
13 January 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Enhancing Lifelong Multi-Agent Path
Finding with Cache Mechanism

Yimin Tang1, Zhenghong Yu2, Yi Zheng1, T. K. Satish Kumar1, Jiaoyang Li3, Sven Koenig4,1

1. University of Southern California, United States; 2. University of Wisconsin–Madison, Madison, United States; 3. Carnegie Mellon

University, United States; 4. University of California, Irvine, United States

Multi-Agent Path Finding (MAPF), which focuses on �nding collision-free paths for multiple

robots, is crucial in autonomous warehouse operations. Lifelong MAPF (L-MAPF), where agents are

continuously reassigned new targets upon completing their current tasks, o�ers a more realistic

approximation of real-world warehouse scenarios. While cache storage systems can enhance

e�ciency and reduce operational costs, existing approaches primarily rely on expectations and

mathematical models, often without adequately addressing the challenges of multi-robot planning

and execution. In this paper, we introduce a novel mechanism called Lifelong MAPF with Cache

Mechanism (L-MAPF-CM), which integrates high-level cache storage with low-level path planning.

We have involved a new type of map grid called cache for temporary item storage. Additionally, we

involved a task assigner (TA) with a locking mechanism to bridge the gap between the new cache

grid and L-MAPF algorithm. The TA dynamically allocates target locations to agents based on their

status in various scenarios. We evaluated L-MAPF-CM using di�erent cache replacement policies

and task distributions. L-MAPF-CM has demonstrated performance improvements particularly with

high cache hit rates and smooth tra�c conditions.

Yimin Tang and Zhenghong Yu equally contributed to this work.

Corresponding authors: Yimin Tang, yimintan@usc.edu; Zhenghong Yu, zyu379@wisc.edu

I. Introduction

Automated warehouses, a multibillion-dollar industry led by companies like Amazon, Geekplus and

inVia, rely on hundreds of robots to transport goods e�ciently[1]. A critical aspect of these operations

is planning collision-free paths for robots, a task that can be abstracted as the Multi-Agent Path

Qeios

qeios.com doi.org/10.32388/JWSWCY 1

mailto:yimintan@usc.edu
mailto:zyu379@wisc.edu
https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

Finding (MAPF) problem[2]. The MAPF problem requires planning collision-free paths for multiple

agents from their start locations to pre-assigned target locations in a known environment while

minimizing a speci�c cost function. Various algorithms have been developed to solve this problem

optimally or suboptimally, such as [3], Con�ict Based Search (CBS)[4], Enhanced CBS[5] and

LaCAM[6].

Although MAPF is classi�ed as an NP-hard problem[7], it remains a simpli�ed approximation of real-

world warehouse planning. It represents a ‘one-shot’ version of the real application challenge, where

an agent only needs to reach a single target location and then remains stationary until every agent has

arrived at their respective targets. To address this limitation, a more realistic variant called Lifelong

MAPF (L-MAPF)[8] has been introduced. In L-MAPF, agents are continuously assigned new targets

when they reach their current ones, better re�ecting the ongoing nature of warehouse operations.

Various algorithms have been developed, such as RHCR[9], MAPF-LNS[10] and PIBT[11].

There are also works focused on enhancing warehouse e�ciency through smart storage strategies.

Some methods[12][13][14] focus on optimizing the arrangement of item positions within the warehouse.

Other approaches[15][16][17] involve the use of temporal storage areas (cache), aiming to determine the

optimal positions and sizes of these areas. However, these methods primarily rely on expectations and

mathematical models without addressing the low-level path planning component.

In this paper, we are particularly interested in the performance of cache map layout design in the

context of real agent path planning, moving beyond the limitations of mathematical expectation

models. We present a dynamic cache delivery mechanism named Lifelong MAPF with Cache

Mechanism (L-MAPF-CM), inspired by cache design—a foundational idea extensively utilized in

computer architecture, databases, and various other domains. This cache mechanism could be

adaptable to multiple L-MAPF algorithms, warehouse storage strategies, and incoming task

distributions. We introduced a task assigner (TA) to allocate target locations to agents and manage

their statuses under various conditions. In our cache mechanism, determining which agent should go

to which location depends on both the cache and agent statuses. Thus, the TA plays a crucial role in

making these decisions by overseeing all agents and maintaining the cache status within our

framework.

Overall, L-MAPF-CM has shown performance improvements across most test settings. The main

contributions of this paper are listed as follows: (1) We introduced a cache mechanism in L-MAPF,

M ∗

qeios.com doi.org/10.32388/JWSWCY 2

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

termed L-MAPF-CM, which integrates cache map layout with low-level agent path planning. To the

best of our knowledge, this is the �rst work to combine cache layout with path�nding at this level. (2)

To ensure compatibility of L-MAPF algorithms with the new cache map layout, we designed a task

assigner (TA) to maintain the agents’ work�ow. The TA is primarily based on a state machine and a

lock mechanism to ensure the smooth execution of tasks. (3) We evaluated L-MAPF-CM across

various input distributions, numbers of agents and caches, and cache replacement policies. Our

experiments show that high cache hit rates and smooth tra�c �ow are critical to the success of L-

MAPF-CM.

II. Problem De�nition

Lifelong Multi-Agent Path Finding (L-MAPF) problem presents unique challenges due to the dynamic

and unending nature of the tasks. Let denote a set of agents.

 represents an undirected graph, where each vertex represents a possible location of

an agent, and each edge is a unit-length edge between two vertices, allowing an agent to move

from one vertex to another. Self-loop edges are allowed, which represent “wait-in-place” actions.

Each agent has a unique start location . There is also a target queue , where

. And the target locations in are allocated to agents when agents arrive at their previous target

locations. The objective is to minimize a speci�c cost function—in this paper, we focus on maximizing

the throughput, de�ned as the number of tasks completed per timestep.

I = {1, 2, ⋯ ,N} N

G = (V ,E) v ∈ V

e ∈ E

i ∈ I ∈ Vsi T = [, , …]t1 t2

∈ Vti T

qeios.com doi.org/10.32388/JWSWCY 3

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

Figure 1. Warehouse maps: (1) Blue grids represent shelves . (2) Purple grids represent caches . (3)

Green grids represent unloading ports . The upper map has multiple ports, while a single port is in the

bottom one. In the multi-port map, each unloading port is associated with its own independent cache

area, task queue, and set of agents. The cache areas are located near the unloading ports, within a range of

 rows. In contrast, the single-port map allows the port to utilize all available agents and caches. Given

that the number of cache grids can in�uence the cache hit rate, we tested di�erent con�gurations by

varying the number of cache grids from 80 to 16. This was achieved by progressively removing cache grids

column by column from right to left.

Besides general L-MAPF de�nition, in this paper there are some special constraints on the problem.

We primarily focus on 2D warehouse layout maps. As shown in Figure 1, we categorize all non-

obstacle map grids into four types: blue grids for shelves and each shelf stores a

unique type of item identi�ed by a type number , white grids for normal

aisle grids, green grids for unloading ports where agents deliver items to complete a

task, and purple grids for cache grids which will be explained later. Instead of a target

S C

U

±2

B = { | ∈ V }bi bi

idx ∈ N W = { | ∈ V }wi wi

U = { | ∈ V }ui ui

C = { | ∈ V }ci ci

qeios.com doi.org/10.32388/JWSWCY 4

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

queue , there is a task queue . For each task , where represents

the type number of the item to be delivered and indicates the unloading port where the item

should be delivered. The maximum number of items that one agent can hold is . We believe this

setting is feasible for real robots such as Megvii MegBot-E Robot or Geekplus RS Robot.

There is a task assigner (TA), external to the MAPF algorithm, that determines the speci�c target

locations for agents based on tasks from . In this paper, the TA assigns new target locations to idle

agents based on the most recent tasks as they arrive at , handling them one by one. Each agent

 starts from , and its target location is determined by the TA. The actions available to each

agent include waiting in place or moving to an adjacent vertex, with each action taking a unit of time.

The path of an agent , denoted as , records the sequence of vertices traversed by

the agent from its start to target location. Once an agent completes its path to the assigned target, the

TA immediately assigns it a new target location.

III. Related Work

A. Multi-Agent Path Finding (MAPF)

(One-Shot) MAPF, which has been proved an NP-hard problem with optimality[7], has a long

history[18]. This problem is �nding collision-free paths for multiple agents while minimizing a given

cost function. It has inspired a wide range of solutions for its related challenges. Decoupled strategies,

as outlined in[18][19][20], approach the problem by independently planning paths for each agent before

integrating these paths. In contrast, coupled approaches[21][22] devise a uni�ed plan for all agents

simultaneously. There also exist dynamically coupled methods[4][23] that consider agents planned

independently at �rst and then together only when needed in order to resolve agent-agent con�icts.

Among these, Con�ict-Based Search (CBS) algorithm[4] stands out as a centralized and optimal

method for MAPF, with several bounded-suboptimal variants such as ECBS[5] and EECBS[24]. Some

suboptimal MAPF algorithms, such as Prioritized Planning (PP)[25][18], PBS[26], LaCAM[6] and their

variant methods[27][28][29] exhibit better scalability and e�ciency.

B. Lifelong MAPF

Compared to the MAPF problem, Lifelong MAPF (L-MAPF) continuously assigns new target locations

to agents once they have reached their current targets. Agents do not need to arrive at their targets

T Q = [, , …]q1 q2 = (idx,) ∈ Qqi ui idx

∈ Uui

P

Q

Q

i ∈ I ∈ Vsi

i = [, , … ,]pi vi0 vi1 viTi

qeios.com doi.org/10.32388/JWSWCY 5

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

simultaneously in L-MAPF. There are mainly three types of ways to solve L-MAPF: solving the

problem as a whole[30], using MAPF methods but replanning all paths at each speci�ed timestep[9][11],

and replanning only when agents reach their current target locations and are assigned new targets[31]

[32][6][29]. There are also algorithms that consider the o�ine setting in the L-MAPF scenario, where

all tasks are known in advance, such as CBSS[33], which uses Traveling Salesman Problem (TSP)

methods to plan task orders, and[34], a four-level hierarchical planning algorithm with MILP and CBS.

However, in this paper we focus on an online setting where incoming tasks are not known in advance.

C. Warehouse Storage Strategy

Automated Storage and Retrieval Systems (AS/RS) have gained attention for their potential to enhance

warehouse e�ciency and reduce operational costs[35][36]. Various strategies for assigning items to

storage locations have been widely adopted and evaluated[36][37]. The random storage policy allocates

each item type to a randomly chosen storage location, o�ering high space utilization[12]. The closest

storage policy places new items at the nearest available storage location to minimize immediate travel

distance[13]. The turnover-based storage policy assigns items to storage locations based on their

demand frequency[14].

The concept of utilizing temporal storage areas (caches) has been explored in automated warehouse

design. Several studies focus on the optimal positioning of these caches[15][16], while others propose

AS/RS design methods that quantitatively consider operational constraints, including cache size[17].

However, existing works primarily focus on the high-level design and evaluation of warehouse

layouts without addressing the low-level path planning component. Our work speci�cally studies and

evaluates the use of caches within the context of L-MAPF, incorporating more detailed considerations

of low-level path planning.

IV. Method

In this section, we introduce our Lifelong MAPF with Cache Mechanism (L-MAPF-CM) framework,

which includes a new type of map grid and a task assigner (TA) featuring a cache lock mechanism.

qeios.com doi.org/10.32388/JWSWCY 6

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

A. Cache Grids

As shown in Figure 1, purple map grids are caches, and these additional vertices serve as

interim storage areas to reduce the travel time of agents retrieving items. We assume each shelf

 stores an unlimited supply of a unique item with type number . There will be a total of

 di�erent types of items corresponding to the number of shelves. The L-MAPF-CM framework can

have multiple unloading ports, and we refer to each unloading port and its surrounding cache as a

group. Each group operates independently in terms of its task and agents. Agents within a group can

only accept tasks from that group and use the cache grids belonging to that group. Item in each task

 must be delivered to the corresponding unloading port.

To the best of our knowledge, no previous MAPF/L-MAPF works have explored cache mechanism with

MAPF/L-MAPF problem. We adopt the following assumptions to �t the warehouse senerio: (1) Agents

have limited capacity to carry items and they are also limited to transporting one type of items at a

time. (2) Each cache grid has the same capacity of agents and also are limited to store one type of

items. (3) Items evicted from cache should be sent back to shelves.

B. Task Assigner (TA)

The TA operates externally to the L-MAPF algorithm and has the ability to de�ne all agents’ target

locations at any given timestep. When the TA encounters a new task in requiring completion, the

�rst step typically determines where to get the item and which location (cache or shelf) should be

allocated to an available agent. Since the design of a smart TA is not the focus of this paper, new tasks

are assigned to available agents one by one. Generally, the TA �rst checks if the task item exists in

cache grids. If it does, the TA assigns the cache location where the item is stored to an agent. If not, the

TA assigns the item’s shelf location to the agent, followed by a location in a cache grid where the items

can be stored. Once the items are stored in the cache, the agent can transport one item to the

unloading port.

However, similar to caching in computer architecture, there is a risk that other agents might replace

the item in the cache with another item in multi-agent scenarios. For example, agent wants to read

items in cache , but items in are replaced by agent when is going to . This situation could lead

to L-MAPF algorithm, such as LaCAM, causing agents to move back and forth between cache and shelf

grids. To mitigate this, a lock mechanism is employed, ensuring that agents can secure an item after

con�rming its availability in the cache grids.

∈ Cci

∈ Bbi idx

M

∈ Qqi

Q

i

ck ck j i ck

qeios.com doi.org/10.32388/JWSWCY 7

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

C. Cache Lock Mechanism

The cache lock mechanism is supported by a state machine to ensure e�cient and synchronized

access to cache locations. This approach prevents race conditions during cache interactions. Every

cache grid will have its independent locks. Here we de�ne reading and writing operations: reading

refers to agents retrieving items from locations, while writing refers to agents placing items into

locations. And readable refers to agents can retrieve items from locations, writable means agents can

place items into locations. The cache lock mechanism ensures that no agent needs to return to the

shelf when its target item is readable in the cache and that no two agents can access the same cache

block concurrently for writing. This concurrency control is critical for preventing race conditions and

maintaining cache consistency.

1. Lock Types

The cache lock mechanism is designed around three lock types, facilitating controlled access to the

caches: (1) Read Lock (Shared Lock): This type of lock permits an agent to access the corresponding

cache to retrieve items. The maximum number of lock shares is the number of items stored in the

cache. (2) Write Lock (Exclusive Lock): This type of lock permits an agent to insert/remove items

into/from the corresponding cache. Only one unique agent can hold a write lock of a cache.

2. Lock Acquisition and Release

The mechanism de�nes a protocol for lock acquisition and release: (1) Acquisition: Read Lock: To

obtain a read lock, an agent must verify that no write lock is currently held by any other agent on the

cache. Multiple agents can simultaneously hold the read lock on a single cache. This arrangement

ensures that when agents need to retrieve items from the cache, the item remains unchanged until all

agents have successfully retrieved it when multiple identical tasks are assigned to di�erent agents.

Write Lock: To secure a write lock, an agent must con�rm that the target cache location is free from

any read or write locks. A write lock on a cache will be acquired in two situations: (a) when an agent

needs to insert items into the cache, or (b) when an agent needs to remove items from the cache and

return them to the shelf. Write locks are exclusive, implying that once an agent gets a write lock on a

cache location, no other agent can acquire either a read lock or another write lock on that location.

This ensures that an agent can insert/remove items without impacting other agents. (2) Release:

qeios.com doi.org/10.32388/JWSWCY 8

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

Agents will immediately release all locks they hold once they arrive at their target cache, as they have

accomplished their intended tasks.

Algorithm 1. L-MAPF-CM with One Group Overview

qeios.com doi.org/10.32388/JWSWCY 9

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

Figure 2. State Machine: (a) SF_GET: The agent is moving to a shelf to retrieve its task item. (b) CA_MOV:

The agent is moving to a cache to remove all items. (c) CA_GET: The agent is moving to a cache to retrieve

a task item. (d) CA_ADD: The agent is moving to a cache to store task items. (e) SF_ADD: The agent is

moving to a shelf to return items from a cache. (f) UP_END: The agent is moving to its unloading port with

one task item.

qeios.com doi.org/10.32388/JWSWCY 10

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

Figure 3. Status examples: The blue circle represents agents, the purple square

represents items to be placed, and the red square represents items to be taken

out.

D. Algorithm

1) Overview

As shown in IV-C2, we introduce the entire procedure for a single group in L-MAPF-CM. L-MAPF-CM

consists of three parts: initialization, path planning and execution, and status updates.

Initialization (Lines 1-5): In this phase, all agents are assigned their task items, and their target

locations are determined. Since the caches are empty at the beginning, agents can only retrieve items

qeios.com doi.org/10.32388/JWSWCY 11

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

from the shelves. Therefore, the agents’ initial target locations are the shelves, and their status is set

to SF_GET.

Path Planning and Execution (Lines 7-8): Once all agents’ target locations have been determined, we

use any L-MAPF algorithm to generate a collision-free plan until at least one agent reaches its target.

All agents then move according to the generated plan. After this step, at least one agent will have

arrived at its target location.

Status Update (Lines 9-12): In this phase, TA �rst releases all locks held by agents that have arrived at

the caches, allowing other agents more �exibility in utilizing the caches. After releasing the locks, the

TA determines the next target locations for all agents and updates their statuses accordingly. Note

that each agent may receive a new target depending on its current status. With the new targets

assigned, the L-MAPF algorithm is used again to generate a new collision-free plan. This process

repeats until all tasks are completed.

2) State Machine

As shown in Figures 2 and 3, we now discuss how TA maintains locks and agent status. We begin with

the simplest status, UP_END, where each agent carries one task item to the unloading port. Once the

agent arrives at the unloading port, the TA assigns a new task item and decides the agent’s next target

location. TA will �rst check if there is any readable cache. (a) One readable cache: the agent acquires a

read lock on the cache and is set to CA_GET. Next target is the cache. (b) No readable cache, but an

empty cache exists: the agent acquires a write lock on the cache and is set to SF_GET. Next target is

the shelf. (c) No readable or empty cache, but a writable cache exists: the agent acquires the write lock,

sets the target as the cache, and the status is updated to CA_MOV. (d) No readable, writable or empty

cache: the agent is set to SF_GET. Next target is the shelf.

When CA_GET agents arrive at the cache, they release their read locks and retrieve one task item from

the cache. Their target are then updated to the unloading port, and their status change to UP_END.

For each SF_GET agent, the TA checks its status at every update. If a readable cache becomes

available, the agent’s target is updated to the cache, and its status is set to CA_GET. When an SF_GET

agent arrives at its target location, the TA checks if the agent holds a write lock: (a) Without a write

lock: The agent takes one task item to the unloading port, and its status is updated to UP_END. Next

target is the unloading port. (b) With a write lock: The agent’s status is updated to CA_ADD, and it

takes as many items as it can carry. Next target is the cache.

qeios.com doi.org/10.32388/JWSWCY 12

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

When CA_MOV agents arrive caches, they get all items from the cache and head to the shelf

corresponding to those items. They release their write locks, and their status changes to SF_ADD.

When CA_ADD agents arrive at the cache, they store the items except for one. Their target then

becomes the unloading port, and their status is updated to UP_END. When SF_ADD agents arrive at

the shelf, they return all items to the shelf. Their status is then updated to SF_GET, with their new

target being the shelf containing their task items.

We give out two examples. (a) the target item is already in the cache: 1) the TA assigns the agent the

goal to the cache grid that holds the target item—the state status transfers from UP_END to CA_GET.

2) Upon the agent arriving at the cache grid, the target item is returned to the port, and the state

status transfers from CA_GET to UP_END. (b) the target item is not in the cache: 1) the cache is not

full, we do not need to perform garbage collection. The TA assigns the agent the goal to the shelf grid

that holds the target item—the state status transfer from UP_END to SF_GET. 2) Upon the agent

arriving at the cache grid, we �nd an empty available cache grid, so the TA assigns the agent the goal

to that cache grid, and the state status transfers from SF_GET to CA_ADD. 3) Then, the agent will

insert the item into the cache grid and continue to bring the item to the port to �nish the task; the

state status transfers from CA_ADD to UP_END.

3. Deadlock/Starvation Free and Correctness of State Machine

First, we show the lock algorithm is free from deadlock and starvation: no agents are always stuck in a

circle waiting with other agents or waiting forever while accessing the cache. When an agent wants to

read (shared lock) or write (exclusive lock) a lock of a cache grid, it is either successful or failed. If read

fails, it will not hold the read lock or wait for a cache hit, but will go directly to the shelf to get that

item. If write fails, it will not hold the write lock or wait for an empty cache grid, but directly deliver

the item to the port. Thus, one of the conditions necessary to form a deadlock, Hold and Wait[38], is

broken, so the deadlock can never occur. Additionally, each agent completes its operation in a bounded

number of steps without in�nite waiting for the resources, so we can conclude that this lock algorithm

is free from starvation.

Second, we show that state machine itself never gets stuck. This property equals the statement: there

is no cycle in state machine without containing the status UP_END: starting from status UP_END, we

can �nally return to status UP_END after �nite steps of transformation. As shown in Figure 2, if we

qeios.com doi.org/10.32388/JWSWCY 13

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

remove the status UP_END and all corresponding directed edges, there is no cycle remaining in the

graph.

V. Experimental Results

We use L-MAPF without cache as a baseline, which aligns with our problem de�nition. To evaluate

performance, we compare L-MAPF-CM with L-MAPF, both using LaCAM to generate collision-free

paths. L-MAPF-CM and L-MAPF were implemented in C++, building on parts of the existing LaCAM

codebase[6]1. All experiments were conducted on a system running Ubuntu 20.04.1, equipped with an

AMD Ryzen 3990X 64-core CPU and 64GB RAM at 2133 MHz.

A. Test Settings

As shown in Figure 1, we demonstrated a warehouse map (27x71) with caches based on our problem

de�nition. The map is adapted from warehouse map of MAPF benchmark[2]. It includes 1600 shelf

grids, a maximum of 80 cache grids and 4 unloading ports. The maximum cache-to-shelf ratio is 5%.

We tested L-MAPF-CM and baseline in both multi-port and single-port scenarios, as depicted in

Figure 1. Since the design of a smart TA is not the focus of this paper, and a naive TA cannot handle

multi-port scenarios e�ectively, we will use multiple groups to test scenarios with multiple unloading

ports. The multi-port scenario has 4 working groups of unloading ports, cache grids and agents, each

with a maximum of 20 cache grids. The single-port scenario maintains the same number of total

cache grids and agents as the multi-port but only has one unloading port. Because each shelf grid

represents a unique kind of item, we randomly assign an index to each shelf grid. We test all scenarios

with di�erent cache numbers {16, 32, 48, 64, 80} by deleting some cache grids (refer to Figure 1). We

have also chosen various total numbers of agents, . In the multi-port

scenario, each group has an equal number of agents . Each agent carrying

capacity is 100. All data shown in Figures 4-7 represent average values across all variables not

displayed on the �gures.

Since we can expect the distribution of the task queue could signi�cantly a�ect the performance of

cache design, we designed three input task distributions to test L-MAPF-CM, including: (1) -

 distribution (MK): For any consecutive subarray of length in the task queue , there are at most

 di�erent kinds of items. This distribution is inspired by [39], where LRU has been proven to have an

upper bound on the cache miss rate and to be better than FIFO. This distribution can also represent

{4, 8, 16, 32, 64, 128, 192, 256}

{1, 2, 4, 8, 16, 32, 48, 64}

P

M

K M Q

K

qeios.com doi.org/10.32388/JWSWCY 14

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

several items people purchase daily, and some items may become very popular at one time, replacing

previously popular items. (2) 7:2:1 distribution (Zhang): There are 70% kinds of items with only a 10%

appearance probability in the task queue, 20% kinds of items with a 20% probability, and 10% with a

70% appearance probability[40]. (3) Real Data Distribution (RDD): We obtain data from Kaggle’s public

warehouse data2, build a probability distribution based on the frequency of data and generate tasks

from this probability distribution.

We randomly generate agent start locations and for all input task distributions. We will continue

generating tasks until 1,000 tasks have been completed. For the MK distribution, we select

 and values of . We allocate a total of 10 seconds for the L-MAPF

solver to �nd a collision-free solution for all 1,000 tasks. Based on our algorithm, the runtime

overhead of L-MAPF-CM is negligible, with the majority of the time being spent on the L-MAPF

solver. We use throughput to show performance. For L-MAPF-CM, we have tested three di�erent

cache replacement policies. Least Recently Used (LRU), First-In-First-Out (FIFO), and RANDOM. We

use NONE to represent the baseline method.

B. Performance

Many variables can in�uence the performance of L-MAPF-CM, including the number of agents, the

number of caches, and the distributions of input tasks. As illustrated in Figure 4, increasing the

number of caches improves cache hit rate and throughput performance for both single- and multi-

port scenarios. It is also observed that as the number of agents continues to increase (from 64 to 256),

there is not much di�erence in the throughput for both L-MAPF-CM and the baseline. As shown in

Figures 6 and 7, the cache replacement policy won’t a�ect cache hit rate and �nal throughput

performance too much.

Q

M = 200 K {1, 20, 40, 80, 120, 160}

qeios.com doi.org/10.32388/JWSWCY 15

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

Figure 4. Throughput (Bar chart, higher is better) and Cache Hit Rate (Line chart, higher is better). LRU,

FIFO, and RANDOM represent L-MAPF-CM with di�erent cache replacement policies. NONE represents L-

MAPF algorithm without cache.

Figure 5. The frequency of agent wait actions on each map grid with 256 agents and 80 caches under

Zhang distribution: Given the large number of agents, both L-MAPF-CM and the baseline experience

signi�cant tra�c congestion (dark color area). The bias in congestion positions across the map is

attributed to item indices and tasks in .

In Figures 6 and 7, we present the performance of L-MAPF-CM and the baseline for various task

distributions. Figure 6 demonstrates that as the number of caches increases, L-MAPF-CM’s

performance improves. In the MK, Real, and Zhang distributions, L-MAPF-CM surpasses the baseline

in most test settings. However, it is observable that as the number of agents increases, the

improvement o�ered by L-MAPF-CM diminishes. As depicted in Figure 7, the hit rate signi�cantly

depends on the input task distribution, and the hit rate also signi�cantly a�ects the �nal throughput

performance. When hit rates decrease, throughput also decreases.

Q

qeios.com doi.org/10.32388/JWSWCY 16

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

Figure 6. Throughput (Bar chart, higher is better) and Cache Hit Rate (Line chart, higher is better). As the

number of caches increases, L-MAPF-CM’s cache hit rate and throughput performance improve. In the

MK, Real, and Zhang distributions, L-MAPF-CM surpasses the baseline in most test settings. However, it

is observable that as the number of agents increases, the improvement o�ered by L-MAPF-CM

diminishes. Additionally, an abnormal decrease in throughput is observed at baseline under the Zhang

distribution with 256 agents.

qeios.com doi.org/10.32388/JWSWCY 17

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

Figure 7. Throughput (Bar chart, higher is better) and Cache Hit

Rate (Line chart, higher is better). The hit rate signi�cantly

depends on the input task distribution, and the hit rate also

greatly a�ects the �nal throughput performance.

We can also notice there are some sudden decreases of throughput in sub�gures of Figures 4 and 6.

For example, an abnormal decrease in throughput is observed in the baseline under the Zhang

distribution with 256 agents. One possible reason for this scenario is tra�c congestion occurring on

the map as the number of agents increases. Upon reviewing the test results, we found that this issue is

caused by LaCAM. Since there are too many agents in the same small area of the map, LaCAM has a

very low chance of producing a good solution unless all agents simply wait. Tra�c congestion largely

impacts low-level path planning part. Figure 5 illustrates the frequency of agent wait actions on each

grid when the number of agents reaches 256 with the Zhang distribution. Both L-MAPF-CM and the

baseline experience severe tra�c congestion in this scenario.

High cache hit rates and smooth tra�c are crucial for the performance of L-MAPF-CM. As shown in

Figure 4, we can increase the number of caches to enhance the cache hit rate, and we can also directly

add more agents to improve the throughput performance. However, both methods come with their

drawbacks. The number of caches is constrained by the space available close to the unloading port.

Introducing more agents can lead to severe tra�c congestion, ultimately causing the �nal throughput

qeios.com doi.org/10.32388/JWSWCY 18

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

to drop. Nevertheless, there are potential solutions to mitigate these adverse e�ects, such as

implementing more e�cient map designs[41] and using one-way systems near the cache and

unloading ports[42]. Additionally, as we currently employ a simple task assigner, we could implement

a more advanced policy with predictive capabilities, leveraging real warehouse task data to enhance

the cache hit rate. The cache replacement policies, such as LRU and FIFO, may be also overly simplistic

for L-MAPF-CM.Performance could also be improved with a more �ne-grained cache locking

algorithm. Incorporating more complex policies, including learning-based approaches, could further

improve the cache hit rate, especially since L-MAPF-CM allows more planning time than traditional

caches in computer architecture.

VI. Conclusion

This work presents L-MAPF-CM designed to improve the performance of L-MAPF. We have

introduced a new map grid type called cache for temporary item storage and replacement.

Additionally, we devised a locking mechanism for caches to enhance the stability of the planning

solution. This cache mechanism was evaluated using various cache replacement policies and a range

of input task distributions. L-MAPF-CM demonstrated performance improvements in most of the test

settings. We also identi�ed that high cache hit rates and smooth tra�c are crucial for the performance

of L-MAPF-CM. Therefore, there are many interesting avenues for future work, such as developing a

smart TA to manage task order, creating a data-driven cache replacement policy to improve cache hit

rate, implementing a tra�c congestion avoidance method and designing a hierarchical cache system.

Footnotes

1 Our code and video samples are available at supplementary material.

2 kaggle.com/datasets/felixzhao/productdemandforecasting

References

1. ^Wurman PR, D'Andrea R, Mountz M (2008). "Coordinating hundreds of cooperative, autonomous vehi

cles in warehouses". Arti�cial Intelligence. 29 (1): 9–9.

2. a, bStern R, Sturtevant N, Felner A, Koenig S, Ma H, Walker T, Li J, Atzmon D, Cohen L, Kumar T, et al. M

ulti-agent path�nding: De�nitions, variants, and benchmarks. In: Proceedings of the International Sym

qeios.com doi.org/10.32388/JWSWCY 19

https://www.kaggle.com/datasets/felixzhao/productdemandforecasting
https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

posium on Combinatorial Search (SoCS). 2019; 10(1).

3. ^Wagner G, Choset H. "M*: A complete multirobot path planning algorithm with performance bounds."

In: 2011 IEEE/RSJ international conference on intelligent robots and systems. IEEE; 2011. p. 3260–3267.

4. a, b, cSharon G, Stern R, Felner A, Sturtevant NR (2015). "Con�ict-based search for optimal multi-agent

path�nding". Arti�cial Intelligence. 219: 40–66.

5. a, bBarer M, Sharon G, Stern R, Felner A (2014). "Suboptimal variants of the con�ict-based search algori

thm for the multi-agent path�nding problem." In: Proceedings of the International Symposium on Com

binatorial Search (SoCS).

6. a, b, c, dOkumura K. "Lacam: Search-based algorithm for quick multi-agent path�nding." In: Proceedin

gs of the AAAI Conference on Arti�cial Intelligence (AAAI). 2023; 37(10): 11655–11662.

7. a, bYu J, LaValle S (2013). "Structure and intractability of optimal multi-robot path planning on graph

s." In: Proceedings of the AAAI Conference on Arti�cial Intelligence (AAAI). 27(1): 1443–1449.

8. ^Ma H, Li J, Kumar TS, Koenig S (2017). "Lifelong Multi-Agent Path Finding for Online Pickup and Deli

very Tasks." In: Proceedings of the International Conference on Autonomous Agents and Multiagent Sys

tems (AAMAS). p. 837–845.

9. a, bLi J, Tinka A, Kiesel S, Durham JW, Kumar TS, Koenig S (2021). "Lifelong multi-agent path �nding in

large-scale warehouses." In: Proceedings of the AAAI Conference on Arti�cial Intelligence (AAAI). 35(1

3):11272–11281.

10. ^Li J, Chen Z, Harabor D, Stuckey PJ, Koenig S. "Anytime multi-agent path �nding via large neighborho

od search." In: Proceedings of the International Joint Conference on Arti�cial Intelligence (IJCAI); 2021.

p. 4127-4135.

11. a, bOkumura K, Machida M, D\u00e9fago X, Tamura Y (2022). "Priority inheritance with backtracking f

or iterative multi-agent path �nding". Arti�cial Intelligence. 310: 103752.

12. a, bPark BC (2001). "An optimal dwell point policy for automated storage/retrieval systems with unifor

mly distributed, rectangular racks". International journal of production research. 39 (7): 1469--1480.

13. a, bGagliardi J-P, Renaud J, Ruiz A (2012). "On storage assignment policies for unit-load automated sto

rage and retrieval systems." International Journal of Production Research. 50 (3): 879--892.

14. a, bLi X, Hua G, Huang A, Sheu JB, Cheng T, Huang F (2020). "Storage assignment policy with awarenes

s of energy consumption in the Kiva mobile ful�llment system". Transportation Research Part E: Logisti

cs and Transportation Review. 144: 102158.

qeios.com doi.org/10.32388/JWSWCY 20

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

15. a, bYu W, Egbelu PJ (2008). "Scheduling of inbound and outbound trucks in cross docking systems with t

emporary storage". European Journal of Operational Research. 184 (1): 377–396.

16. a, bPohl LM, Meller RD, Gue KR (2009). "An analysis of dual-command operations in common warehou

se designs". Transportation Research Part E: Logistics and Transportation Review. 45 (3): 367–379.

17. a, bOzaki M, Higashi T, Ogata T, Hara T, Rubrico JIU, Ota J (2016). "Design of AVS/RS under group constr

aint". Advanced Robotics. 30 (22): 1446–1457.

18. a, b, cSilver D. "Cooperative path�nding." In: Proceedings of the AAAI Conference on Arti�cial Intelligen

ce and Interactive Digital Entertainment (AIIDE). 2005; 1(1): 117–122.

19. ^Wang KHC, Botea A. "Fast and Memory-E�cient Multi-Agent Path�nding." In: Proceedings of the Int

ernational Conference on Automated Planning and Scheduling (ICAPS); 2008. p. 380-387.

20. ^Luna RJ, Bekris KE (2011). "Push and swap: Fast cooperative path-�nding with completeness guarante

es." In: Proceedings of the International Joint Conference on Arti�cial Intelligence (IJCAI). pp. 294–300.

21. ^Standley T (2010). "Finding optimal solutions to cooperative path�nding problems." In: Proceedings o

f the AAAI Conference on Arti�cial Intelligence (AAAI). 24(1): 173–178.

22. ^Standley T, Korf R (2011). "Complete algorithms for cooperative path�nding problems." In: Proceeding

s of the International Joint Conference on Arti�cial Intelligence (IJCAI). pp. 668–673.

23. ^Wagner G, Choset H (2015). "Subdimensional expansion for multirobot path planning". Arti�cial intell

igence. 219: 1–24.

24. ^Li J, Ruml W, Koenig S (2021). "Eecbs: A bounded-suboptimal search for multi-agent path �nding." I

n: Proceedings of the AAAI Conference on Arti�cial Intelligence (AAAI). 35 (14): 12353–12362.

25. ^Erdmann M, Lozano-Perez T (1987). "On multiple moving objects". Algorithmica. 2: 477–521.

26. ^Ma H, Harabor D, Stuckey PJ, Li J, Koenig S (2019). "Searching with consistent prioritization for multi-

agent path �nding." In: Proceedings of the AAAI Conference on Arti�cial Intelligence (AAAI). 33(01): 76

43–7650.

27. ^Chan S-H, Stern R, Felner A, Koenig S (2023). "Greedy priority-based search for suboptimal multi-age

nt path �nding." In: Proceedings of the International Symposium on Combinatorial Search (SoCS). 16

(1): 11–19.

28. ^Li J, Chen Z, Harabor D, Stuckey PJ, Koenig S (2022). "MAPF-LNS2: fast repairing for multi-agent path

�nding via large neighborhood search." In: Proceedings of the AAAI Conference on Arti�cial Intelligenc

e (AAAI). 36(9): 10256–10265.

qeios.com doi.org/10.32388/JWSWCY 21

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

29. a, bOkumura K (2023). "Engineering LaCAM*: Towards Real-Time, Large-Scale, and Near-Optimal M

ulti-Agent Path�nding". arXiv preprint.

30. ^Nguyen V, Obermeier P, Son T, Schaub T, Yeoh W (2019). "Generalized target assignment and path �n

ding using answer set programming." In: Proceedings of the International Symposium on Combinatoria

l Search (SoCS). 10(1): 194–195.

31. ^Čáp M, Vokrínek J, Kleiner A. "Complete decentralized method for on-line multi-robot trajectory plan

ning in well-formed infrastructures." In: Proceedings of the International Conference on Automated Pla

nning and Scheduling (ICAPS). 2015; 25: 324–332.

32. ^Grenouilleau F, Van Hoeve WJ, Hooker JN (2019). "A multi-label A* algorithm for multi-agent path�n

ding." In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS).

29: 181--185.

33. ^Ren Z, Rathinam S, Choset H (2023). "CBSS: A New Approach for Multiagent Combinatorial Path Findi

ng". IEEE Transactions on Robotics. 39 (4): 2669–2683.

34. ^Brown K, Peltzer O, Sehr MA, Schwager M, Kochenderfer MJ. "Optimal sequential task assignment and

path �nding for multi-agent robotic assembly planning." In: Proceedings of IEEE International Confere

nce on Robotics and Automation (ICRA); 2020. p. 441-447.

35. ^Gu J, Goetschalckx M, McGinnis LF (2007). "Research on warehouse operation: A comprehensive revie

w". European Journal of Operational Research. 177 (1): 1–21.

36. a, bRoodbergen KJ, Vis IFA (2009). "A survey of literature on automated storage and retrieval systems".

European Journal of Operational Research. 194 (2): 343–362.

37. ^Azadeh K, de Koster R, Roy D (2019). "Robotized and Automated Warehouse Systems: Review and Rec

ent Developments". Transportation Science. 53 (4): 917–945.

38. ^Co�man EG, Elphick M, Shoshani A (1971). "System deadlocks". ACM Computing Surveys (CSUR). 3

(2): 67–78.

39. ^Albers S, Favrholdt LM, Giel O (2002). "On paging with locality of reference." In: ACM Symposium on T

heory of Computing (STOC). pp. 258–267.

40. ^Zhang Y. "Correlated storage assignment strategy to reduce travel distance in order picking." IFAC-Pa

persOnLine. 49 (2): 30–35, 2016.

41. ^Zhang Y, Fontaine MC, Bhatt V, Nikolaidis S, Li J. "Multi-Robot Coordination and Layout Design for Au

tomated Warehousing." In: Proceedings of the International Joint Conference on Arti�cial Intelligence (I

JCAI); 2023. p. 5503-5511.

qeios.com doi.org/10.32388/JWSWCY 22

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

42. ^Zhang Y, Jiang H, Bhatt V, Nikolaidis S, Li J (2024). "Guidance Graph Optimization for Lifelong Multi-

Agent Path Finding". arXiv preprint arXiv:2402.01446.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/JWSWCY 23

https://www.qeios.com/
https://doi.org/10.32388/JWSWCY

