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0.1 Abstract

This manuscript examines Maxwell’s equations, Klein-Gordon equations, and
heat and mass transfer equations in n-dimensional maximally symmetric space-
time. It investigates these equations in spherical and hyperbolic spaces embed-
ded in higher-dimensional Euclidean and Minkowski spaces. The study focuses
on the implications of these geometries and symmetries on the behaviour of
the equations, highlighting how specific transformations and parametrizations
impact their solutions. The findings reveal the underlying connections between
geometric symmetries and physical laws, providing insights into their possible
applications in theoretical physics. We touch upon both classical and quantum
mechanical aspects of density and velocity evolutions with time in the uni-
verse. Quantum mechanical aspects of single and two-particle state evolution
and statistical moments of the matter four-current are derived from the quan-
tum Boltzmann equation and Feynman’s path integral method for fields applied
to gravity interacting with electrons and positrons.

Consider first a three-dimensional maximally symmetric space defined by
the surface equation

x2 + y2 + z2 + u2 = S2

or equivalently as
r2 + u2 = S2, r2 = x2 + y2 + z2

This surface is a 3-dimensional spherical surface immersed in R4. This surface
is invariant under the linear transformation

r = Rr′ + bu′, u = cT r′ + d.u′, r = (x, y, z)T

on R4, or equivalently, under(
r
u

)
=

(
R b
cT d

)(
r′

u′

)
where the matrix

T =

(
R b
cT d

)
is an orthogonal matrix, ie,

TTT = I4

or equivalently,
RTR+ ccT = I3,R

Tb+ cd = 0,

bTb+ d2 = 1

These equations are equivalent to

d = (1− bTb)1/2, c = −(1− bTb)−1/2RTb,

RTR+ (1− bTb)−1RTbbTR = I3 −−− (a)
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The dimension of the space of linear transformations that leave this 3-D surface
invariant is thus the same as that of the Lie group SO(4) and this dimension
is 6 = (3(3 + 1)/2. Therefore, this surface with the metric induced from the
metric

ds2 = dx2 + dy2 + dz2 + du2 = drT dr+ (du)2

on R4 is also invariant under the induced diffeomorphism, ie, under the diffeo-
morphism

r = Rr′ + b
√
S2 − r′2

where R,b satisfy the constraint (a). Note that this induced metric is given by

dl2 = drT dr+ (d
√
S2 − r2)2

or equivalently, using polar coordinates,

r = rn̂, n̂ = [n1, n2, n3]
T , n21 + n22 + n23 = 1,

so that
n1 = cos(ϕ)sin(θ), y = sin(ϕ)sin(θ), z = cos(θ),

we get
dr = rdn̂+ dr.n̂

and hence, since n̂T n̂ = 1, so that n̂T dn̂ = 0,

drT dr = r2dn̂T dn̂+ dr2 =

r2(dθ2 + sin2(θ)dϕ2) + dr2

since
dn̂T dn̂ = dθ2 + sin2(θ)dϕ2

This gives us the metric of our 3-D maximally symmetric space as

dl2 = dr2 + r2(dθ2 + sin2(θ)dϕ2) + (d
√
S2 − r2)2

= dr2(1 + r2/(S2 − r2)) + r2(dθ2 + sin2(θ)dϕ2)

= S2dr2/(S2 − r2) + r2(dθ2 + sin2(θ)dϕ2)

or equivalently, changing the radial coordinate to the ”comoving” one r1, where

r = Sr1,

we get
dl2 = S2dr21/(1− r21) + S2r21(dθ

2 + sin2(θ)dϕ2)

An alternate parametrization is to choose

r1 = cos(χ)
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to get
dl2 = S2(dχ2 + sin2(χ)(dθ2 + sin2(θ)dϕ2))

The space with this metric is called a spherical maximally symmetric 3 − D
space. The fact that this metric is invariant under a 6-dimensional Lie group
of transformations is usually addressed by saying that the metric admits six
Killing vectors. Another kind of maximally symmetric space is a hyperbolic
maximally symmetric space defined by the equations

x2 + y2 + z2 − u2 = S2

or equivalently,
u2 − r2 = −S2

This space is again a 3-D surface imbedded in R4, invariant under the linear
transformations of R4 defined by(

r
u

)
= T

(
r′

u′

)
where T ∈ SO(3, 1), i.e.,

TtJT = T−−− (b)

with
J = diag[1, 1, 1,−1]

Actually, this surface has two connected components defined by u = ±
√
S2 + r2

unlike the spherical case where u = ±
√
S2 − r2 got connected at r = S. Again,

the dimension of the Lie group SO(3, 1) that leaves this surface invariant is six,
and the induced transformation on this 3-D surface is given as

r = Rr′ + b

where the R,b again satisfy a constraint determined by (b). As before, this is
a six-parameter family of diffeomorphisms on the 3-D hyperbolic surface that
leaves the metric on the surface invariant, where the metric is that induced by
the metric

ds2 = dx2 + dy2 + dz2 − du2

on R4 with u =
√
r2 − S2. The induced metric on the surface is therefore, using

polar coordinates for x, y, z,

dl2 = dr2 + r2(dθ2 + r2sin2(θ)dϕ2)− r2dr2/(r2 − S2)

= S2dr2/(S2 − r2) + r2(dθ2 + sin2(θ)dϕ2)

Since on this surface, r ≥ S, we can change the variables to r = S.cosh(χ) to
get the metric in the form

dl2 = S2(−dχ2 + cosh2(χ)(dθ2 + sin2(θ)dϕ2))
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On the other hand, if in the surface equation, we replaced S by iS so that the
surface equation becomes

u2 − r2 = S2

then again this surface is invariant under SO(3, 1) and the metric induced by
the SO(3, 1) invariant metric

ds2 = dx2 + dy2 + dz2 − du2

on R4 would now be given by

dl2 = dr2 + r2(dθ2 + sin2(θ)dϕ2)− (d
√
S2 + r2)2

= S2dr2/(S2 + r2) + r2(dθ2 + sin2(θ)dϕ2)

Now we observe that on this hyperbolic surface, u ≥ S and there is no constraint
on r. Thus, this is a more realistic hyperbolic model for our 3-D space. We can
change the variable

r = S.sinh(χ), χ ≥ 0

to get the metric in the form

dl2 = S2(dχ2 + sinh2(χ).(dθ2 + sin2(θ)dϕ2))

A remark
More generally, suppose that we have an n dimensional surface S imbedded

in an N dimensional space with the metric on the N-dimensional space being
given by

ds2 = dyTG(y)dy, y ∈ RN

Suppose that this metric is invariant under the diffeomorphism T : RN → RN ,
so that

T ′(y)TG(T (y))T ′(y) = G(y), y ∈ RN

or equivalently,
dT (y)TG(T (y))dT (y) = dyTG(y)dy

Suppose that the surface S is defined by the equation

z = F (x), x ∈ Rp, z ∈ RN−p

Write
y = (x, F (x)), x ∈ Rp

for the equation of the surface S as viewed in RN . Then, the metric induced on
S from the metric ds2 on RN is given by

dl2 = (dxT , dF (x)T )G(x, F (x))

(
dx

dF (x)

)
= dxTH(x)dx
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where

H(x) = (Ip, F
′(x)T )G(x, F (x))

(
Ip

F ′(x)

)
, x ∈ Rp

Note that this relationship between the metric on RN and the induced metric
on S can be expressed equivalently in the form

d

(
x

F (x)

)T

G(x, F (x))d

(
x

F (x)

)
= dxTH(x)dx

Note that x parameterises the point on the surface S (which is assumed to be
an open subset of Rp) and its coordinates in RN are given by (x, F (x)). Now
suppose, in addition, that T leaves the surface invariant, in the sense that the
points T (x, F (x)) are again the coordinates of a point on S for any (x, F (x)) in
S. Then, we can write

T (x, F (x)) = (K(x), F (K(x)))

where K is a diffeomorphism on Rp. In other words, we can write

T (x, F (x)) = (x′, F (x′)), x′ = K(x)

Then, we claim that this induced metric on S is also invariant under T , or
equivalently, under K. To see this, we observe that

dxTK ′(x)TH(K(x))K ′(x)dx =

dxTK ′(x)T (Ip, F
′(K(x))T )G(K(x), F (K(x)))

(
Ip

F ′(K(x))

)
K ′(x)dx

= [dK(x)T , dF (K(x))T ]G(K(x), F (K(x)))

(
dK(x)

dF (K(x))

)
= dT (x, F (x))TG(T (x, F (x)))dT (x, F (x)) =

= d

(
x

F (x)

)T

G(x, F (x))d

(
x

F (x)

)
= dxTH(x)dx

where in the second last equation, we have used the assumed invariance of the
metric on RN under T .

This result enables us to construct metrics on manifolds having various kinds
of symmetries by embedding the manifold in a larger manifold having a metric
with a set of symmetries in such a way that the embedded manifold is invariant
under these symmetries and then inducing the metric from the larger manifold
to the embedded one, ensuring thereby, by the above result, that the induced
metric on the embedded manifold will have the same symmetries as the metric
on the larger manifold has.
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Now let C be an n × n real symmetric non-singular matrix with p positive
and q = n− p negative eigenvalues. Then, we can write

C = ODOT

where D is a diagonal matrix with p diagonal entries positive and q diagonal
entries negative, and O is a real orthogonal matrix, i.e., OTO = OOT = −In.
Write

D = diag[λ1, ..., λp,−µ1, ...,−µq]

so that λj > 0, µi < 0. For x ∈ Rn, define y ∈ Rn by

y = |D|1/2Ox

where
|D| = diag[λ1, ..., λp, µ1, ..., µq]

Then we have
xTCx = yTJy

where J is the standard SO(p, q) metric, i.e.,

J = diag[Ip,−Iq]

Thus, the n dimensional surface S imbedded into Rn+1 and parametrized by
coordinates x ∈ Rn with the imbedding defined by the equation

xTCx+ u2 = S2

can equivalently be parametrized by y with the imbedding defined by

yTJy + u2 = S2

When q = 0, this surface becomes an n-sphere, and when q = 1, it becomes a
hyperbolic surface. The metric on this surface is that induced by the SO(p+1, q)
metric on Rn+1 given by

ds2 = dyTJdy + du2 =

p∑
j=1

y2j + u2 −
n∑

j=p+1

y2j

This induced metric is

dl2 = dyTJdy + (d
√
S2 − yTJy)2 =

dyTJdy + (yTJdy)2/(S2 − yTJy)

= dyT (J + JyyTJ/(S2 − yTJy))dy

Note that

yTJy =

p∑
j=1

y2j −
n∑

j=p+1

y2j
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The metric ds2 on Rn+1 is invariant under the group SO(p + 1, q) and the
induced metric dl2 on the n-dimensional surface S is invariant under the induced
transformations

y = Ry′ + bu′, u = cT y′ + du′ =
√
S2 − yTJy

or equivalently, under

y = Ry′ + b
√
S2 − y′TJy′

where

T =

(
R b
cT d

)
satisfies

TTJ0T = J0

with J0 the SO(p+ 1, q) metric defined by

J0 = [Ip,−Iq, 1] = diag[J, 1]

The metric on the surface S is thus invariant under a dimSO(p + 1, q) =
n(n + 1)/2-parameter family of diffeomorphisms and is therefore a maximally
symmetric space. Let us now study Maxwell’s equations in such a maximally
symmetric space after including a time coordinate. In the special case when
n = 3, as considered at the beginning, the metric is

dτ2 = dt2 − dl2 = dt2 − S(t)2f(r)2 − S(t)2r2(dθ2 + sin2(θ)dϕ2)

where
f(r) = 1/(1− r2)

The coefficients of the metric tensor are thus

g00 = 1, g11 = −S2(t)f2(r), g22 = −S2(t)r2, g33 = −S2(t)r2sin2(θ)

so that √
−g = S3(t)f(r)r2sin(θ)

Here, the scale factor S(t)of the universe is determined by solving the Einstein
field equations with a homogeneous and isotropic energy-momentum tensor

Tij = (ρ(t) + p(t))vivj − p(t)gij

The four-velocity field vi will be determined by the fluid dynamical equations
owing to the Bianchi identity satisfied by the Einstein tensor or, equivalently,
by the geodesic equations which turn out to have the comoving solution

v0 = 1, vi = 0, i = 1, 2, 3

so that
T00 = ρ(t), T11 = T22 = T33 = −p(t), Tij = 0, i ̸= j
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The field equations give us just two independent ordinary differential equa-
tions in t for the three variables ρ(t), p(t), S(t) with the third equation being
determined by the equation of state p(t) = h(ρ(t)). These equations in the
radiation-dominated era give a pressure p(t) which corresponds to the isotropic
and homogeneous electromagnetic radiation pressure. To obtain the anisotropic
and inhomogeneous components of the radiation energy density and flux, and
momentum density and flux, we must set up the Maxwell equations in this
metric and derive general solutions. The relevant Maxwell equations are

(Fµν√−g),ν = 0, Fµν = Aν,µ −Aµ,ν

These become

(F 01√−g),1 + (F 02√−g),2 + (F 03√−g),3 = 0,

(F 10√−g),0 + (F 12√−g),2 + (F 13√−g),3 = 0,

(F 20√−g),0 + (F 21√−g),1 + (F 23√−g),3 = 0,

(F 30√−g),0 + (F 31√−g),1 + (F 32√−g),2 = 0,

or equivalently, defining the electric and magnetic field components as

Er = F0r, r = 1, 2, 3, B1 = −F23, B2 = −F31, B3 = F12,

and noting that

g11
√
−g = −S3fr2sin(θ)/S2f2 = −Sr2sin(θ)/f,

g22
√
−g = −S3fr2sin(θ)/S2r2 = −Sfsin(θ),

g33
√
−g = −S3fr2sin(θ)/S2r2sin2(θ) = −Sf/sin(θ)

g11g22
√
−g = sin(θ)/Sf,

g22g33
√
−g = f/Sr2sin(θ),

g33g11
√
−g = 1/Sf.sin(θ)

we can express these equations as

(Sr2sin(θ)E1/f),1 + (Sfsin(θ)E2),2 + (SfE3/sin(θ)),3 = 0,

(Sr2sin(θ)E1/f),0 − (sin(θ)B3/Sf),2 + (B2/Sfsin(θ)),3 = 0,

(Sf.sin(θ)E2),0 + (sin(θ)B3/Sf),1 − (fB1/Sr
2sin(θ)),3 = 0,

(SfE3/sin(θ)),0 − (B2/Sfsin(θ)),1 + (fB1/Sr
2sin(θ)),2 = 0

These equations are to be supplemented with the homogeneous Maxwell equa-
tions that are equivalently a consequence of Fµν = Aν,µ −Aµ,ν :

Fµν,σ + Fνσ,µ + Fσµ,ν = 0
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and these are
F01,2 + F12,0 + F20,1 = 0,

F01,3 + F13,0 + F30,1 = 0,

F02,3 + F23,0 + F30,2 = 0,

F12,3 + F23,1 + F31,2 = 0

or equivalently,
E1,2 −B3,0 − E2,1 = 0,

E1,3 +B2,0 − E3,1 = 0,

E2,3 −B1,0 − E3,2 = 0,

B1,1 +B2,2 +B3,3 = 0

Now consider the special case when the fields E,B are independent of x3 = ϕ.
Then, these reduce to

(r2sin(θ)E1/f),1 + (fsin(θ)E2),2 = 0−−− (1)

(Sr2sin(θ)E1),0 − (sin(θ)B3/S),2 = 0−−− (2)

(Sf.E2),0 + (B3/Sf),1 = 0−−− (3)

(SfE3/sin(θ)),0 − (B2/Sfsin(θ)),1 + (fB1/Sr
2sin(θ)),2 = 0−−− (4)

E1,2 −B3,0 − E2,1 = 0−−− (5)

B2,0 − E3,1 = 0−−− (6)

B1,0 + E3,2 = 0−−− (7)

B1,1 +B2,2 = 0−−− (8)

These equations have a solution with

B1 = 0, B2 = 0, E3 = 0

so that the above eight equations reduce to the following equations for (B3, E1, E2):

(r2sin(θ)E1/f),1 + (fsin(θ)E2),2 = 0−−− (1′)

(Sr2sin(θ)E1),0 − (sin(θ)B3/S),2 = 0−−− (2′)

(Sf.E2),0 + (B3/Sf),1 = 0−−− (3′)

E1,2 −B3,0 − E2,1 = 0−−− (4′)

The first one implies

r2sin(θ)E1/f = ψ1,2, fsin(θ)E2 = −ψ1,1

for some function ψ1(t, r, θ). The second then implies

(Sfψ1,2),0 − (sin(θ)B3)/S),2 = 0
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or equivalently,
(Sfψ1),02 − (sin(θ)B3/S),2 = 0

and therefore,
(Sfψ1),0 − sin(θ)B3/S = ψ2(t, r)

ie, ψ2 is independent of θ. This gives

B3 = (S/sin(θ))((Sfψ1),0 − ψ2)

Substituting these expressions for E1, E2, B3 into the third equation, gives

−(Sψ1),01 + (Sψ1),01 − (ψ2/f),1 = 0

or equivalently,
(ψ2/f),1 = 0

so that
ψ2(t, r) = f(r)ψ3(t)

i.e., ψ3 is independent of r, θ. Finally, substituting into the fourth equation
gives us

(fψ1,2/r
2sin(θ)),2 − [(S/sin(θ))((Sfψ1),0 − fψ3)],0

+(ψ1,1/f.sin(θ)),1 = 0

which simplifies to

sin(θ)(ψ1,2/sin(θ)),2 − r2[S((Sψ1),0 − ψ3)],0

+(r2/f)(ψ1,1/f),1 = 0

In particular, taking ψ3(t) = 0 gives us a linear wave equation for ψ1(t, r, θ):

sin(θ)(ψ1,2/sin(θ)),2 − r2[S(t)((S(t)ψ1),0],0

+(r2/f(r))(ψ1,1/f(r)),1 = 0

Use separation of variables to solve this:

ψ1(t, r, θ) = T (t)R(r)χ(θ)

Substitution gives
(sin(θ)/χ(θ))(χ′(θ)/sin(θ))′

= r2(S(t)(S(t)T (t))′)′/T (t)− (r2/f(r)R(r))(R′(r)/f(r))′

The LHS is a function of θ only, while the RHS is a function of (t, r) only.
Hence, both sides must equal a constant, say β:

(χ′(θ)/sin(θ))′ − (β/sin(θ))χ(θ) = 0,

(S(t)(S(t)T (t))′)′/T (t) = β/r2 + (1/f(r)R(r))(R′(r)/f(r))′

Again, the LHS is a function of t only, while the RHS is a function of r only.
Hence, both sides must equal a constant, say −λ:

(S(t)(S(t)T (t))′)′ + λ.T (t) = 0,

r2(R′(r)/f(r))′ + f(r)(λr2 + β)R(r) = 0
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0.2 The general case when fields depend on all
the space-time coordinates

We define the operations div and curl in the system x0 = t, x1 = r, x2 = θ, x3 =
ϕ as

divC = C1,1 + C2,2 + C3,3, C = (C1, C2, C3)

curlC = (C3,2 − C2,1, C1,3 − C3,1, C2,1 − C1,2)

and then observe that the equation

(Sr2sin(θ)E1/f),1 + (Sfsin(θ)E2),2 + (SfE3/sin(θ)),3 = 0,

can be expressed as
divD = 0

where

D1 = Sr2sin(θ)E1/f,D2 = Sfsin(θ)E2, D3 = SfE3/sin(θ)

Thus, there is a 3-vector C such that

D = curlC,

or equivalently,
E1 = (f/Sr2sin(θ))(C3,2 − C2,3),

E2 = (1/Sf.sin(θ))(C1,3 − C3,1),

E3 = (sin(θ)/Sf)(C2,1 − C1,2)

The equations

(Sr2sin(θ)E1/f),0 − (sin(θ)B3/Sf),2 + (B2/Sfsin(θ)),3 = 0,

(Sf.sin(θ)E2),0 + (sin(θ)B3/Sf),1 − (fB1/Sr
2sin(θ)),3 = 0,

(SfE3/sin(θ)),0 − (B2/Sfsin(θ)),1 + (fB1/Sr
2sin(θ)),2 = 0

can now be expressed as, after substituting the above expressions for E1, E2, E3,

[C3,0 − sin(θ)B3/Sf ],2 = [C2,0 −B2/Sf.sin(θ)],3,

[C1,0 − fB1/Sr
2sin(θ)],3 = [C3,0 −B3sin(θ)/Sf ],1,

[C2,0 −B2/Sfsin(θ)],1 = [C1,0 −B1f/Sr
2sin(θ)],2

The first implies the existence of a function ψ1(t, r, θ, ϕ) such that

C3,0 − sin(θ)B3/Sf = ψ1,3,

C2,0 −B2/Sf.sin(θ) = ψ1,2
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The second therefore implies

[C1,0 − fB1/Sr
2sin(θ)− ψ1,1],3 = 0

and hence there is a function ψ2(t, r, θ) independent of ϕ such that

C1,0 − fB1/Sr
2sin(θ)− ψ1,1 = ψ2 −−− (a)

Likewise, the third implies

[C1,0 −B1f/Sr
2sin(θ)− ψ1,1],2 = 0

and hence the existence of a function ψ3(t, r, ϕ) independent of θ such that

C1,0 −B1f/Sr
2sin(θ)− ψ1,1 = ψ3 −−− (b)

It follows, therefore, from (a) and (b) that

ψ2(t, r, θ) = ψ3(t, r, ϕ) = ψ2(t, r)

is independent of both θ and ϕ. Denoting ψ1(t, r, θ, ϕ)+
∫ r

0
ψ2(t, r)dr by ψ1(t, r, θ, ϕ),

it follows, therefore, from the above equations that the magnetic field compo-
nents can be expressed as

B1 = (Sr2sin(θ)/f)(C1,0 − ψ1,1]

B2 = Sfsin(θ)(C2,0 − ψ1,2),

B3 = (Sf/sin(θ))(C3,0 − ψ1,3)

Substituting for the electric and magnetic field components into the homoge-
neous Maxwell equations

E1,2 −B3,0 − E2,1 = 0,

E1,3 +B2,0 − E3,1 = 0,

E2,3 −B1,0 − E3,2 = 0,

B1,1 +B2,2 +B3,3 = 0

their expressions obtained above in terms of C1, C2, C3, ψ1 then give us

0.3 Some general remarks about electromagnetic
wave equations in a diagonal metric

Consider a metric of space-time for which gµν = 0, µ ̸= ν. The Maxwell equa-
tions in such a metric are∑

ν

(gµνgνν
√
−gFµν),ν = 0,
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Fµν = Aν,µ −Aµ,ν

The covariant Lorentz gauge condition (Aµ√−g),µ = 0 now reads∑
ν

(gνν
√
−gAν),ν = 0

0.4 Alternate analysis of the Maxwell equations
in any diagonal metric

An alternate way of analysing the propagation of electromagnetic waves in the
absence of sources in any diagonal metric is to start with the Maxwell equations

(Fµν√−g),ν = 0, Fµν,σ + Fνσ,µ + Fσµ,ν = 0

and to write

E = ((Er)) = (F0r)), B = ((Br)) = −(F23, F31, F12)

and to note that we can write

((F 0r√−g)) = G.E,

where G is a 3× 3 diagonal matrix whose components are functions of xµ with
x0 = t and

−
√
−g(F 23, F 31, F 12))T = K.B

where K is another 3× 3 diagonal matrix whose entries are functions of xµ and
then note that the Maxwell equations (Fµν√−g),ν = 0 can be expressed as

div(G.E) = 0, curl(K.B) = −∂t(G.E),

and the Maxwell equations Fµν,σ + Fνσ,µ + Fσµ,ν = 0 as

div(B) = 0, curlE + ∂tB = 0

Thus, there exists a 3-vector field C and a scalar field V such that

E = G−1.curlC,B = K−1.(−∂tC +∇V )

which satisfy
div[K−1.(−∂tC +∇V )] = 0,

curl[G−1.curlC] + ∂t[K
−1.(−∂tC +∇V )] = 0

We write

K−1 = K1(S(t), r, θ) = diag[k1, k2, k3], G
−1 = G1(S(t), r, θ) = diag[g1, g2, g3]
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where

gj = gj(S(t), r, θ), kj = kj(S(t), r, θ)

Then, the above equations are in component form, the same as∑
j

(−(kjCj,0),j + (kjV,j),j) = 0,

∑
mkjr

[ϵ(srj)(gjϵ(jkm)Cm,k),r

+(ks(−Cs,0 + V,s)),0 = 0

Note that we can change C to C ′ = C+∇χ and V to V ′ = V −χ,0 for any scalar
field χ without affecting the values of E,B. This is analogous to the Lorentz
gauge transformation in special relativistic electrodynamics.

Remark: We can, for example, choose χ so that the following generalization
form of the Coulomb gauge holds:∑

j

(kjC
′
j),j = 0

holds, or equivalently, renaming C ′ as C and V ′ as V ,∑
j

(kjCj),j = 0

Then, the first equation above becomes∑
j

(kjV,j),j) +
∑
j

(kj,0Cj),j = 0

Now, observe that

gjϵ(srj)ϵ(jkm)

= gj |ϵ(srj)|(δ(sk)δ(rm)− δ(sm)δ(rk))

So ∑
mkjr

[|ϵ(srj)|(gjϵ(jkm)Cm,k),r

=
∑
jr

|ϵ(srj)|(gj(Cr,s − Cs,r)),r

and hence the second equation can be expressed as∑
jr

|ϵ(srj)|(gj(Cr,s − Cs,r)),r + (ks(−Cs,0 + V,s)),0 = 0
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Note that if the g′js were all one, as would be in the case of cartesian coordinates
in flat space-time, then we would get the usual formula∑

jr

|ϵ(srj)|(gj(Cr,s − Cs,r)),r

=
∑
jr

|ϵ(srj)|((Cr,s − Cs,r)),r

For s = 1, this evaluates to

ϵ(123)(C2,1 − C1,2),2 + |ϵ(132)|(C3,1 − C1,3),3

= (C2,1 − C1,2),2 + (C3,1 − C1,3),3

= (C1,1 − C1,1),1 + (C2,1 − C1,2),2 + (C3,1 − C1,3),3

= (divC),1 −∇2C1

as expected.
We rewrite the basic equations now:∑

jr

|ϵ(srj)|(gj(Cr,s − Cs,r)),r + (ks(−Cs,0 + V,s)),0 = 0

∑
j

(−(kjCj,0),j + (kjV,j),j) = 0

Note that |ϵ(srj)| is one if all the three indices s, r, j are distinct and is zero
otherwise.

0.5 Analysis of Maxwell’s equations in a diago-
nal metric based on electric scalar and mag-
netic vector potentials

Defining

E = ((F0r)), B = −(F23, F31, F12),

and writing

((F 0r√−g)) = ((grr
√
−gF0r)) = G.E,

−(F 23, F 31, F 12)T = K.B

whereG,K are diagonal matrices, we obtain from the curved space-time Maxwell
equations

divB = 0, curlE + ∂tB = 0, div(G.E) = 0, curl(K.B) = −∂t(G.E)
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where

G = ((grr
√
−g)),K = (g22g33

√
−g, g33g11

√
−g, g11g22

√
−g)

so that
B = curlA,E = −∇V − ∂tA,A = ((−Ar)), V = A0

and

curl(K.curlA))− ∂t(G.(∇V + ∂tA)) = 0, div(G.(∇V + ∂tA)) = 0

In case the medium carries a charge density rho and current density J =
((−Jr)), then the generalization would be

curl(K.curlA)− ∂t(G.(∇V + ∂tA)) = −G.J,

div(G.(∇V + ∂tA)) = ρ.
√
−g

We require to supplement these with the general relativistic form of the Lorentz
gauge condition: ∑

µ

(gµµ
√
−gAµ),µ = 0

or equivalently, assuming g00 = 1, as in the case of the Robertson-Walker metric,

∂t(
√
−gV )− div(G.A) = 0

Then, the above equation for V reduces to

div(G.∇V ) + ∂2t (
√
−gV )− div((∂tG).A) = ρ

√
−g

Note that the charge conservation condition can be expressed as

(Jµ√−g),µ = 0,

or equivalently, since the metric is diagonal, as

∂t(ρ
√
−g)− div(G.J) = 0

Remark: In the previous analysis, we had used G.E = curlC,K.B − C = ∇Φ.
This method would fail if there are sources of charge and current.

Making this choice of gauge, the differential equation satisfied by A is given
by

curl(K.curlA)− ∂t(G.(∇((−g)−1/2

∫ t

0

G.Adt) + ∂tA)) = −G.J

Note that the first component of curl(K.curlA) is

−(K3(A2,1 −A1,2)),2 + (K2(A1,3 −A3,1),3 + (G1g
11(A1,1 −A1,1)),1

and likewise for the other components. This first component can be expressed
as

(g11G2.A1,2),2 + (g11G3A1,3),3 + (g11G1A1,1),1
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−(K3A2,1),2 − (K2A3,1),3 − (G1g
11A1,1),1

= (g11G2.A1,2),2 + (g11G3A1,3),3 + (g11G1A1,1),1

−(G2g
11A2,1),2 − (G3g

11A3,1),3 − (G1g
11A1,1),1

= (g11G2.A1,2),2 + (g11G3A1,3),3 + (g11G1A1,1),1

−(G2g
11A2),12 − (G3g

11A3),13 − (G1g
11A1),11

+((G2g
11),1A2),2 + ((G3g

11),3A3),1 + ((G1g
11),1A1),1

The first component of ∂t(G.(∇V + ∂tA)) is given by

∂0(G1(V,1 +A1,0))

= (G1V ),01 − (G1,1V ),0 + (G1A1,0),0

Now suppose instead that we impose the gauge condition

div(G.∂tA) = 0−−− (α)

This equation is the analogue of the Coulomb gauge condition. In this case, the
equation for V simplifies drastically to

div(G.∇V ) = ρ
√
−g

Since we are assuming the Robertson-Walker metric, we have

G = ((grr
√
−g) = −S(t)(r2sin(θ)/f(r), f.sin(θ), f(r)/sin(θ))

= −S(t)h(r, θ)

where h= h(r, θ) is independent of t, ϕ. Also recalling that
√
−g = S3fr2sin(θ),

we get
∇(h(r, ϕ)∇V (t, r, θ, ϕ)) = −ρ(t, r, θ, ϕ).S2(t)f(r)r2sin(θ)

It follows from this equation that V (t, r, θ, ϕ) can be expressed in the form

V (t, r, θ, ϕ) = S2(t)

∫
L(r, θ, ϕ|r′, θ′, ϕ′)ρ(t, r, θ, ϕ)drdθdϕ

ie V is a matter field, in the language of quantum field theory. Its value at time
t at any spatial location is a function of only the matter density over space at
that time t. In particular, if ρ = 0, the solution will be V = 0. So assuming
that there is no charge distribution in space, we can assume that V = 0. In
other words, the electromagnetic field in space-time in an evolving Robertson-
Walker space-time, ie, in an expanding universe, is given by the magnetic vector
potential only, which satisfies the wave equation

curl(K.curlA)− ∂t(G.∂tA)) = −G.J −−− (c)



0.6. MAXWELL’S EQUATIONS IN AMAXIMALLY SYMMETRIC SPACE-TIME19

Note that the charge conservation condition with ρ = 0 assumed reads div(G.J) =
0 and this equation is consistent with (c) and our choice of the gauge. In par-
ticular, if in addition, J = 0, i.e., there are no charges and currents, then using
the above gauge, A satisfies the wave equation

curl(K.curlA)− ∂t(G.∂tA)) = 0−−(β)

and the electric and magnetic fields are given by

E = ((F0r = −∂tA,

B = curlA = −(F23, F31, F12)

Once we have solved for A and hence E,B, we can calculate the energy-
momentum tensor of the electromagnetic field as

Sµν = (−1/4)gµνF
αβFαβ + FµαF

α
ν

with
FαβFαβ =

∑
αβ

gααgββF 2
αβ

and
FµαF

α
ν =

∑
α

gααFµαFνα

where the metric tensor components are those of the RW metric and Fαβ1 have
components given by the electric and magnetic fields thus solved for. We are
usually interested in the case when the initial electric and magnetic fields had
a certain spatial statistical correlation function, i.e., < Fαβ(t, r)Fµν(t

′, r′) >
was given to us at t = t′ = 0 at all r, r′ and then we wish to compute this
correlation function for all times t, t′ at all r, r′. We now outline the procedure
for performing this calculation.

0.6 Maxwell’s equations in a maximally sym-
metric space-time

Now assume that we have an n + 1-dimensional space-time, with one time di-
mension and n space dimensions with a maximally symmetric metric

dτ2 = dt2 − S2(t)f2(r)dr2 − S2(t)r2dΩ2

where we write the spatial vector as

x = rn̂, n̂T n̂ = 1

so that
dx = drn̂+ rdn̂, n̂T dn̂ = 0, dn̂T dn̂ = dΩ2
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and the spatial line element becomes

dl2 = dxT dx+(d
√
S2 − r2)2 = dr2+r2dΩ2+dr2/(S2−r2) = S2dr2/(S2−r2)+r2dΩ2

and replacing r by Sr, this becomes

dl2 = S2f2dr2 + S2r2dΩ2, f2 = 1/(1− r2),

We can parametrize n̂ by n− 1 independent angles x2, ..., xn so that dω2 has a
diagonal form

dΩ2 =

n∑
k=2

χk(x
2, ..., xn)(dxk)2

Then, as before, we define the electromagnetic field tensor components

F0r = Ak,0 −A0,k, k = 1, 2, ..., n,

Fks = As,k −Ak,s, k, s = 1, 2, ..., n

Maxwell’s equations become ∑
k≥1

(F 0k√−g),k = 0,

(Fm0√−g),0 +
∑
k≥1

(Fmk√−g),k = 0,m = 1, 2, ..., n

or equivalently, since the metric is diagonal with

g00 = 1, g11 = −S2(t)f2(r), gkk = −S2(t)r2χk(x
2, ..., xn), k = 2, 3, ..., n

so that assuming n is odd,

√
−g = Sn(t)f(r)rn−1χ(x2, ..., xn), χ = Πn

k=2χk

We can express the Maxwell equations as

(gmm√
−g(A0,m−Am,0),0+

∑
k≥1

(gmmgkk
√
−g(Ak,m−Am,k)),k = 0,m = 1, 2, ..., n

∑
k≥1

(gkk
√
−g(Ak,0 −A0,k)),k = 0

We choose our gauge condition as earlier to be the generalization of the Coulomb
gauge: ∑

k≥1

(gkk
√
−gAk,0),k = 0

and then the Maxwell equations simplify to∑
k≥1

(gkk
√
−g)A0,k),k = 0,
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(gmm√
−g(A0,m −Am,0),0 +

∑
k≥1

(gmmgkk
√
−g(Ak,m −Am,k)),k = 0,

We can write
gkk

√
−g = −Sn−2ηk(x

1, ..., xn), x1 = r,

and
gmmgkk

√
−g = Sn−4νmk(x

1, ..., xn), k,m = 1, 2, ..., n,

where
η1 = rn−1χ(x2, ..., xn)/f(r),

ηk = f(r)rn−3χ(x2, ..., xn)/χk(x
2, ..., xn), k = 2, 3, ..., n

ν1k = ηk/f
2, k = 2, 3, ..., n,

νmk = ηk/r
2χm = frn−5χ/χmχk, 2 ≤ m < k ≤ n

The Maxwell equation ∑
k≥1

(gkk
√
−g)A0,k),k = 0,

for the scalar potential, derived above by assuming generalization of the Coulomb
gauge, can be expressed as ∑

k≥1

(ηkA0,k),k = 0

which is a purely spatial equation and hence has a unique solution

A0 = 0

Thus, the equations in this gauge satisfied by the vector potential components
Ak, k ≥ 1 are given by

−(gmm√
−gAm,0),0 +

∑
k≥1

(gmmgkk
√
−g(Ak,m −Am,k)),k = 0,m = 1, 2, ..., n

or equivalently,

ηm(Sn−2(t).Am,0),0 + Sn−4(t)
∑
k≥1

(νmk(Ak,m −Am,k)),k = 0

We can solve this using separation of variables: Writing

Am(t, x) = T (t)Rm(x)

we get
(Sn−2(t)T ′(t))′/Sn−4(t)T (t) = λ,

λ.ηm(x)Rm(x) +
∑
k≥1

(νmk(x)(Rk,m(x)−Rm,k(x)),k = 0,m = 1, 2, ..., n



22

for some constant λ. Superposition over all possible values of λ then completes
the solution. Note that here,

x = (r, x2, ..., xn)

with 0 ≤ r ≤ 1. This completes our discussion of the solution of the Maxwell
equations in a spherically maximally symmetric space-time. We then proceed
to a discussion of the same problem in general elliptic-hyperbolic space-times.

0.7 Magneto-hydro-dynamics in an n+1 dimen-
sional maximally symmetric space-time

The basic Einstein field equations in the presence of a fluid field and an electro-
magnetic field are

Rµν − (1/2)Rgµν = K[(ρ+ p)vµvν − pgµν + Sµν)

where K = −8πG/c2 and

Sµν = (−1/4)FαβFαβgµν + FµαF
α
ν

We assume that the metric of space-time is the RW metric in n+1-dimensional
space-time and is unaffected by the matter fluid perturbations around the ho-
mogeneous and isotropic field and electromagnetic field. This is the zeroth order
of approximation. In other words, if this unperturbed metric is denoted by g0µν ,
then the corresponding Einstein field equations are given by

R0
µν − (1/2)R0g0µν = KT 0

µν ,

where
T 0
µν = (ρ0(t) + p(t))v0µv

0
ν − p0(t)g

0
µν

so that S(t), ρ(t), p(t) satisfy the standard unperturbed Einstein field equations
for these three functions of time. The perturbations. Note that by the comoving
nature of the RW metric, as seen from the associated geodesic equations, we
have

v0i = 0, i = 1, 2, 3, v00 = 1

Inhomogeneous and anisotropic perturbations to these quantities involve den-
sity and velocity perturbations as well as the presence of an inhomogeneous and
anisotropic electromagnetic field. We denote the velocity perturbations by δvµ,
the density perturbations by δρ and the pressure perturbations by δp. These per-
turbations are all functions of t, x where x denotes the spatial coordinates. The
perturbed equations, after taking into account a −

∫
JµAµ

√
−gdn+1x, where

Jµ = σ.Fµνvν
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with σ being the medium conductivity, are

(Fµν√−g),ν + σ.Fµνv,ν
√
−g = 0,

((ρ+ p)vµvν):ν − gµνp,ν = FµνJν

= σFµνF ρ
ν vρ

Note that v0 = 1 + δv0, vr = δvr because the unperturbed velocity is comoving
w.r.t. the RW metric. Also, δv0 is of the quadratic order of smallness in δvr
because

(1 + δv0)2 +
∑
r

grr(v
r)2 = 1

We shall assume that vr is small, i.e., much smaller than the electromagnetic
field, so that quadratic terms in the vr can be neglected, but bilinear terms in vr
and the electromagnetic field cannot be neglected. In order to obtain the MHD
effects, we shall also not neglect terms that are quadratic in the electromagnetic
fields and linear in vr, i.e., a special sort of trilinear term.

This assumption is based on the hypothesis that we are in the radiation-
dominated era. In the transition phase between the radiation-dominated era and
the matter-dominated era in the expansion of the universe, we cannot neglect
quadratic terms in the vr. We shall set up the MHD equations in both of these
eras.

Then, we get from the above

((ρ+ p)vν):νv
µ + (ρ+ p)vνvµ:ν − gµνp,ν

= σFµνF ρ
ν vρ

Multiplying both sides by vµ gives us

((ρ+ p)vν):ν − p,νv
ν = σFµνF ρ

ν vρvµ

The term on the rhs can be neglected, because it is of second degree in the v′rs
and also of second degree in the electromagnetic field. Thus, we get

(ρ+ p)vνvµ:ν − gµνp,ν + p,νv
νvµ = −σFµνF ρ

ν vρ

Consider first the case when µ = 0. We have

v0:0 = v0,0 + Γ0
0rv

r = 0

since v0 is one plus a quadratic term in vr and hence can be neglected and
Γ0
0r = 0 for the RW metric. Likewise,

v0:r = v0,r + Γ0
rsv

s = Γ0
rsv

s

since v0 is again one plus a term that is quadratic in vr. Also

−g0νp,ν + p,νv
νv0 = p,rv

r
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upto the required order. Thus, we get the fluid energy equation:

p,rv
r = σF 0r(F 0

r + F s
r vs)

Note that if we also take into account quadratic terms in the vr, then the energy
equation would become

(ρ+ p)v0,0 + p,rv
r + p,0(v

0 − 1) = −σF 0r(F 0
r + F s

r vs)

If we neglect the pressure, then this equation approximates the energy equation
for the fluid as we learn in non-relativistic fluid dynamics:

ρ.∂tv
0 = E.J, J = σ(E + v ×B)

Now, consider the MHD equation for µ = r: Again neglecting quadratic terms
in vr, we get

(ρ+p)(vr,0+2Γr
0rv

r)−grrp,r+p,0(vr−1) = −σ(F r0F s
0 vs+F

rmF 0
m+F rmF s

mvs)

Note that
Γr
0r = (1/2)grrgrr,0 = S′/S, r = 1, 2, 3

This is the general relativistic analogue of the Lorentz equation in non-relativistic
linearized hydrodynamics of a conducting fluid:

ρ.∂tv = −∇p+ J ×B, J = σ(E + v ×B)

If further, we take quadratic terms in vr into account in the kinetic term as well
as in the pressure term, then we obtain

(ρ+p)(vr,0+Γr
0rv

r+vr,sv
s+(Γr

r0v
r+Γr

skv
svk)−grrp,r+p,0(vr−1) = −σ(F r0F s

0 vs+F
rmF 0

m+F rmF s
mvs)

Note that
Γr
skv

svk = 2
∑
k ̸=r

Γr
rkv

rvk +
∑
s

Γr
ss(v

s)2

for the RW metric.

0.8 Some general remarks on the Einstein-Maxwell-
Klein-Gordon-Dirac equations in a maximally
symmetric space

Consider a maximally symmetric space of dimension n defined by the equation

n+1∑
i=1

(xi)
2 = S2
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The line element on this surface is

dl2 =

n+1∑
i=1

(dxi)2, xn+1 = (S2 −
n∑

i=1

(xi)2)1/2

Thus, writing

r = (

n∑
i=1

(xi)2)1/2,

and
xi = rni, ni = 1, 2, ..., n

so that
n∑

i=1

n2i = 1

(and therefore
∑n

i=1 nidni = 0) we have

dxi = dr.ni + rdni, i = 1, 2, ..., n

and hence,
n∑

i=1

(dxi)2 = dr2 + r2
n∑

i=1

(dni)
2

This gives

dl2 = dr2/(S2 − r2) + dr2 + r2
n∑

i=1

(dni)
2

= S2dr2/(S2 − r2) + r2
n∑

i=1

(dni)
2

Replacing r by Sr, we get

dl2 = S2dr2/(1− r2) + S2r2
n∑

i=1

(dni)
2

For example, if n = 3, we can write

n1 = cos(θ1)sin(θ2), n2 = sin(θ1)sin(θ2), n3 = cos(θ2),

giving
dn21 + dn22 + dn23 = dθ22 + sin2(θ1)dθ

2
1

If n = 4, then

n1 = sin(θ3)cos(θ2)sin(θ2), n2 = sin(θ3)sin(θ1)sin(θ2), n3 = sin(θ3)cos(θ2), n4 = cos(θ3)

giving
4∑

i=1

dn2
i = dθ23 + sin2(θ3)(dθ

2
2 + sin2(θ1)dθ

2
2)
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In general, n ≥ 3, we can write, after appropriate parametrizations of the n′is,
in terms of angles, just as we do on S2,

n∑
i=1

dn2i =

dθ2n−1+sin
2(θn−1dθ

2
n−2+sin

2(θn−1)sin
2(θn−2)dθ

2
n−3+...+(Πn−1

m=k+1sin
2(θm))dθ2k+..+(Πn−1

m=2sin
2(θm))dθ21

=

n−1∑
k=1

(Πn−1
m=k+1sin

2(θm))dθ2k

where the coefficient Πn−1
m=nsin

2(θm) is to be interpreted as 1. Thus, denoting
θk by xk+1, k = 1, 2, ..., n− 1, and r by x1, our metric can be expressed as

dl2 = S2dr2/(1− r2) + S2r2
n−1∑
k=1

χk(x)(dx
k+1)2

= S2(dx1)2/(1− (x1)2) + S2(x1)2
n−1∑
k=1

χk(x)(dx
k+1)2

= S2(dx1)2/(1− (x1)2) + S2(x1)2
n∑

k=2

χk−1(x)(dx
k)2

where
χk(x) = χk(x

2, ..., xn) = Πn−1
m=k+1sin

2(xm+1)

= Πn
m=k+2sin

2(xm) = χk(x
k+2, ..., xn), k = 1, 2, 3, ..., n− 1

Now we compute the Christoffel connection symbols in the space-time metric

dτ2 = dt2 − dl2 = dt2 − S(t)2f(r)2dr2 − S(t)2
n−1∑
k=1

χk(x)(dx
k+1)2

so that
g00 = 1, g11 = −S2f2, gkk = −S2χk, k = 2, 3, ..., n

where
f2 = f2(r) = 1/(1− r2)

Remark, defining r = sin(θ0) = sin(x1), we can equivalently express this
metric as

dτ2 = dt2 − S(t)2(dx1)2 − S(t)2sin2(x1)

n∑
k=2

χk−1(x)(dx
k)2

or equivalently,

dτ2 = dt2 − S2(t)(dx1)2 − S(t)2
n∑

k=2

sin2(x1)(Πn
m=k+1sin

2(xm))(dxk)2
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Now define the following permutation of coordinates:

y1 = x1, yk = xn+2−k, k = 2, 3, ..., n

Then, we can write

dτ2 = dt2 − S2(t)(dy1)2 − S2(t)

n∑
k=2

sin2(y1)(Πn
m=k+1sin

2(yn+2−m))(dyn+2−k)2

= dt2 − S2(dy1)2 − S2
n∑

k=2

sin2(y1)Πn+1−k
m=2 sin2(ym))(dyn+2−k)2

= dt2 − S2(dy1)2 − S2
n∑

k=2

(Πn+1−k
m=1 sin2(ym))(dyn+2−k)2

= dt2 − S2(dy1)2 − S2
n∑

k=2

(Πk−1
m=1sin

2(ym))(dyk)2

= dt2 − S2
n∑

k=1

(Πk−1
m=1sin

2(ym))(dyk)2

We now rename yk as xk, k = 1, 2, ..., n so that the metric is

dτ2 = dt2 − S2
n∑

k=1

(Πk−1
m=1sin

2(xm))(dxk)2

= dt2 − S2
n∑

k=1

ηk(x)(dx
k)2

where
ηk(x) = Πk−1

m=1sin
2(xm) = ηk(x

1, ..., xk−1), k = 1, 2, ..., n

where η1(x) = 1 is understood. Our metric is thus given by

g00 = 1, gkk = −S2(t)ηk(x), k = 1, 2, ..., n, gµν = 0, µ ̸= ν

We write
log(sin(xm)) = fm(x) = fm(xm),m = 1, 2, ..., n

and
gm(x) = cot(xm) = fm,m(x)

Note that

log(ηk) = 2

k−1∑
m=1

log(sin(xm)) = 2

k−1∑
m=1

fm(x)

and therefore,
(loggkk),rs = 0, r ̸= s, r, s = 1, 2, ..., n
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and the only non-zero Christoffel symbols are

Γk
0k = Γk

k0 = (loggkk),0/2 = χk,k(x)/2ηk(x),

Γ0
kk = −gkk,0/2 = SS′ηk,

For 1 ≤ m < k ≤ n,

Γk
mk = Γk

km = (loggkk),m/2 = ηk,m/2ηk = gm(x), 1 ≤ m ≤ k ≤ n,

Γm
kk = −gmmgkk,m/2 = −ηk,m/2ηm = −fm/ηm, 1 ≤ m ≤ k ≤ n,

We then compute the Ricci tensor: For k,m ≥ 1,

Rkm = Γα
kα,m − Γα

km,α − Γα
kmΓβ

αβ + Γα
kβΓ

β
mα

= Γp
kp,m − Γ0

km,0 − Γp
km,p − Γ0

kmΓr
0r

−Γp
kmΓs

ps + Γ0
kpΓ

p
m0 + Γp

k0Γ
0
mp

+Γp
ksΓ

s
mp

It is easily verified that

Rkm = 0, k ̸= m, k,m ≥ 1

because the metric is diagonal, i.e.,

dτ2 = dt2 +

n∑
k=1

gkk(x)(dx
k)2

with
(loggkk),km = 0, k > m ≥ 1

and
(loggmm),k = 0, k ≥ m ≥ 1

Further, for k = 1, 2, ..., n, we have

Rkk = Γα
kα,k − Γα

kk,α − Γα
kkΓ

β
αβ + Γα

kβΓ
β
kα

= Γp
kp,k − Γ0

kk,0 − Γp
kk,p − Γ0

kkΓ
s
0s

−Γp
kkΓ

s
ps

+2Γ0
kkΓ

k
k0 +

∑
p

(Γp
kp)

2 + 2
∑
p ̸=k

Γk
kpΓ

p
kk

Now,
Γ0
kk,0 = −gkk,00/2,∑

p

Γp
kp,k =

∑
p>k

log(gpp),kk/2 = (n− k)fk,k = (n− k)gk,kk = (n− k)g′′k ,
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∑
p

Γp
kk,p = −

∑
p<k

(gppgkk,p),p/2

∑
s

Γ0
kkΓ

s
0s =

∑
s

(−1/4)gkk,0g
ssgss,0 =

∑
s

(−S′/2S)gkk,0 = SS′

= nSS′ηk∑
p,s

Γp
kkΓ

s
ps = (−1/4)

∑
p,s

(gppgssgkk,pgss,p

= ((−1/2)
∑
s>p

gppgkk,pf
′′
p

Γ0
kkΓ

k
k0 = (−1/4)gkk,0(loggkk),0

= −gkk,0S′/2S = SS′ηk∑
p

(Γp
kp)

2 =
∑
p

((loggpp),k)
2 =

∑
p>k

(f ′k)
2 = (n− k)(f ′k)

2

∑
p ̸=k

Γk
kpΓ

p
kk

= (−1/4)
∑
p<k

(loggkk),pg
ppgkk,p = (−1/2)

∑
p<k

f ′′p g
ppgkk,p

Finally,

R00 = Γp
0p,0 + Γα

0βΓ
β
0α

=
∑
p

(1/2)(loggpp),00 +
∑
p

(Γp
0p)

2 =

(S′/S)′ + n(S′/S)2 = (n− 1)(S′/S)2 − S′′/S

The Einstein field equations are

Rµν = K(Tµν − Tgµν/2) = KSµν

where

Tµν = (ρ+ p)vµvν − pgµν

with vµ being comoving, ie, vk = 0, k = 1, 2, ..., n because it satisfies the geodesic
equation

dvk/dτ + Γk
00 = 0, v0 = 1,Γk

00 = 0

We compute

T = gµνT
µν = ρ+ p− (n+ 1)p = ρ− np

so that

S00 = T00 − Tg00/2 = ρ+ p− p− (ρ− np)/2 = (ρ+ np)/2
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The matter conservation equation: The Bianchi identity for the Einstein tensor
implies the momentum conservation equation

Tµν
:ν = 0

which gives
((ρ+ p)vµvν):ν − p,µ = 0

or
((ρ+ p)vν):ν + (ρ+ p)vνvµ:ν − p,µ = 0

so that
((ρ+ p)vν):ν − p,0 = 0

or
((ρ+ p)

√
−g),0 − p,0

√
−g = 0

or
(ρ
√
−g),0 + p(

√
−g),0 = 0

Writing
g = −S2nχ2, χ = (Πn

k=1χk)
1/2

since the number n of space dimensions is assumed to be odd, we get

√
−g = Snχ

and hence the above matter conservation equation reduces to

(ρSn)′ + p(Sn)′ = 0

Note that we are assuming ρ, p to be functions of only t.

0.8.1 The KG equation in an n-dimensional maximally
symmetric space

The metric is

dτ2 = dt2 − S(t)2
n∑

k=1

χk(x)(dx
k)2,

where
χk(x) = Πk

m=1sin
2(xm), k = 1, 2, ..., n

(gµνϕ,µ
√
−g),ν +m2√−gϕ = 0

Writing
Πn

k=1χk(x) = χ(x)2,

we have, assuming n odd (i.e., an odd number of space dimensions),

√
−g = Sn(t)χ(x),

gkk
√
−g = −Sn−2χ(x)/χk(x), k = 1, 2, ..., n
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g00
√
−g =

√
−g = Sn(t)χ(x)

so the KG equation becomes

χ(Snϕ,0),0 − Sn−2
n∑

k=1

(χϕ,k/χk),k

+m2Snχ.ϕ = 0

Or separating variables,
ϕ(t, x) = T (t)R(x),

so

(Sn(t)T ′(t))′/Sn−2(t)T (t) +m2S2(t) = χ(x)−1R(x)−1
n∑

k=1

(χ(x)R,k(x)/χk(x)),k

Both sides must equal a constant λ:

S2(t)T ′′(t) + nS(t)S′(t)T ′(t) + (m2S2(t)− λ)T (t) = 0

and
n∑

k=1

(χ(x)R,k(x))/χk(x)),k − λχ(x)R(x) = 0

0.9 Heat and mass transfer equations in an n+1
dimensional space-time specialized to max-
imally symmetric spaces

Assume that the metric has the form

dτ2 = dt2 − S(t)2
n∑

k=1

χk(x)(dx
k)2

This is a generalization of the spherically symmetric metric

dτ2 = dt2 − S(t)2(

n∑
k=1

(Πk−1
m=1sin

2(θm))dθ2k

In analogy with this metric, assume that χk is a function of only x1, ..., xk−1.
Further, in analogy with this specialization, that

χk(x) = Πk−1
j=1fj(x

j)

This ensures that
(logχk),jm = 0j ̸= m
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and hence also ensures that

Rkm = 0, k ̸= m

As regarding Rkk, we have

Rkk = Γp
kp,k − Γp

kk,p − Γ0
kk,0 + 2Γk

kpΓ
p
kk + 2Γ0

kkΓ
k
k0 +

∑
p ̸=k

(Γp
kp)

2

= (1/2)
∑
p

(loggpp),kk+(1/2)
∑
p

(gppgkk,p),p+(1/2)gkk,00−(1/2)
∑
p

gppgkk((loggkk),p)
2

−(1/2)gkk,0.(log(gkk),0 + (1/4)
∑
p

((loggpp),k)
2

= ((n−k)/2).log(fk)′′+(1/2)
∑
p

gkkg
pp(logfp)

′′−(S
′2+SS′′)χk+2(S′)2χk+(1/4)(n−k)((logfk)′)2

The energy-momentum tensor of the matter field: Assume vk = 0, k =
1, 2, ..., n. Then gµνv

µvν = 1 implies v0 =, or equivalently, v0 = 1, vk = 0, k =
1, 2, ..., n. The energy-momentum tensor of the matter field

Tµν = (ρ+ p)vµvν − pgµν

has only the following non-vanishing components:

T 00 = ρ+ p− p = ρ, T kk = −pgkk = p/S2χk, k = 1, 2, ..., n

Now, in the presence of viscous and thermal effects, the energy-momentum
tensor acquires a correction ∆Tµν given by [Steven Weinberg, Gravitation and
Cosmology:Principles and Applications of the General Theory of Relativity, Wi-
ley]

∆Tµν = χ1.H
µαHνβ(vα:β + vβ:α) + (Hµαvν +Hναvµ)Qα

where
Hµν = gµν − vµvν ,

Qα = χ2(T,α − Tvα:βv
β)

where χ1, χ2 are positive, depending possibly on the temperature T . The energy
equation is then

(ρ.svµ +∆Tµνvν/T ):µ = ∆Tµν(vν/T ):µ −−− (1)

where s is the entropy per unit mass. This equation can be derived from the
conservation of the total energy-momentum tensor Tµν+∆Tµν and the number
conservation equation (nvµ):µ = 0, the first law of thermodynamics

Td(s/n) = d(ρ/n) + pd(1/n)

Note that s/n is the entropy per particle and ρ = mn is the density where
n is the number of particles per unit volume and m is the mass per particle.
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When we impose the condition that the lhs of (1), which represents the rate of
entropy increase per unit volume, be non-negative, then we obtain the above
form for the correction to the energy-momentum tensor ∆Tµν due to viscous
and thermal effects. If the fluid is adiabatic, we can set (ρsvµ):µ to be zero,
and the result is the generalization of the temperature diffusion equation after
taking into account convective terms, namely the heat transfer equation:

∆Tµν
:ν vµ = 0

If the background metric is Robertson-Walker, with comoving velocity, then
vk = 0, v0 = 1 and this equation simplifies to

∆T 0ν
:ν = 0

Now, for the RW metric with comoving velocity,

H00 = 0, H0k = 0, Hkm = gkm

and we find
∆T 00 = 0,

∆T 0k = gkkQk = χ2.g
kk(T,k−Tvk:0) = χ2.g

kk(T,k+TΓ
k
k0) = χ2g

kk(T,k+(T/2)(loggkk),0)

= χ2g
kk(T,k + TS′/S)

and the heat conduction/temperature diffusion equation in the RW metric be-
comes

∆T 0k
,k + Γ0

kk∆T
kk + Γm

km∆T 0k = 0

or
∆T 0k

,k + (1/2)(loggkk),0∆T
kk + (1/2)(loggmm),k∆T

0k = 0

Writing the RW metric as

dτ2 = dt2 − S(t)2((dx1)2 + sin2(x1))(dx2)2 + sin2(x2)(dx
3)2))

= dt2 − S(t)2(

3∑
k=1

ηk(x)(dx
k)2))

where
η1(x) = 1, η2(x) = sin2(x1), η3(x) = sin2(x1)sin2(x2),

our adiabatic heat conduction equation becomes

∆T 0k
,k + (S′/S)∆T kk + (1/2)(log(

√
−g)),kT 0k = 0

where √
−g = S3(t).sin2(x1)sin(x2)

Note that
∆T kj = −2χ1g

kkgjj(Γ0
kj)

which is zero for k ̸= j and

∆T kk = χ1(g
kk)2gjj,0

for the RW metric with comoving velocities.
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0.10 The linearized Einstein field equations for
perturbations in the metric and matter fluid
around the RW space-time metric

The energy-momentum tensor of the matter fluid is given by

Tµν = Tµν
0 +∆Tµν

where
Tµν
0 = (ρ+ p)vµvν − pgµν ,

∆Tµν = HµαHνβ∆̃Tαβ

+(Hµαvν +Hναvµ)Qα

where
Qα = χ2(T,α − Tvα:βv

β)

and
∆̃Tαβ = χ0(vα:β + vβ:α)

+χ1v
ρ
:ρgαβ

where χ0, χ1, χ2

geq0. The unperturbed velocity is comoving, i.e.,

vi = 0, vi = 0, i = 1, 2, 3, v0 = v0 = 1

Note that the unperturbed metric is RW:

g00 = 1.g11 = −S2(t)f(r)2, g22 = −S2(t)r2, g33 = −S2(t)r2sin2(θ)

By appropriate choice of coordinates, we can assume that the perturbation to
this metric has nonvanishing components

δgrs, 1 ≤ r, s ≤ 3

i.e., δg0µ = 0, µ = 0, 1, 2, 3. We denote the velocity perturbations by δvi and
δvi. Note that

δvi = δ(giµv
µ) = δgiµ.v

µ + giµδv
µ

= giiδv
i

since vi = 0, δgi0 = −0. Also, the equation

δ(gµνv
µvν) = 0

implies
g00δ((v

0)2) + gii((δ(v
i)2) + δg00 = 0

Since vi = 0 implies δ ∗ ((vi)2) = viδvi = 0 and δg00 = 0, it follows therefore
that

δv0 = 0
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(g00 = 1, δ((v0)2) = v0δv0 = δv0). The fluid equations are

(Tµν +∆Tµν):ν = 0,

for ρ, vi given the equation of state, while the heat transfer equation for the
temperature T under adiabatic conditions is

(∆Tµν):νv
µ = 0

Here,
Hµν = gµν − vµvν

To study small perturbations around the comoving velocity, density, and metric,
we use the linearized field equations:

δRµν = Kδ(Tµν − (1/2)Tgµν +∆Tµν − (1/2)∆T.gµν),

δ[(Tµν +∆Tµν):ν ] = 0,

δ[(∆Tµν):νv
µ] = 0

Now let
Sµν
0 = HµαHνβ(vα:β + vβ:α),

Sµν
1 = HµαHνβvρ:ρgαβ

Sµν
2 = (Hµαvν +Hναvµ)Qα

Then,
Sµν
0 = vµ:ν + vν:µ − vνvαvµ:α − vµvαvν:α

since
vαvα:β = 0

Now
δvµ:ν

= δ(vµ,ν − Γρ
µνvρ)

In particular,
δvi:j = δvi,j − Γk

ijδvk − δΓ0
ij ,

δvi:0 = δvi,0 − Γk
i0δvk

= δvi,0 − Γi
i0δvi

= δvi,0 − (1/2)(loggii),0δvi

= δvi,0 − (S′/S)δvi

Consider next
δ(vνvαvµ:α)

For ν = 0, this is
δ(v0vαvµ:α) =
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δ(vαvµ:α) =

= δ(vµ:0) + (δvk)vµ:k

= δ(vµ,0 + Γµ
0νv

ν)

+δvk(vµ,k + Γµ
k0)

For µ = 0, this is zero, while for µ = r, this is

δvr,0 + 2.Gammar0kδv
k

= δvr,0 + 2.Γr
0rδv

r = δvr,0 + (S′/S)δvr

(No summation over r). For ν = k,

δ(vνvαvµ:α) = δ(vkvαvµ:α)

= δvk.vαvµ:α)

= δvk.vµ:0 = δvk.Γµ
00 = 0

Proceeding in this way, we can linearize the differential equations for heat and
mass transfer in the expanding universe. Currently, work is going on to gener-
alize these equations to higher dimensional space-time.

0.11 Quantum noisy Boltzmann equation taking
into account quantum noise based on the
Hudson-Parthasarathy noisy Schrodinger equa-
tion

The HPS (Hudson-Parthasarathy-Schrodinger) equation taking into account a
single creation process, a single annihilation process and a single conservation
process is given by

dU(t) = (−(iH + P )dt+ L1dA(t)− L2dA(t)
∗ + SdΛ(t))U(t0

where for unitarity of U(t), we require that

P = L∗
2L2/2,

L∗
1 − S∗L2 − L2 = 0, L1 − L∗

2 − L∗
2S = 0

S + S∗ + S∗S = 0

Equivalently, writing L∗
2 = L, we get for the condition of unitarity,

L1 = L(1 + S), L2 = L∗, S∗S + S + S∗ = 0
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Writing
S = Z − 1,

this is equivalent to the conditions

L1 = LZ,L2 = L∗, Z∗Z = 1, P = LL∗/2

Thus, the HPS equation becomes for this special case,

dU(t) = [−(iH + LL∗/2)dt+ LZdA(t)− L∗dA∗ + (Z − 1)dΛ(t)]U(t)

Assuming that the system comprises N indistinguishable particles, all connected
to the same bath with the same coupling operators, we can write

L =

p∑
k=1

L⊗N
k , Z = Z×N

1 ,

so that
+Z∗

1Z1 = 1,

LZ =
∑
k

(LkZ1)
⊗N , H =

N∑
k=1

Hk +
∑

1≤k<j≤N

Vkj ,

P = LL∗/2 =

p∑
k,j=1

(LkL
∗
j )

⊗N/2

and the HPS equation becomes

dU(t) = [(−i(
∑
k

Hk +
∑
k<j

Vkj) +
∑
k,j

(LkL
∗
j )

⊗N/2)dt

+
∑
k

(LkZ1)
⊗NdA(t)−

∑
k

L∗⊗N
k dA(t)∗ + (Z⊗N

1 − 1)dΛ(t)]U(t)

Owing to the indistinguishability of the particles, the state ρ(t) of the system
and bath can be expressed as

ρ(t) = ρ1(t)
⊗N +

∑
k<j,i ̸=k,j

gkj(t)⊗ ρi(t)

+
∑

k<j<m,i̸=k,j,m

gkjm(t)⊗ ρi(t) + ...+

g12...N (t)

where the ρ′is are all copies of ρ1 and likewise, for each r = 1, 2, ..., N , the
ρ′i1...irs are all identical copies of each other for each 1 ≤ i1 < ... < ir ≤ N . In
order to get the correct marginals for the states, we must assume that

Tr2g12 = 0, T r3g123 = 0, ..., T rrg123..r = 0, r = 2, 3, ..., N
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Then, for example,

ρ123...r = ρ⊗r
1 +

∑
ρ⊗r−2
1 ⊗ g23

+
∑

ρ⊗r−3
1 ⊗ g234 + ...+ g123..r

In particular,
ρ12 = ρ⊗2

1 + g12,

ρ123 = ρ⊗3
1 + ρ1 ⊗ g23 + ρ2 ⊗ g31 + ρ3 ⊗ g12,

+g123

Note that ρ1, ρ2, ρ3 are identical copies of each other but act in different Hilbert
spaces indexed by the corresponding subscripts.

We now derive the master equation for the system state alone by tracing out
over the bath with the bath maintained in a coherent state:

ρ(t) = U(t)ρs(0)⊗ |ϕ(u) >< ϕ(u)|)U(t)∗

so that, using quantum Ito’s formulae and properties of the partial trace,

ρs(t) = Tr2ρ(t)

Then,
dρs(t) = −i[H, ρs(t)]dt− Pρs(t)dt− ρs(t)Pdt

L1ρs(t)u(t)dt− ū(t)L2ρs(t)dt+ Sρs(t)|u(t)|2dt

+ρs(t)L
∗
1ū(t)dt− ρs(t)L

∗
2u(t)dt+ ρs(t)S

∗|u(t)|2dt

−L2ρs(t)S
∗ū(t)dt− Sρs(t)L

∗
2u(t)dt

+Sρs(t)S
∗|u(t)|2dt+ L2ρs(t)L

∗
2dt

where P = L∗
2L2/2. Making the above substitutions, we get

ρ′s(t) = −i[
∑
k

Hk +
∑
k<j

Vkj , ρs(t)]

+θt(ρs(t))

where
θt(ρs) = (−1/2)(L∗

2L2ρs + ρsL
∗
2L2 − 2L2ρsL

∗
2)

+u(t)(L1ρs−ρsL∗
2−SρsL∗

2)+ū(t)(ρsL
∗
1−L2ρs−L2ρsS

∗)+|u(t)|2(Sρs+ρsS∗+SρsS
∗)

= θ1(ρs) + u(t)θ2(ρs) + ū(t)θ3(ρs) + |u(t)|2θ4(ρs)

where
θ1(ρs) = (−1/2)(L∗

2L2ρs + ρsL
∗
2L2 − 2L2ρsL

∗
2)

= (−1/2)(LL∗ρs + ρsLL
∗ − 2L∗ρsL)

θ2(ρs) = L1ρs − ρsL
∗
2 − SρsL

∗
2 = LZρs − ρsL− SρsL
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θ3(ρs) = ρsL
∗
1 − L2ρs − L2ρsS

∗ = ρsZ
∗L∗ − L∗ρ− s− L∗ρsS

∗

θ4(ρs) = Sρs + ρsS
∗ + SρsS

∗

In order to derive an approximate second-order Boltzmann equation, we assume
g123...r = 0, r = 3, 4, ..., N so that only ρ1, g12 and their copies are non-vanishing.
Thus, we are assuming that (using the simplified notation ρ for ρs)

ρ = ρ⊗N
1 +

∑
ρ⊗N−2
1 ⊗ g23

(Note that
∑
ρ⊗N
1 ⊗ g23 is the same as

∑
g12 ⊗ ρ⊗N−2

3 ). Substitution of this
expression, followed by partial tracing, then gives us

Tr23...Nθ1(ρ) =

= (−1/2)Tr23...N (LL∗ρ+ ρLL∗ − 2L∗ρL)

= (−1/2)Tr23...N (
∑

(LkL
∗
j )

⊗Nρ+ ρ
∑

(LkL
∗
j )

⊗N

−2
∑
k

L∗⊗N
j ρL⊗N

k )

= (−1/2)(Tr(LkL
∗
jρ1))

N−1(LkL
∗
jρ1 + ρ1LkL

∗
j − 2L∗

jρ1Lk)

−((N − 1)(N − 2)/4)[Tr(LkL
∗
jρ1))

N−3.[Tr23[(LkL
∗
j )

⊗3(ρ1 ⊗ g23 + ρ2 ⊗ g13)]]

+Tr23[(ρ1 ⊗ g23)(LkL
∗
j )

⊗3 + (ρ2 ⊗ g13)(LkL
∗
j )

⊗3]

−2.T r23[L
∗⊗3
j (ρ1 ⊗ g23 + ρ2 ⊗ g13)L

⊗3
k )]]

−((N − 1)(N − 2)/4)[Tr(LkL
∗
jρ1))

N−2.T r2[(LkL
∗
j )

⊗2g12 + g12(LkL
∗
j )

⊗2

−2L∗⊗2
j g12L

⊗2
k ]

= (−1/2)(Tr(LkL
∗
jρ1))

N−1(LkL
∗
jρ1 + ρ1LkL

∗
j − 2L∗

jρ1Lk)

−((N−1)(N−2)/4).T r((LkL
∗
j )

⊗2g12))(Tr(LkL
∗
jρ1))

N−3).[LkL
∗
jρ1+ρ1LkL

∗
j−2L∗

jρ1Lk]

−((N − 1)(N − 2)/2)[Tr(LkL
∗
jρ1))

N−2.T r2[(LkL
∗
j )

⊗2g12 + g12(LkL
∗
j )

⊗2

−2L∗⊗2
j g12L

⊗2
k ]

Likewise,
Tr23...N (θ2(ρ)) =

Tr23...N (LZρ− ρL− (Z − 1)ρL) =

Tr23...N (
∑
k

(LkZ1)
⊗Nρ− ρ.

∑
k

L⊗N
k − (Z⊗N

1 − 1)ρ.
∑
k

L⊗N
k ))

We evaluate the various terms on the rhs using the above second order approx-
imation to ρ:

Tr23...N ((LkZ1)
⊗Nρ)

= (Tr(LkZ1ρ1))
N−1LkZ1ρ1
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+((N−1)(N−2)/2).(Tr(LkZ1ρ1))
N−3.[Tr23[(LkZ1)

⊗3(ρ1⊗g23)+ρ2⊗g13+ρ3⊗g12)]

= (Tr(LkZ1ρ1))
N−1LkZ1ρ1+((N−1)(N−2)/2).(Tr(LkZ1ρ1))

N−3.[Tr23[(LkZ1)
⊗3(ρ2⊗g13+ρ3⊗g12)]]

+((N − 1)(N − 2)/2).(Tr(LkZ1)ρ1))
N−3.T r[(LkZ1)

⊗2g23]LkZ1ρ1

= (Tr(LkZ1ρ1))
N−1LkZ1ρ1+((N−1)(N−2)).(Tr(LkZ1ρ1))

N−2.T r2[(LkZ1)
⊗2g12]

+((N − 1)(N − 2)/2).(Tr(LkZ1)ρ1))
N−3.T r23[(LkZ1)

⊗2g23]LkZ1ρ1

Tr23..N [Z⊗N
1 ρ.L⊗N

k ]

= (Tr(Z1ρ1Lk))
N−1.Z1ρ1Lk

+Tr23...N [Z⊗N
1 (

∑
ρ⊗N−2
1 ⊗ g23)L

⊗N
k ]

= (Tr(Z1ρ1Lk))
N−1.Z1ρ1Lk

+((N − 1)(N − 2)/2)(Tr(Z1ρ1.Lk))
N−1Tr2[Z

⊗2
1 g12Z

⊗2
1 ]

Likewise,
Tr23...Nθ3(ρ) = (Tr23...Nθ2(ρ))

∗,

and finally,
Tr23...Nθ4(ρ) =

Tr23..N (Sρ+ ρS∗ + SρS∗)

= Tr23...N [(Z⊗N
1 − 1)ρ+ ρ(Z∗⊗N

1 − 1) + (Z⊗N
1 − 1)ρ.(Z∗⊗N

1 − 1)]

Now, based on the second-order approximation of the joint state of the particles,
consider the term

Tr23...N [Z⊗N
1 ρ] = (Tr[Z1ρ1])

N−1Z1ρ1

+Tr23...N [Z⊗N
1 .

∑
(ρ⊗N−2

1 ⊗ g23)]

= (Tr[Z1ρ1])
N−1Z1ρ1

+((N − 1)(N − 2)/2).(Tr(Z1ρ1))
N−3.T r23[Z

⊗3
1 (ρ1 ⊗ g23 + ρ2 ⊗ g13 + ρ3 ⊗ g12)]

= (Tr[Z1ρ1])
N−1Z1ρ1

+((N − 1)(N − 2).(Tr(Z1ρ1))
N−2.T r2(Z

⊗2
1 g12)

+((N − 1)(N − 2)/2).(Tr(Z1.ρ1))
N−3.(Tr(Z⊗2

1 g12)).Z1ρ1

Further,
Tr23...NZ

⊗N
1 ρ.Z∗⊗N

1

can also be evaluated along similar lines. Finally, we substitute these partial
trace expressions into the partial traces of the equation

ρ′(t) = −i[
∑
k

Hk +
∑
k<j

Vkj , ρ(t)]

+θt(ρ(t))
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i.e.,

∂tρ1(t) = Tr23...Nρ
′(t) = −i[H1, ρ1(t)]+(N−1)Tr2[V12, ρ1(t)⊗ρ1(t)]+Tr23...Nθt(ρ(t))

and likewise in the equation

∂t(ρ1(t)⊗ ρ1(t) + g12(t)) =

Tr34...Nρ
′(t) + [H1 +H2 + V12, ρ1(t)⊗ ρ1(t) + g12(t)]

+(N − 2)Tr3[V13 + V23, ρ1 ⊗ ρ1 ⊗ ρ1 + ρ1 ⊗ g23 + ρ2 ⊗ g13 + ρ3 ⊗ g12]

+Tr34...Nθt(ρ(t))

with Tr34...Nθt(ρ(t)) being evaluated in a similar way as above. This calculation
gives us two nonlinear differential equations for ρ1(t), g12(t) and can be termed
as the second-order quantum Boltzmann equations for an open quantum system
comprising N indistinguishable particles.

Some remarks: It should be noted that the form of the Lindblad operators
that couple a system of indistinguishable particles to a noisy quantum bath has
been selected so that the interaction of the particles with the bath is symmetric
with respect to interchange of the particles. For example, such an interaction
term involving the annihilation process would have the general form MdA(t)
where

M = [

p∑
k=1

∑
σ

Lk,σ1 ⊗ ...⊗ Lk,σN ]

with Lk,j , k = 1, 2, ..., p, j = 1, 2, ..., N and σ running over SN , namely, the
group of all N ! permutations of {1, 2, ..., N}. It is easy to see that M can be
expressed in the form

M =
∑
k

L⊗N
k

where the operators Lk are linear combinations of the Lk,j , j = 1, 2, ..., N . For
example,

L1 ⊗ L2 + L2 ⊗ L1 =

(1/2)[(L1 + L2)
⊗2 − L⊗2

1 − L⊗2
2 ],

L1 ⊗ L2 ⊗ L3 + allpermutations

= (1/6)[(L1 + L2 + L3)
⊗3 − (L1 + L2)

⊗3 − (L2 + L3)
⊗3 − (L1 + L3)

⊗3

+L⊗3
1 + L⊗3

2 + L⊗3
3 ]
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0.12 How to compute the perturbation to the
velocity and density/four current density
of matter comprising of electrons, positrons,
leptons caused and small perturbations to
the metric around the RW metric at the
quantum level using Feynman’s path inte-
grals for fields

1.Let H0 + V (t) = H(t) be the Hamiltonian of a field with H0 being time
independent and V (t) time dependent. The propagator of the field is an operator
Kernel K(t, t′) that satisfies the differential equation

(i∂t −H0 − V (t))K(t, t′) = δ(t− t′).I

so we can write its expansion as

K = (i∂t −H0)
−1 + (i∂t −H0)

−1.
∑
n≥1

(V.(i∂t −H0)
−1)n

= (i∂t −H0)
−1.(1− (V.(i∂t −H0)

−1)−1

This is well approximated up to linear orders in the time-varying perturbing
potential V by the expression

K ≈ (i∂t −H0)
−1 + (i∂t −H0)

−1V.(i∂t −H0)
−1

In order to see how this is calculated, we assume that H0 has a complete or-
thonormal set of eigenfunctions |n >= |un >= un(r), with energy eigenvalues
En. Then, we can write

(i∂t −H0)
−1 = (2π)−1

∫
(E −H0)

−1exp(−iE(t− t′))dE

= (2π)−1

∫ ∑
n

|n >< n|
E − En

exp(−iE(t− t′))dE

so for example, writing

G = (i∂t −H0)
−1V.(i∂t −H0)

−1

we find that its kernel is given by

G(t, t′) = (2π)−2

∫
dEdE′ds

∑
n,m

((E−En)(E
′−Em))−1.exp(−iE(t−s)).exp(−iE′(s−t′))|n >< n|V (s)|m >< m|

= (2π)−2

∫
dEdE′

∑
n,m

((E − En)(E − Em))−1 < n|V̂ (E − E′)|m > |n >< m|
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where

V̂ (E) =

∫
V (s)exp(iEs)ds

This formula will play a fundamental role in computing the velocity and density
perturbations in our expanding universe determined by the quantum mechanical
version of the Einstein field equations linearized around the RW metric based
on Feynman’s path integral for fields.

Consider now the action functional for metric perturbations around the RW
metric obtained from the Einstein-Hilbert action plus the action functional for
the metric interacting with the Dirac field of electrons and positrons. The total
Lagrangian has the form

Sg[V ] +

∫
[ψ̄(x)[γaV µ

a (x)(i∂µ + iΓµ(x))−m]ψ(x)d4x

= Sg[V ] + Sd[V, ψ, ψ̄]

where Sg[V ] is the Einstein-Hilbert action as a functional of the tetrad V µ
a (x)

of the metric field and Γµ(x) is the spinor connection of the gravitational field
given by

Γµ(x) = Γab
µ (x)γab/4,

Γab
µ (x) = (1/2)V aνV b

ν:µ, γab = [γa, γb]

The quantum-averaged four-current density field of matter, comprising electrons
and positrons, is then

< Jµ(x) >= Z−1m

∫
exp(iSg[V ] + iSd[V, ψ, ψ̄])ψ̄(x)γ

µψ(x)DV.Dψ.Dψ̄

where

Z =

∫
exp(iSg[V ] + iSd[V, ψ, ψ̄])DV.Dψ.Dψ̄

More generally, the higher-order quantum correlations in the matter current
density at the space-time points x1, ..., .xr are given by

< Jµ1(x1)...J
µr (xr) >=

Z−1mr

∫
exp(iSg[V ] + iSd[V, ψ, ψ̄])(Π

r
k=1ψ̄(xk)γ

µkψ(xk))DV.Dψ.Dψ̄

The integral w.r.t Dψ.Dψ̄ is a Fermionic Gaussian integral, and evaluating this
part gives us for the average current

< Jµ(x) >=

C.

∫
exp(Sg[V ]).det(V µ

a γ
a(i∂µ + iΓµ)−m).T r(γµS(x, x|V ))DV

where
S(x, y|V ) =< T (ψ(x)ψ̄(y)) >
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with V being fixed. Note that we have used the identity

< ψ̄(x)γµψ(x) >= Tr(γµ < ψ(x)ψ̄(x)) >)

= Tr(γµS(x, x|V ))

Note that

Slm(x, y|V ) = θ(x0 − y0) < ψl(x)ψ̄m(y) > −θ(y0 − x0) < ψ̄m(y)ψl(x) >

where ψ̄(x) = ψ(x)∗γ0. It follows easily from the canonical equal time anticom-
mutation relations

{ψl(x), ψm(y)∗} = δ3(x− y), x0 = y0

that that the electron propagator S(.|V ) in a gravitational field satisfies

DS(x, y) = iγaV 0
a (x).δ

4(x− y)

where D is the Dirac operator in a gravitational field, i.e.,

D = γaV µ
a (i∂µ + iΓµ)−m

Thus,
S(x, y) = (D−1γaV 0

a )(x, y)

= [[γbV µ
b (i∂µ + iΓµ)−m]−1iγaV 0

a ](x, y)

Assuming that the gravitational field is weak, we write

V µ
a (x) = δµa + ϵµa(x)

where ϵµa(x) is of the first order of smallness. Then, up to first order in ϵ, we
have

Γab
µ = (1/2)V aνV b

ν:µ = (1/2)V aν(V b
ν,µ − Γρ

νµV
b
ρ )

= (1/2)ηaν(ϵbν,µ − Γb
νµ)

= (1/2)(ϵba,µ − Γba
0µ)

where
Γba
0µ = ηaνΓ

b
νµ = ηaνηbcΓcνµ

Note that for a weak gravitational field, we take

gµν = ηµν + δgµν = ηabV
a
µ V

b
ν

where
δgµν = ϵµν + ϵνµ

so
Γaνµ = (1/2)(ϵaν,µ + ϵaµ,ν − ϵµν,a
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+ϵνa,µ + ϵµa,ν − ϵνµ,a)

Thus, we can write up to linear orders in ϵ:

D = [iγa∂a −m] + iϵµa(x)γ
a∂µ

+iγaΓa(x)

where
γaΓa(x) = K(µ, ν, a)ϵµa,ν(x)

summation over all the repeated indices is understood and K(µ, ν, a) consists
of constant matrices built out of linear combinations of products of three of the
Gamma matrices γc. In case the electron is bound by a potential V (r), the
Dirac operator for the electron, taking into account gravitational effects, will be
given by

D = [iγa∂a −m+ iγ0V ] + iϵµa(x)γ
a∂µ

+iK(µ, ν, a)ϵµa,ν(x)

and then, if |n >,En, n ≥ 1 denote the stationary states corresponding to the
energy eigenvalues of the Dirac electron bound to by the potential V , we get
approximately, for the electron propagator taking into account both the binding
potential V and the weak gravitational field ϵµa ,

S = (D−1γaV 0
a ) =

D−1
0 −D−1

0 .[iϵµa(x)γ
a∂µ

+iK(µ, ν, a)ϵµa,ν(x)].D
−1
0

where
D0 = iγa∂a −m+ iγ0V = iγ0(∂t + V ) + (γ, i∇)

where γ = (γ1, γ2, γ3). Now, we can write

D−1
0 (x, y) =

∫
γ0.[

∑
n

< rx|n >< n|ry > /(E − En)]exp(−iE(tx − ty))dE

where
x = (tx, rx), y = (ty, ry)

Therefore,

S(x, y) = D−1
0 (x, y)−

∫
D−1

0 (x, z).[iϵµa(z)γ
a∂zµ

+iK(µ, ν, a)ϵµa,ν(z)].D
−1
0 (z, y)d4z

In case the binding potential V = 0, we have

D−1
0 (x, y) =

∫
exp(−ip.(x− y))d4p/(γ.p−m)
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where

p.(x− y) = pµ(x
µ − yν), γ.p = γµp

µ

and the above formula reduces to

S(x, y)−D−1
0 (x, y) =

−
∫
exp(−ip.(x−z))[γ.p−m]−1.[ϵµa(z)qµγ

a+i.K(µ, ν, a)ϵµa,ν(z)].[γ.q−m]−1exp(−iq.(z−y))d4pd4qd4z

This expression can be simplified by defining∫
ϵµa(z)exp(ip.z)d

4z = ϵ̂µa(p)

which implies that ∫
ϵµa,ν(z)exp(ip.z)d

4z = −ipν ϵ̂µa(p)

so that

S(x, y)−D−1
0 (x, y) =

−
∫
[γ.p−m]−1[γ.q−m]−1exp(−ip.x+q.y)[qµγa+(pν−qν)K(µ, ν, a)]ϵ̂µa(p−q)d4pd4q

In particular, for computing the quantum average perturbation to the four cur-
rent density field, as seen above, we require

S(x, x)−D−1
0 (x, x)

−
∫
[γ.p−m]−1[γ.q−m]−1exp(−i(p−q).x)[qµγa+(pν−qν)K(µ, ν, a)]ϵ̂µa(p−q)d4pd4q

This completes the formulation of our problem of calculating the approxi-
mate average four current field or equivalently, the density and velocity pertur-
bations of the matter field and more generally, the space-time moments of the
four current density field caused by metric perturbations around a flat space-
time metric. More generally, if we wish to calculate the quantum average/space-
time moments of the four current field perturbations caused by small pertur-
bations around a given classical metric like the RW metric, we must first ex-
press the metric perturbations in terms of the tetrad perturbations in both the
Einstein-Hilbert action and in the Dirac action, and path integrate w.r.t these
tetrad perturbations.
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0.13 Conclusions

We analyze various parametrizations of maximally symmetric spaces in higher-
dimensional spacetime that provide natural generalizations of the four-dimensional
Robertson-Walker metric corresponding to a homogeneous and isotropic ex-
panding universe, and then look at the Maxwell, Klein-Gordon, and fluid dy-
namical equations in such a space-time. As regards the former two equations,
we separate the space and time variables and are able to obtain separate differ-
ential equations for the spatial and temporal components. As regards the fluid
dynamical and heat transfer equations, we introduce corrections to the energy-
momentum tensor of matter caused by viscous and thermal effects and are able
to formulate the required differential equations for temperature diffusion and
convection. Future work is being directed toward formulating the Einstein field
equations for such higher-dimensional maximally symmetric spaces and also
analyzing the problem of density, velocity, and metric perturbation evolutions
in a homogeneous and isotropic background, which is expected to provide a
clue to galactic evolution in higher-dimensional space-times. To this end, in
this paper, we explain how to compute the Ricci tensor components in higher-
dimensional maximally symmetric space-times and also how to compute the
partial differential equations satisfied by the velocity and temperature fluctua-
tions using linearized heat and mass transfer equations in general relativity. It
should be mentioned that as regards computing the contribution to the energy-
momentum tensor of the matter fluid caused by viscous and thermal effects, we
use the existing results in the literature based on the second law of thermody-
namics, which yields the general form of the viscous and thermal contribution
to the energy-momentum tensor of the matter fluid. We also present some com-
putations on the quantum Boltzmann equation for open quantum systems and
touch upon the problem involving computing the quantum average of the matter
four-current (i.e., density and velocity perturbations) when the matter consists
of only electrons and positrons, using the Feynman path integral formula for the
Dirac field interacting with the quantum gravitational field via the spinor con-
nection of gravity. The importance of the quantum Boltzmann equation stems
from quantum cosmology, wherein we have a very large number of particles in
a volume and we are interested only in the dynamics of a single, or at most a
small finite number of particles, from the quantum mechanical angle.
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