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Abstract

The Kantowski-Sachs spacetimes in the context of creation field theory
of Hoyle and Narlikar are investigated. Exact solutions are derived by
considering an arbitrary creation field function that depend generally on
space and time. Exploring the physical parameters of these solutions
reveal that both the inflationary scenario and the accelerated expansion
of the universe are possible in the framework of C-field cosmology even
if no restriction is made on the C-field function. In order to avoid the
Big Bang scenario, a non-singular solution was introduced. This solution
indicates that a linear C-field function gives rise to a universe of constant
energy density.
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1 Introduction

The Big Bang theory provides the most prevailing cosmological model that de-
scribe the evolution of our actual universe. The successful predictions of the
model range from the expansion of space to the existence of the cosmic mi-
crowave background radiations. Despite its extraordinary success, the Lambda-
CDM model has several shortcomings due to its failure to provide satisfactory
answers to some of the puzzles arising in cosmology [1].

In particular, the model gives rise to a singularity in the past (at ¢ = 0) and
possibly one in the future. The singularity in the beginning of the universe
raises many issues that are hard to explain in the framework of the Big Bang
cosmology. For example, how to explain the origin of the universe? Where did
the energy in the beginning of the universe come from? These questions, along



with others, remained without satisfactory answers until the present day. Other
issues of concern, with the Big Bang model, involves the horizon and the flatness
problems which could be explained through the introduction of inflationary cos-
mology [2]. Although the theory of cosmic inflation at the very beginning of the
universe settled many issues in cosmology and theoretical physics, the physical
field that is supposed to cause such inflation has not yet been discovered.

In order to address these shortcomings, several alternative theories have been
proposed. In this context, one of the most interesting approaches to settle such
issues is provided by the creation field theory of Hoyle and Narlikar [3]. In this
theory, a field theoretic approach was adopted where a chargeless and massless
scalar field is implemented to explain the creation of matter. This spinless non-
massive C-field is postulated to provide a mechanism for the continuous creation
of matter in the universe. Such approach enables one to avoid the spontaneous
explosive creation of matter at ¢ = 0 in the Lambda-CDM model by suggesting
that matter could be created at the expense of the negative energy of the C-
field. The elimination of both past and future singularities is another advantage
of this approach. Furthermore, the horizon and the flatness problems could
disappear from cosmology in the framework of Hoyle-Narlikar theory.

In literature, a considerable number of studies have been conducted to obtain
exact solutions of Einstein field equations (EFEs) in the presence of a scalar
field. In this regard, Bianchi type spacetimes have been investigated using the
creation field theory [4]. The theory has also been implemented to study plane
symmetric spacetimes [5]. Furthermore, Gates and his collaborators explored
Kaluza-Klein dust filled universe in the context of creation field cosmology [6].
The Friedman metric was also investigated in this formalism, see for instance
[7, 8, 9]

On the other hand, Kantowski-Sachs spacetime is an interesting solution of Ein-
stein field equations describing a spatially homogeneous and anisotropic universe
[10]. In fact, the Kantowski-Sachs metric is the simplest anisotropic model which
makes it a good tool for studying the early epoch of the universe. In the con-
text of General Relativity, the Kantowski-Sachs universes have been extensively
studied in literature [11, 12, 13, 14]. Singh and Chaubey have extended these
research by implementing the creation field theory to explore such universes[4].
To the best of our knowledge, most of the published works in creation field the-
ory considered a creation field function depending only on the time variable. We
believe, however, that considering a more general C-field function that depends
on space and time will enable us to increase our insight of the potential effects of
the presence of such creation field on the geometry and evolution of Kantowski-
Sachs universes. Therefore, we consider, in this paper, a more general C-field
function of the form C' = C(¢,r) aiming to provide a better explanation of the
puzzles arising in cosmology.

The plan of this paper is given as follows. In the next section, we introduce the
creation field theory of Hoyle and Narlikar. Then, the Einstein field equations
in the presence of creation field for the Kantowski-Sachs metric is obtained in
section ITT where exact solution of the derived equations are presented. Finally,
physical interpretation of the solution and concluding remarks are discussed in



the last section.

2 Creation Field Theory

Recall that the Einstein field equations of General Relativity are given by

1
Ry = 5 R = KT, (1)
where 17, is the Ricci tensor, g, is the metric tensor, R = g""R,,,, is the Ricci
scalar while k = ng is Einstein gravitational constant which can be taken,

in standard unit, as unity (kx = 1) and T;ST) is the energy-momentum tensor
associated with matter. Notice that the energy-momentum tensor for perfect
fluid is given as

T;w(m) _ (p +p)uuuu _ pg,uz/7 (2)

where both the energy density p and the pressure p are functions of ¢ and r in
general. In Hoyle-Narlikar theory, the EFEs are modified by adding an extra
term to the right hand side representing the energy-momentum tensor associated
with the C-field. Therefore, the modified field equation in this formalism reads

1 m
Ruy - iRg/ﬂ/ = _(Tlil/) + T;SE))’ (3)

where the C-field term is given by the following equation:

1 (03
T = ~[(CuCy = 59C*Ca). (W
In the above equation, f represents the C-field coupling constant and C), = jﬁ, .
Thus, the conservation of energy in this formalism is modified as
v(m) __ C) _ v
Ty = ~Ti0) = forc, (5)

where the semicolon (;) denotes covariant differentiation. Recall that in the
framework of C-field theory, the expansion of the universe could be explained
by the presence of negative energy density due to the C-field where such energy
gives rise to repulsive gravitational field.

3 Solution of the Modified Field Equations
The line element of the Kantowski-Sachs metric is given by [10]
ds* = dt* — R*(t)dr?® — S*(t)[d6* + Sin*0dp?]. (6)

It is worth noting that the 0-1 component of the field equation (3), i.e Ro1 —
3Rgo1 = —(TO(T) + Télc)) is applied to metric (6), one arrives at the conclusion
that C;C, = 0 which gives rise to two cases, either C;=0 or C,.=0 or both of



them are zero. We consider these cases in details in the following analysis.
Casel: C;=0and C, #0

In this case, C is a function of 7 only. Applying the EFEs (3) to Kantowski-Sachs
metric (6) for this case gives rise to the following system:

s RS 1 1,
§+2ﬁ+§zpf§fcm (7)
25" 5”2 1 1 1
T—i_?—i_?:f(i—’_ﬁ)cg_p’ (8)
R/Sl S// R// 1 5
ﬁ+§+§_§f6’r—p7 (9)

where the dash represents differentiation with respect to ¢ while the partial
derivatives of the creation field function C' were explicitly written. In order to
solve the above system, we can subtract Eq.(9) from Eq.(8) and differentiate
the resulting equation with respect to r to obtain C,.C,.,. = 0. Hence, C,.,. = 0
since we assumed that C,. # 0. Therefore, we have a linear C-field function, i.e

C(r) =X\ +q, (10)

where A and « are real numbers. We can find solution to the field equations by
inspection. For instance, if one assumes that R = Ry and S = Cosh(t) then
it is straightforward to show that the field equations for this assumption gives
rise to constant energy density and constant pressure where p = 1 — R2 and
p = R3 — 1. A realistic physical solution requires that Ry € (—1,1) so that the
energy density is positive and consequently the pressure will be negative. Also,
for this solution to satisfy all the field equations (Egs.(7) to (9)), we need to

have A\ = \/%RO. Therefore, the C-field function (10) can be re-written as

C(r) = \/?Ro’r + a. (11)

The resulting metric for this solution is given by

ds® = dt* — Ridr* — Cosh?(t)(d6* + Sin*0d¢?), (12)

and the corresponding physical parameters are shown in table 1 below.

The Metric ds? dt? — RZdr? — Cosn?(t)(d6? + sin26d¢?).

Volume V RoCosh2(t)

Scale Factor a(t) VRoCosh2(t)

Directional Hubble Parameters | Hj = 0, Ho = Hg = Tanh(t)

Mean Hubble Parameter H %Ta,nh,(t)

Expansion Scalar 0 2Sech(t)Sinh(t)

Deceleration Parameter g 13— 3cotn?(v)

Table 1: Physical parameters of the first Solution (metric (12))



Case Il : C., =0 and C; #0

In this case, C is a function of ¢ only. Similarly, both the energy density and
the pressure will be independent of . The field equations (7) to (9) is reduced
to the following system:

S2 RS 1

Z 49 — = 1
2Tl T = (13)
251/ SIQ 1

eI H 14
Tt tem =P (14)

R/S/ S// R//

RS +§+§—*p. (15)

We can now make further assumptions to obtain solutions for the above system.
In particular, we will consider a solution in the form of power function and
another solution in terms of exponential function as shown below.

Case II-1 Solution in terms of Power Functions

Assume R = t™ and S = t". Then, subtracting Eq.(15) from Eq.(14) after
substituting the assumed values of R and S leads to the following equation:

272" L 2n? —2n —mn+n—m? +m = 0. (16)

The above equation makes sense only if n = 1 and m = £v/2. As aresult, S =1
and R = t+V?2 giving rise to the following metric:

ds® = dt> — t¥2V2dr? — 2(df® + Sin20de?). (17)
Consequently, the energy density and pressure are given as
L, o 2422
= 1) [ p— 1
p= 31070 + =, (19)
1 2
p= 5f0'2(t)$t—2. (19)

The parameters of the above solutions are given in table 2 below.

The Metric ds? 4t — 1 F2VZ4,2 _ 420402 4 5in20d42).
Volume V 2EV2
2+v2
Scale Factor a(t) t 3
Directional Hubble Parameters | Hy = +¥2, Hy — Hy = 1
Mean Hubble Parameter H 223
Expansion Scalar 6 Qit\/E
Deceleration Parameter g %

Table 2: Physical parameters of the second Solution (metric (17))



Obviously, the equation of energy density (18) and pressure (19) are generally
valid for arbitrary creation field function of time. However, we can determine
the function C(t) explicitly if we implement further assumption. For example,
if we assume the energy density is constant, i.e p = pg, then we can write the
creation field function as

C2p0,, 4E£2V2 [4£2v2 . [ 2p
C(t) = 7t2— 7 —\/ 7 Tan m—FCh (20)

which is an increasing function of time.

Case II-2 Solution in terms of Exponential Functions

We can develop a non-singular solution by implementing the exponential func-
tion. In particular, by assuming that S = e4* and R = B! and substituting
these values in the EFEs, one can easily reach the conclusion that: A = 0 and
B = +1. Consequently, S =1 and R = e** leading to the following metric:

ds? = dt* — e dr? — (d6* 4 Sin®0d¢?). (21)
Hence, the energy density and pressure are equal and can be written as
1 12
p=p= SO0 1, (22)

The parameters corresponding to solution (21) are shown table 3.

The Metric ds2 dt2 — eT2t4:2 _ (402 + sin20d¢2).
Volume V ett
4+t
Scale Factor a(t) e 3
Directional Hubble Parameters Hy = +1, Hg = Hz =0
Mean Hubble Parameter H i%
Expansion Scalar 6 3
Deceleration Parameter g -1

Table 3: Physical parameters of the third Solution (metric (21))

Similar to the previous case, the creation field function is arbitrary but it can
be determined explicitly if we assume the energy density is constant, i.e p = pg.
In this case, the C-function becomes

2(po +1)

oft) = ;

t+c, (23)

which is linear and increasing.



CaseIll : C;=C, =0

In this case, C' is a pure constant, i.e C' = Cy. One can find a solution for the
EFEs (Eq.(7) to (9)) by implementing hyperbolic functions. In particular, if we
assume R = Sinh(t) and S = Cosh(t), the resulting metric can be written as

ds* = dt* — Sinh*(t)dr? — Cosh?(t)(d6? + Sin*0dp?). (24)

This assumption also gives rise to constant energy density and constant pressure
where p = 3 and p = —3. The physical parameters of the obtained solution are
given in table 4.

The Metric ds? dt?2 — Sinh2(t)dr?2 — Cosh?(t)(d02 + Sin20d¢2).
Volume V Sinh(t)CoshQ(t)

Scale Factor a(t) \S/Sinh(t)Cosh2(t)

Directional Hubble Parameters Hp = Cosh(t), Ho = H3 = Tanh(t)

Mean Hubble Parameter H w

Expansion Scalar 6 Coth(t) 4+ 2Tanh(t)

Deceleration Parameter ¢ [Cosh2(t) + Ta'n.hz(t) — 6.5]

9
28inh2/3(t)Cosht/3 ()

Table 4: Physical parameters of the fourth Solution (metric (24))

4 Discussion

Kantowski-Sachs spacetimes in the framework of creation field cosmology of
Hoyle and Narlikar have been considered where four interesting solutions were
obtained. In this context, our calculations show that the corresponding C-field
can either be a function of time or a function of space but cannot depend on
both variables simultaneously. In particular, the creation field can only admit a
linear function of r but it has no restriction when expressed in terms of the time
variable as it permits an arbitrary function of time in general. However, while
the energy density and pressure, given by Eqgs(18), (19) and (22), involve arbi-
trary C-field function of ¢, our calculations interestingly show that if the energy
density is assumed to be constant, then the corresponding C-field is restricted
to increasing functions of time which is in agreement with the results obtained
by Hoyle and Narlikar [15]

The first solution which correspond to metric (12) admits an inflationary sce-
nario if Ry € (0,1) since the scale factor in this interval is increasing function of
time. Furthermore, the deceleration parameter is always negative which indi-
cates an accelerating universe. It is also worth noting that the relation between
the constant energy density and the constant pressure for this solution is given
as p = —p. Recall that this equation of state, in the context of Big Bang cosmol-
ogy, describes a universe dominated by dark energy. However, in the creation



field theory, dark energy is not needed to produce negative pressure.

Similarly, the second solution (17) leads to inflationary scenario and can de-
scribe both an accelerating and decelerating universes depending on the metric
coefficient R. In particular, the deceleration parameter ¢ is negative for the
metric ds? = dt2 — t2V2dr? — 12(d6? + Sin20d¢?) and positive for the metric
ds® = dt2 — t72V2dr? — 12(df? + Sin20d¢?). Hence, the former metric describes
an accelerating universe while the later characterises a decelerating one. Fur-
thermore, the relation between energy density and pressure is given by

p=p- V2 (25)
which imply that the pressure and energy density tend to be equal as t ap-
proaches infinity. This indicates that at the far future, the equation of state
(25) describes a universe filled with stiff-fluid.

On the other hand, the third solution (21) was free of singularities and thus
does not require a big bang scenario. This means that the universe has always
existed and consequently there is no need for a mechanism of spontaneous cre-
ation as in the Lambda-CDM model. The evolution of the scale factors of both
metrics (21) indicates that the inflationary scenario is possible for the first met-
ric ds? — etdr? — (d6* + Sin?0d$?) in the period t € (0, 00) while inflation takes
place for the other metric ds? = dt? — e~tdr? — (df? + Sin?0d$?) in the period
t € (—00,0). Furthermore, the pressure and energy density are always equal for
this solution giving rise to a universe of stiff fluid.

Finally, the fourth solution (24) was constructed by assuming a constant C-field
function. This solution characterises a universe with inflationary scenario and
admits an equation of state of the form p = —p. Interestingly, the universe
described in this case gives rise to a scenario in which the expansion is acceler-
ating for a short period of time after the big bang then decelerating afterwards
as the deceleration parameter ¢ is generally positive and can be negative only
for small ¢ (roughly t < 1.5).
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