2, ..xn}.

Our job is to estimate the expanded uncertainty of the estimate  . According to the unbiased

estimation method (i.e. the WS-z approach), the expanded uncertainty is given by

where   is the bias correction factor and   is the e�ective degrees of freedom (DOF). The e�ective

DOF can be calculated using the Welch-Satterthwaite (WS) formula. For the problem considered, the

Welch-Satterthwaite formula can be written as[34]

The expanded uncertainty given by the WS-t approach is[34]

To obtain numerical results for comparison, we assume that  , n=4, and  =0.05, while σY varies

from 0 to 3. Under these assumptions, Figure 2 shows the expanded uncertainty estimates produced

by the WS-z and WS-t approaches.

Z = + YX
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Figure 2. Expanded uncertainty estimated by the WS-z and WS-t approaches ( , n=4,

and  =0.05)

It can be seen from Figure 2 that, the WS-z approach gives realistic estimates of the expanded

uncertainty. Importantly, the expanded uncertainty increases continuously as σY increases, which

conforms with our domain knowledge and common-sense regarding measurement uncertainty. In

contrast, the WS-t approach provides unrealistic estimates: it not only overestimates uncertainty

when σY is small (dilates the uncertainty), but it also exhibits paradoxical behavior: the uncertainty

decreases as σY increases in the range from 0 to 0.9. Notably, the WS-t uncertainty estimate 

 converges to the WS-z estimate   only when σY becomes large. This is expected because

when σY is large, the contribution from σY dominates over  . This example clearly demonstrates

that the WS-t approach, or the t-interval method for calculating measurement uncertainty, is

inherently �awed.

= 3sX

α
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7. Conclusion and recommendation

According to Jaynes[80], a paradox is “something which is absurd or logically contradictory, but which

appears at �rst glance to be the result of sound reasoning.” He further explained that “A paradox is

simply an error out of control: i.e. one that has trapped so many unwary minds that it has gone public,

become institutionalized in our literature, and taught as truth.” In this regard, the two-sample t-test

and the t-interval represent such paradoxes. Statistics textbooks, journals, and software packages

have played a signi�cant role in disseminating these paradoxical methods. As Hurlbert et al.

[81] pointed out, “Many controversies in statistics are due primarily or solely to poor quality control in

journals, bad statistical textbooks, bad teaching, unclear writing, and lack of knowledge of the

historical literature.”

Therefore, to implement statistics reform, statistics textbooks and software packages should be

updated to re�ect the paradigm shift from signi�cance testing to estimation statistics. The author

agrees with Hurlbert et al.[81], who argued that “… the term ‘statistically signi�cant’ and all its

cognates and symbolic adjuncts be disallowed in the scienti�c literature except where focus is on the

history of statistics and its philosophies and methodologies.” Speci�cally, the two-sample t-test and

the t-interval method for calculating measurement uncertainty (both of which are problematic

statistical methods) should be removed from textbooks and software packages. In contrast, good

statistical methods such as the least squares method and maximum likelihood estimation should

withstand statistics reform.

The advanced estimation statistics should be used in place of the two-sample t-test for comparing

two groups. This approach involves considering multiple statistics, including the observed e�ect size

(ES), relative e�ect size (RES), standard uncertainty (SU), relative standard uncertainty (RSU), signal-

to-noise ratio (SNR), signal content index (SCI), exceedance probability (EP), and net superiority

probability (NSP), which collectively extract and reveal the evidence embedded in the data from

various perspectives. Importantly, we do not advocate for setting �xed thresholds on any of these

statistics to make inferences. Instead, scienti�c inferences should be made based on domain

knowledge while considering the comprehensive information provided by these statistics.

The unbiased estimation method should be used in place of the t-interval method for calculating

measurement uncertainty. When employing the unbiased estimation method, both the “uncertainty
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paradox” and the Ballico paradox (which are inherent to the t-interval method) disappear, leading to

more realistic and reliable uncertainty estimates.

The author believes that the success of statistics reform depends on collaboration between

statisticians and practitioners. It is hoped that this paper will stimulate discussion on statistics reform

and encourage joint e�orts to improve statistical practices.
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