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In the realm of computer graphics, the ability to learn continuously from non-stationary data streams

while adapting to new visual patterns and mitigating catastrophic forgetting is of paramount

importance. Existing approaches often struggle to capture and represent the essential characteristics

of evolving visual concepts, hindering their applicability to dynamic graphics tasks. In this paper, we

propose Ancestral Mamba, a novel approach that integrates online prototype learning into a selective

discriminant space model for ef�cient and robust online continual learning. The key components of

our approach include Ancestral Prototype Adaptation (APA), which continuously re�nes and builds

upon learned visual prototypes, and Mamba Feedback (MF), which provides targeted feedback to adapt

to challenging visual patterns. APA enables the model to continuously adapt its prototypes, building

upon ancestral knowledge to tackle new challenges, while MF acts as a targeted feedback mechanism,

focusing on challenging classes and re�ning their representations. Extensive experiments on

graphics-oriented datasets, such as CIFAR-10 and CIFAR-100, demonstrate the superior performance of

Ancestral Mamba compared to state-of-the-art baselines, achieving signi�cant improvements in

accuracy and forgetting mitigation.

1. Introduction

Online continual learning (OCL) aims to learn continuously from a non-stationary data stream while

adapting to new data and mitigating catastrophic forgetting[1][2][3][4]. Recently, online prototype

Learning (OnPro)[5] has attracted a lot of attention with its brilliant performance in the OCL �eld. This
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paradigm holds immense potential for real-world applications, particularly in the realm of computer

graphics, where the ability to process and adapt to evolving visual patterns, shapes, and colours is of

paramount importance.

Catastrophic forgetting[5][6][7][8]  stands as a major hurdle in online continual learning, akin to a visual

artist abruptly losing previously acquired skills when adapting to new styles. The sudden erosion of

knowledge hinders the model’s ability to maintain a comprehensive understanding of the visual world.

Moreover, the capacity to capture and represent essential characteristics of each class or visual concept is

crucial for generalization and robustness, yet current methods often struggle in this regard[5][9].

Adapting to evolving data distributions is another challenge, as the model needs to continuously update

its knowledge without access to previous data[10][11]. Addressing these challenges is of paramount

importance for the advancement of online continual learning and its application in real-world scenarios.

Existing continual learning approaches, such as iCaRL [1] and ASER [12], have made signi�cant strides in

addressing these challenges. However, they often grapple with the trade-off between stability and

plasticity, struggling to �nd an optimal balance between preserving previously acquired knowledge and

integrating new information. Consequently, there is a pressing need for innovative solutions that can

effectively learn discriminative features, ef�ciently manage limited resources, and seamlessly adapt to

evolving data distributions.

To address these limitations, there has been growing interest in developing more ef�cient and effective

online continual learning techniques. One promising direction is the use of prototype-based methods[13]

[14][15], which have demonstrated strong performance and ef�cient memory usage in various domains. In

particular, the CoPE architecture[13]  introduces a continual prototype evolution approach that learns

prototypical class representations in a shared latent space. However, like many online continual learning

approaches, CoPE may still be susceptible to shortcut learning[10], where the model relies on super�cial

cues rather than learning meaningful representations. This can lead to biased and non-generalizable

features, hindering the model’s performance on new tasks or under distribution shifts. OnPro[5]  has

emerged as a promising framework to address shortcut learning and catastrophic forgetting in online

continual learning. OnPro encourages the model to learn features that are close to the corresponding

prototypes and far from others; OnPro promotes the learning of discriminative and generalizable

representations.
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In this paper, we introduce Ancestral Mamba, a visually inspired approach that draws from the adaptive

and resilient nature of the mamba snake in the visual world. Our approach integrates online prototype

learning into a discriminant space model framework, enabling ef�cient and robust online continual

learning. The main contributions of this work are as follows:

We propose the Ancestral Prototype Adaptation (APA) module, which learns and maintains prototypes

that capture the essential characteristics of each class or visual concept. APA continuously re�nes and

builds upon visual prototypes to adapt to new challenges while preserving ancestral knowledge.

We introduce the Mamba Feedback (MF) mechanism, a visual feedback loop that adaptively focuses

on challenging patterns and re�nes decision boundaries. MF guides the model to iteratively improve

its understanding of the visual world based on targeted feedback.

We conduct extensive experiments on CIFAR-10 and CIFAR-100 datasets; our approach showcases its

ability to learn discriminative features and adapt to evolving visual patterns and demonstrates the

superiority of Ancestral Mamba in terms of accuracy, ef�ciency, and robustness compared to State-Of-

The-Art(SOTA) baselines.

We propose a novel paradigm to the study of feedback loops in the context of online continual

learning for visual tasks.
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Figure 1. The APA module can reduce the distance between the new sample and the most similar prototype

and increase the distance between the other prototypes during the learning process.

Figure 2. Overview of the proposed Ancestral Mamba. The input data is processed by the selective

discriminant space model (SDSM) to extract initial features and prototype mappings. These features are then

passed through the Ancestral Prototype Adaptation (APA) module and the Mamba Feedback (MF) mechanism

to learn discriminative features and adapt to evolving data distributions.

qeios.com doi.org/10.32388/K05TKC 4

https://www.qeios.com/
https://doi.org/10.32388/K05TKC


2. Related Work

2.1. Continual Learning Architectures

Continual learning has been a core research area in machine learning and arti�cial intelligence, with

numerous architectures proposed over the years. Incremental Classi�er and Representation Learning

(iCaRL)[16]  is a widely used method for class-incremental learning, which simultaneously learns strong

classi�ers and data representations while allowing new classes to be progressively added. However, iCaRL

may struggle with scalability and ef�ciency when dealing with a large number of classes and samples[16]

[17]. Incremental learning architectures have revolutionized continual learning by introducing memory-

ef�cient approaches and adaptive mechanisms. Adversarial Shapley Value Experience Replay (ASER)

[12]  achieves competitive performance by selecting buffered images for replay based on their Shapley

value scores, which measure their ability to preserve latent decision boundaries for old classes while

enabling plasticity for new classes. Dark Experience Replay (DER++)[2]  is a simple yet effective baseline

method that promotes consistency with the model’s past by matching the current logits with those

sampled throughout the optimization trajectory. However, these methods may still suffer from

catastrophic forgetting and struggle to learn discriminative features[5][14][18]. Online continual learning

frameworks, such as Continual Prototype Evolution (CoPE)[13] and Dual View Consistency (DVC)[17], have

recently emerged as promising alternatives for learning from non-stationary data streams. CoPE learns

prototypical class representations in a shared latent space while addressing catastrophic forgetting, while

DVC explores semantic information in the single-pass data stream through dual view consistency.

Ancestral Mamba builds upon these online continual learning frameworks and integrates online

prototype learning techniques to enhance robustness, ef�ciency, and adaptability.

2.2. Ef�cient Continual Learning Techniques

To address the computational challenges of continual learning, various techniques have been proposed to

improve ef�ciency. One line of research focuses on regularization-based methods, which aim to mitigate

catastrophic forgetting by penalizing drastic changes in important parameters. Methods such as Elastic

Weight Consolidation (EWC)[6][19][20]  and Synaptic Intelligence (SI)[21][22]  introduce penalties based on

the importance of parameters for previous tasks, allowing the model to adapt to new tasks while

retaining old knowledge.
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Another approach is to use memory-ef�cient architectures and replay mechanisms, reducing the storage

and computational requirements for continual learning. Techniques such as Gradient Episodic Memory

(GEM)[23]  and Experience Replay (ER)[24]  store a subset of previous samples and replay them during

training to mitigate forgetting. Parameter isolation methods, such as Progressive Neural

Networks[25]  and PackNet[26], allocate separate parameters for different tasks to prevent interference.

Online continual learning methods have also been explored to improve ef�ciency and scalability. These

methods process data in a streaming fashion and adapt the model incrementally without requiring

multiple passes over the data. Examples include Online Continual Learning with Mutual Information

Maximization (OCM)[14]  and Online Continual Learning with Adversarial Shapley Value (ASER)[12].

Ancestral Mamba leverages the online learning paradigm and introduces online prototype learning

components to further enhance ef�ciency and robustness.

2.3. Prototype-based Learning and Adaptive Feedback

Prototype-based learning has been shown to be effective in continual learning scenarios by learning

representative and discriminative features. Supervised Contrastive Replay (SCR)[9]  employs a nearest-

class-mean classi�er and a contrastive loss to encourage tight clustering of embeddings from the same

class while separating those from different classes. Online Prototypical Learning (OnPro)[5]  maintains

online prototypes and employs adaptive feedback mechanisms to address challenges such as shortcut

learning and catastrophic forgetting in online continual learning.

Adaptive feedback mechanisms have been explored to dynamically adjust the model’s focus and re�ne

decision boundaries. Methods such as Mamba Feedback (MF) in Ancestral Mamba identify easily

misclassi�ed classes or samples and adaptively allocate more resources to improve their representations.

The combination of prototype-based learning and adaptive feedback allows Ancestral Mamba to learn

discriminative features and dynamically adapt to the challenges posed by continual learning. The

proposed Ancestral Mamba approach builds upon these various lines of research, integrating online

prototype learning, adaptive feedback mechanisms, and ef�cient continual learning techniques into a

uni�ed architecture. By combining the strengths of these approaches, Ancestral Mamba aims to achieve

robust, ef�cient, and adaptable continual learning on challenging datasets such as CIFAR-10[27]  and

CIFAR-100[27].
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3. Methodology

3.1. Overview of the Ancestral Mamba Architecture

The proposed Ancestral Mamba architecture (shown in Figure [�g:over]) integrates online prototype

learning techniques into Selective Discriminant Space Model (SDSM). The goal is to enhance the

ef�ciency, robustness, and continual adaptability of the discriminant model by learning representative

and discriminative features while mitigating shortcut learning and catastrophic forgetting.

Let   denote the input space, where    is the dimensionality of the input data. The SDSM aims to

learn a discriminant space  , where    is the dimensionality of the discriminant space, such that

the samples from different classes are well-separated and the samples from the same class are clustered

together.

The SDSM consists of two main components: a feature extractor    and a discriminant space

projector  , where    is the feature space with dimensionality  . The feature extractor 

  learns to map the input data to a high-dimensional feature space, capturing the essential

characteristics and representations of the input. The discriminant space projector    then maps the

feature space to a lower-dimensional discriminant space, where the discriminative power of the features

is enhanced. Mathematically, given an input sample  , the SDSM computes the discriminant space

representation   as follows: 

The SDSM learns the parameters of the feature extractor    and the discriminant space projector 

  through a supervised learning process, utilizing labeled training data. The learning objective is to

minimize the intra-class variance and maximize the inter-class variance in the discriminant space,

thereby promoting the learning of representative and discriminative features.

To mitigate shortcut learning, the SDSM employs selective attention mechanisms that focus on the most

informative and relevant features for discrimination. By attending to the essential features and

suppressing the less relevant ones, the SDSM reduces the reliance on super�cial cues and encourages the

learning of robust and generalizable representations.

A key contribution of the SDSM is its prototype mapping mechanism, which assigns a prototype

mapping to each learned sample. The prototype mapping    maps the discriminant space

representation   to a prototype space  , where   is the dimensionality of the prototype space. The
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prototype mapping    is learned in conjunction with the feature extractor   and the discriminant space

projector  , with the objective of associating each sample with its corresponding class prototype.

The prototype mapping   plays a crucial role in supporting the APA (Ancestral Prototype Augmentation)

module, which maintains and updates the class prototypes over time. By mapping each learned sample to

its corresponding prototype, the SDSM enables the APA module to ef�ciently track and adapt the class

prototypes, facilitating continual learning and mitigating catastrophic forgetting.

Moreover, the SDSM’s prototype mapping mechanism enhances the robustness and adaptability of the

discriminative model by providing a structured representation of the learned knowledge. The class

prototypes serve as anchors or reference points in the prototype space, capturing the essential

characteristics of each class. This structured representation allows the model to ef�ciently assimilate

new knowledge while preserving the previously learned information, thereby mitigating catastrophic

forgetting.

3.2. Ancestral Prototype Adaptation (APA)

Ancestral Prototype Adaptation (APA) maintains a set of online prototypes  , where 

 is the prototype vector for class or token type  , and   is the total number of classes or token

types. These prototypes are learned and updated during the training process using the hidden state

representations  .

At each time step  , APA computes the similarity between the hidden state    and each prototype 

 using a similarity function  , such as cosine similarity: 

APA encourages the hidden states to be close to their corresponding prototypes while being far from

other prototypes. This is achieved by minimizing the contrastive loss: 

where   is the true class or token type of  , and   is a temperature hyperparameter.

The prototypes are updated online using a moving average of the hidden states belonging to each class or

token type: 
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where    is the set of time steps where the input belongs to class or token type  , and 

 is a momentum hyperparameter controlling the update rate.

The APA mechanism plays a crucial role in capturing the essential characteristics of each class and

maintaining discrimination among all seen classes. By learning representative prototypes and

encouraging the hidden states to align with their corresponding prototypes, APA promotes the learning

of discriminative features. The contrastive loss (Equation 3) ensures that the hidden states are close to

their true class prototypes while being far from other class prototypes, effectively separating the classes

in the latent space. The online update of prototypes (Equation 4) allows Ancestral Mamba to continuously

adapt to evolving data distributions and incorporate new knowledge as it becomes available.

By learning representative prototypes and encouraging discriminative features, APA helps the SDSM to

capture the essential characteristics of each class or token type and achieve an equilibrium that separates

them well in the hidden state space.

3.3. Mamba Feedback (MF)

Mamba Feedback (MF) leverages the learned prototypes to provide feedback signals to SDSM, guiding it

to focus on challenging classes or tokens that are prone to misclassi�cation. MF computes a feedback

matrix    at each time step  , where the element    represents the similarity between

prototypes   and  : 

A higher similarity between prototypes indicates a higher likelihood of confusion between the

corresponding classes or token types. MF identi�es the top-   most similar prototype pairs and

generates a feedback signal   by averaging the corresponding rows of  : 

where   denotes the  -th row of  .

The feedback signal    is then used to modulate the SDSM matrices  ,  , and  , encouraging the

model to pay more attention to the challenging classes or token types: 

= t : = kTk yt k

α ∈ [0, 1]

Ft ∈ R
K×K t fij

pi pj

= sim( , ) =fij pi pj
p⊤
i pj

| || |pi pj
(5)

m

∈ft R
K

Ft

= ∑ (i, j) ∈ top-m [i, :]ft
1

m
Ft (6)

[i, :]Ft i Ft

ft At Bt Ct

← + diag( )At At WAft (7)

← +Bt Bt WBft (8)

← +Ct Ct WCft (9)

qeios.com doi.org/10.32388/K05TKC 9

https://www.qeios.com/
https://doi.org/10.32388/K05TKC


where  ,  , and    are learnable feedback projection matrices, and 

 creates a diagonal matrix from a vector.

The MF mechanism complements APA by providing focused learning on challenging classes that are

prone to misclassi�cation. MF identi�es the most similar prototype pairs (Equation 6) and generates a

feedback signal to modulate the SDSM matrices (Equation 7). This feedback encourages the model to pay

more attention to the dif�cult classes and re�ne their decision boundaries. By dynamically adjusting the

SDSM matrices based on the feedback signal, MF enables Ancestral Mamba to allocate more resources to

the classes that require additional discrimination and improve their representations. The interaction

between APA and MF is crucial for the overall performance of Ancestral Mamba. APA learns

representative prototypes and promotes discriminative feature learning, while MF adaptively focuses on

challenging classes and re�nes their decision boundaries. Together, these mechanisms enable Ancestral

Mamba to effectively capture the essential characteristics of each class, maintain separation between

classes, and adapt to evolving data distributions. The implementation details of APA and MF are

summarized in Algorithm 1.

By adaptively modulating the SDSM matrices based on the prototypical adaptation, MF helps the model

to focus on the most challenging aspects of the input and re�ne its representations to better distinguish

between easily confused classes or token types.

∈WA R
n×K ∈WB R

n×K ∈WC R
p×K

diag(⋅)
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3.4. Training and Optimization

The training objective of Ancestral Mamba combines the contrastive loss from APA ( ) and the

standard modelling loss, such as cross-entropy loss ( ) for classi�cation tasks: 

where   is   or depending on the task, and   is a hyperparameter controlling the balance between

the two losses.

The model parameters, including the SDSM matrices and the feedback projection matrices, are optimized

using Adam. The online prototypes are updated using the moving average formula (Equation 5) after

each optimization step.

4. Experiments and Results

To evaluate the effectiveness of Ancestral Mamba, we conduct extensive experiments on the CIFAR-10

and CIFAR-100 datasets in the online continual learning setting. We compare our approach with state-of-

the-art baselines, including iCaRL[1], ASER[12], SCR[9], CoPE[13], DVC[17], OCM[14], DER++[2] and OnPro[5].

We also perform ablation studies to investigate the impact of each component in Ancestral Mamba and

analyze the learned representations.

4.1. Experimental Setup

4.1.1. Datasets and Benchmarks

We evaluate Ancestral Mamba on two widely-used image classi�cation datasets:

CIFAR-10[27]: This dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images per

class. There are 50,000 training images and 10,000 test images. The classes are mutually exclusive and

include objects such as airplanes, cars, birds, cats, etc.

CIFAR-100[27]: This dataset is similar to CIFAR-10 but contains 100 classes, with 600 images per class.

There are 500 training images and 100 test images per class. The 100 classes are grouped into 20

superclasses, each consisting of 5 �ne-grained classes.

For both CIFAR-10 and CIFAR-100, we follow the standard data splits and evaluation protocols used in the

online continual learning setting. We split the datasets into multiple tasks, each containing a subset of

LAPA

LCE

L = + λLAPA Ltask (10)

Ltask LCE λ
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classes. The model learns incrementally from these tasks in a sequential manner, without access to the

data from previous tasks. We split CIFAR-10 into 5 tasks, each containing 2 classes, and CIFAR-100 into 10

tasks, each containing 10 classes. The models are trained incrementally on these tasks, with a �xed

memory budget for storing exemplars from previous tasks. We use a memory size of 1,000 exemplars for

CIFAR-10 and 2,000 exemplars for CIFAR-100.

4.1.2. Baselines and Comparison Methods

We compare Ancestral Mamba with the following baseline methods:

iCaRL[16]: iCaRL (Incremental Classi�er and Representation Learning) is a training strategy that

enables class-incremental learning, where only training data for a few classes is present at a time and

new classes can be progressively added. It simultaneously learns strong classi�ers and a data

representation, overcoming limitations of earlier approaches bound to �xed representations.

ASER[12]: ASER (Adversarial Shapley Value Experience Replay) is a novel method for the online class-

incremental continual learning setting that selects buffered images for replay based on their Shapley

value scores, which measure their ability to preserve latent decision boundaries for old classes

(avoiding forgetting) while interfering with decision boundaries of new classes (enabling plasticity),

providing competitive or improved performance over state-of-the-art replay-based continual learning

approaches while ef�ciently utilizing limited memory resources.

DER++[2]: Dark Experience Replay (DER) is a simple yet effective baseline method for general

continual learning that promotes consistency with the model’s past by matching the current logits

with those sampled throughout the optimization trajectory, leveraging rehearsal, knowledge

distillation, and regularization, outperforming existing approaches on standard benchmarks while

effectively handling scenarios with blurred task boundaries and shifting distributions.

SCR[9]: SCR is a supervised contrastive replay method for online class-incremental continual learning

that employs a nearest-class-mean classi�er and a contrastive loss to encourage tight clustering of

embeddings from the same class while separating those from different classes, effectively mitigating

catastrophic forgetting.

CoPE[13]: CoPE is a continual prototype evolution approach that learns prototypical class

representations in a shared latent space while addressing catastrophic forgetting in online continual

learning scenarios without task information.
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DVC[17]: DVC is a novel online class-incremental continual learning framework that focuses not just

on sample selection from a memory bank, but also on exploring semantic information in the single-

pass data stream through dual view consistency.

OCM[14]: OCM (Online Continual learning through Mutual Information Maximization) is an online

continual learning approach that mitigates catastrophic forgetting by maximizing mutual

information to learn holistic representations across tasks instead of just discriminative features for

each task.

OnPro[5]: OnPro is a framework for online continual learning that aims to mitigate catastrophic

forgetting by learning representative and discriminative features through online prototypes..

4.1.3. Evaluation Metrics

We use the following evaluation metrics to measure the performance of Ancestral Mamba and the

baseline methods:

Average Accuracy: The average classi�cation accuracy across all tasks seen so far. It is computed as

the average of the accuracies on each task after the model has been incrementally trained on all tasks.

Average Forgetting: The average forgetting measure, which quanti�es the drop in performance on

previous tasks after learning new tasks. It is computed as the average of the differences between the

maximum accuracy achieved on each task and the accuracy on that task after training on subsequent

tasks.

4.2. Results

4.2.1. Performance Comparison on CIFAR-10 and CIFAR-100

Table 1 and Table 2 present the average accuracy and average forgetting of Ancestral Mamba and the

baseline methods on CIFAR-10 and CIFAR-100 datasets, respectively, with varying memory budgets.
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Method

Accuracy (%) Forgetting (%)

0.1k 0.2k 0.5k 0.1k 0.2k 0.5k

iCaRL 31.0 33.9 42.0 52.7 49.3 38.3

ASER 20.0 22.8 31.6 64.8 62.6 53.2

DER++ 31.5 39.7 50.9 57.8 46.7 33.6

SCR 40.2 48.5 59.1 43.2 35.5 24.1

CoPE 33.5 37.3 42.9 49.7 45.7 39.4

DVC 35.2 41.6 53.8 40.2 31.4 21.2

OCM 47.5 59.6 70.1 35.5 23.9 13.5

OnPro 57.8 65.5 72.6 23.2 17.6 12.5

Ancestral Mamba 60.1 71.9 79.5 16.3 11.6 7.2

Table 1. Average Accuracy (higher is better) and Average Forgetting (lower is better) on CIFAR-10 with

different memory sizes. All results are the average of 15 runs.

↑ ↓
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Method

Accuracy (%) Forgetting (%)

0.5k 1k 2k 0.5k 1k 2k

iCaRL 12.8 16.5 17.6 16.5 11.2 10.4

ASER 11.0 13.5 17.6 52.8 50.4 46.8

DER++ 16.0 21.4 23.9 41.0 34.8 33.2

SCR 19.3 26.5 32.7 29.3 20.4 11.5

CoPE 11.6 14.6 16.8 25.6 17.8 14.4

DVC 15.4 20.3 25.2 32.0 32.7 28.0

OCM 19.7 27.4 34.4 18.3 15.2 10.8

OnPro 22.7 30.0 35.9 15.0 10.4 6.1

Ancestral Mamba 28.3 33.2 40.5 13.7 9.6 5.3

Table 2. Average Accuracy (higher is better) and Average Forgetting (lower is better) on CIFAR-100 with

different memory sizes. All results are the average of 15 runs.

Ancestral Mamba consistently outperforms the baseline methods on both CIFAR-10 and CIFAR-100

datasets across different memory budgets. On CIFAR-10, Ancestral Mamba achieves an average accuracy

of 60.1% with a memory size of 0.1k, surpassing the second-best method, OnPro, by 2.3%. Similarly, on

CIFAR-100, Ancestral Mamba obtains an average accuracy of 28.3% with a memory size of 0.5k,

outperforming OnPro by 5.6%. Moreover, Ancestral Mamba exhibits signi�cantly lower forgetting

compared to the baselines. On CIFAR-10, Ancestral Mamba achieves an average forgetting of 7.2% with a

memory size of 0.5k, which is 0.7% lower than OnPro. On CIFAR-100, Ancestral Mamba’s average

forgetting is 5.3% with a memory size of 2k, outperforming OnPro by 0.8%. These results demonstrate

the effectiveness of Ancestral Mamba in learning representative and discriminative features while

mitigating catastrophic forgetting in the online continual learning setting. The superior performance

can be attributed to the integration of online prototype learning into the selective state space model

↑ ↓
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framework, enabling Ancestral Mamba to capture the essential characteristics of each class and adapt to

evolving data distributions.

4.2.2. Ablation Study on CIFAR-100

We conduct an ablation study on the CIFAR-100 dataset to investigate the contribution of each key

component in Ancestral Mamba. Table 3 shows the performance of Ancestral Mamba and its variants

with different components enabled or disabled.

Method Accuracy (%) Forgetting (%)

baseline 35.1 6.5

w/o APA 37.4 5.9

w/o MF 36.8 6.0

Ancestral Mamba 40.5 5.3

Table 3. Ablation study results on CIFAR-100 with a memory size of 2k. "baseline" refers to the model without

APA and MF.

The results show that both APA and MF contribute positively to the performance of Ancestral Mamba.

Removing either component leads to a decrease in accuracy and an increase in forgetting. When both

APA and MF are disabled (i.e., the baseline model), the performance drops signi�cantly, highlighting the

importance of online prototype learning in Ancestral Mamba.

4.2.3. Incremental Learning Performance

We evaluate the incremental learning performance of Ancestral Mamba and compare it with the baseline

methods on CIFAR-10 and CIFAR-100. Figure [�g:incremental_accuracy] shows the average incremental

accuracy at each task step.

On both datasets, Ancestral Mamba maintains higher incremental accuracy throughout the learning

process compared to the baselines. As new tasks arrive, the performance of the baseline methods

degrades rapidly, indicating severe catastrophic forgetting. In contrast, Ancestral Mamba exhibits a more

↑ ↓

qeios.com doi.org/10.32388/K05TKC 16

https://www.qeios.com/
https://doi.org/10.32388/K05TKC


gradual decline in accuracy, demonstrating its ability to retain previous knowledge while adapting to new

tasks. The superior incremental learning performance of Ancestral Mamba can be attributed to the

combination of selective state space modelling and online prototype learning. The selective computation

mechanism allows Ancestral Mamba to ef�ciently process the incremental data, while the online

prototypes provide a compact and representative summary of the learned knowledge. The adaptive

feedback mechanism further enhances the model’s ability to re�ne its decision boundaries and maintain

a well-separated representation space.

Figure 3. Average incremental accuracy on (a) CIFAR-10(memory size=0.1k) and (b) CIFAR-100(memory

size=0.5k).

5. Discussion

Our experimental results demonstrate the effectiveness of Ancestral Mamba in addressing key

challenges in online continual learning for visual tasks. The integration of online prototype learning with

selective discriminant space modeling enables our approach to learn representative and discriminative

features while mitigating catastrophic forgetting. The superior performance of Ancestral Mamba

compared to state-of-the-art baselines can be attributed to several key factors: adaptive prototype

learning, targeted feedback, ef�cient computation, and balanced stability-plasticity. The Ancestral

Prototype Adaptation (APA) module allows the model to continuously re�ne and update class prototypes,

capturing the evolving characteristics of visual concepts. This adaptive mechanism enables Ancestral

Mamba to maintain a compact yet expressive representation of learned knowledge.

The visualizations of learned representations further support the ef�cacy of our approach. The well-

separated clusters indicate that Ancestral Mamba can maintain discriminative features across tasks, even
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as new classes are introduced. This property is particularly valuable for computer graphics applications

that require �ne-grained distinctions between visual concepts. The Mamba Feedback (MF) mechanism

provides focused attention on challenging classes, allowing the model to allocate more resources to

dif�cult samples. This targeted approach enhances the model’s ability to learn �ne-grained

discriminative features, which is crucial for effective continual learning in dynamic visual environments.

6. Limitations

Despite the promising results, there are several limitations to our current work that warrant further

investigation. Ancestral Mamba assumes a prede�ned set of classes throughout the learning process.

Extending the model to handle open-set recognition, where entirely new classes can be introduced

during inference, remains a challenge. Additionally, while our experiments demonstrate good

performance on CIFAR-10 and CIFAR-100, the scalability of Ancestral Mamba to larger datasets with

thousands of classes (e.g., ImageNet) needs further exploration. The memory requirements for storing

prototypes may become a bottleneck in such scenarios.

Our current implementation relies on task boundaries for updating prototypes and providing feedback.

Adapting Ancestral Mamba to a task-free continual learning setting, where task boundaries are not

explicitly de�ned, is an important direction for future work. Furthermore, while our approach shows

robustness to distribution shifts within the studied datasets, its performance on cross-domain continual

learning scenarios (e.g., adapting from natural images to sketches or paintings) remains to be

investigated. Addressing these limitations will be crucial for advancing Ancestral Mamba and its

applications in the �eld of computational visual media.

7. Conclusion

In this paper, we have proposed Ancestral Mamba, a novel approach that aims to integrate online

prototype learning into a selective discriminant space model for online continual learning. Drawing

inspiration from the adaptive nature of the mamba snake, our method seeks to learn representative and

discriminative features while potentially mitigating catastrophic forgetting in dynamic visual

environments.

The main contributions of our work lie in the development of the Ancestral Prototype Adaptation (APA)

module and the Mamba Feedback (MF) mechanism. APA attempts to maintain and update class

prototypes over time, with the goal of capturing essential characteristics of each visual concept. This
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continuous re�nement of learned prototypes may enable the model to adapt to new challenges while

preserving previously acquired knowledge. Complementing APA, the MF mechanism aims to provide

adaptive feedback to the model, focusing on challenging classes and potentially re�ning decision

boundaries. Our experiments on the CIFAR-10 and CIFAR-100 datasets suggest that Ancestral Mamba

could offer improvements over some existing baselines in online continual learning. The observed

enhancements in accuracy and robustness to forgetting may indicate our approach’s potential in learning

discriminative features and adapting to evolving data distributions. The visualizations of learned

representations might further support Ancestral Mamba’s ability to capture meaningful features, which

could be relevant for various computer graphics and visual computing applications.

The principles and techniques introduced in Ancestral Mamba could potentially be applied to a range of

computer graphics and visual computing tasks, such as object detection, semantic segmentation, and

style transfer. The ability to continuously learn and adapt to new visual concepts while retaining previous

knowledge might contribute to the development of systems capable of operating in dynamic visual

environments.

Future research directions could include exploring the integration of hierarchical prototype structures

and self-supervised learning techniques into the Ancestral Mamba framework. These advancements

might enable the model to capture more abstract visual concepts, potentially leading to improved

generalization and transfer learning capabilities. Additionally, investigating the interpretability of the

learned prototypes could offer insights into the model’s decision-making process, which may enhance its

applicability in various visual computing scenarios.

In conclusion, while Ancestral Mamba shows promise in addressing some challenges in online continual

learning for visual tasks, further research and validation would be necessary to fully understand its

capabilities and limitations. We hope that this work may contribute to ongoing discussions and

advancements in the �eld of computational visual media.
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