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Abstract

Context:
Due to enormous e�orts in the development of phenomenal chaos and its desir-
able properties, various researchers have expressed an interest in developing secure
and reliable cryptography primitives by incorporating its benedictory properties. But
incorrect implementations of chaos and dependence on dubious finite precision tech-
nologies could lead to contradicting results.
Objective:
The aims of this research is to delineate the degree of chaoticity and its attribute
utilization in the construction of cryptography primitives as a research arena for their
security and dependability.
Method:
This work uses a comparative analysis to present the method of design of chaos-
based cryptographic primitives. The study makes use of a panoramic collection of
distinguished publications that have appeared in distinguished conferences and jour-
nals over the past three decades. An in-depth comparative analysis on lightweight
implementations of chaos based cryptographic primitives is presented using standard
metrics.
Results:
Research leveraging chaotic nonlinear systems to design cryptography primitives
is classified into several domains. Chaos implementations in both analog and dig-
ital mode that were integrated in the design of cryptography primitives research
are presented. Reports the evaluation metrics used to verify the algorithms. Results
of several chaos-fixated implementations that have been compared across di�ering
experiments are reported.
Conclusion:
The research is useful in determining the progress of chaos-based implementations
in several scientific disciplines pertaining to the design of cryptographic primitives.
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chaos-based image encryption, permutation, substitution, chaos-based cryptography, pseudo random
number generation.
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1 INTRODUCTION

This paper presents a detailed literature review of chaos based image encryption algorithms and chaos based primitive opera-
tions used in the design of image encryption algorithm. Existing encryption algorithms when applied over images do not give
performance Secure image transmission requires robust encryption algorithms in order to protect the information with reliabil-
ity. Image encryption is the process of providing information security and content protection by masking the image. Chaotic
cryptography provides strong primitives to obscure the information within an image. The properties of chaos are exploited
to acquire cryptographic needs, hence based on their applicability, these techniques are broadly categorized as analog chaos-
based cryptosystems and digital chaos-based cryptosystems. When the chaos dynamics are employed to synchronize the system
parameters of the cryptosystem in order to develop cryptographic primitives, then the method is called an analog chaos-based
cryptosystem. Similarly, when the chaos dynamics are utilized over digital computers’ precision system to apply cryptographic
primitives then, the method is called a digital chaos-based cryptosystem. The spatial and temporal components of a particular
image contain information description that serves as a control parameter for creating chaos-aligned encryption methods. Every
quantity present in dynamic systems can be defined in a discrete-time domain. Real-life platforms like multimedia transmission,
medical image security, the internet of things, and cyber-physical systems are well-known examples of dynamic systems that
can be measured in the discrete-time domain. Hence, every real-world system can be modeled into di�erent equations which
are the dynamical systems themselves and so commonly termed as maps. The terms and the set of the universe used to quantify
these equations possess numeric values, which are modeled with real-world systems’ characteristics. Such features that mingle
in the setting of cryptographic primitives are called control parameters. Research in the past three decades discusses the ways to
achieve robust chaos in order to develop robust chaotic cryptosystems. Patra and Banerjee in 20181, demonstrated that “robust
chaos will occur if the parameter space for the system is set to have the same parameter range as the range of parameters
selected to construct the system”. Since a robust chaotic map always obeys the invertibility principle and has a unique inverse,
guaranteed encryption with a benign key will result in guaranteed decryption using the same key. In case of non-invertibility,
the encrypted image gets locked and we cannot retrieve the original image even with the benign key, the decryption process
becomes impossible. A trustworthy cryptosystem is classified as robust if all of its parameters are taken up by a mutually con-
junctive association between the system’s dynamics and the chaotic features of the applied cryptographic primitive. Alvarez G.
et al. in 20032, did a thoughtful analysis of the precise derivation of control parameters to define secret key and the strength of
dependence of encryption procedure dependent only on key. Hence, to understand the principle of a robust chaotic cryptosys-
tem, it is mandatory to do three things, namely, i) first recognize the representation of an image in a visual perception system, ii)
secondly, determine the characteristics of the image, iii) third, perform a gap analysis between theoretical and practical encryp-
tion procedure and its derivation with respect to chaos dynamics in the finite precision domain. A trade-o� in these steps can
always give an approximated robustness and can never give a perfectly robust chaotic encryption.

A visual impression of an object expressed as a function f(x,y) in which the quantity reflecting at the point of x,y intersection
is the light intensity at that location is called an image. In theory and practice, images can be categorized as analog images and
digital images. An analog image is formed by capturing a continuous variation in the image tone present in the two-dimensional
analog signal which is used to capture the image. Electrical signals are used as a medium to capture the analog signals in a 2D
continuous space. The function used to capture the electrical variations is known as a point spread function or a 2D impulse
response and is responsible for the formation of the image. Abruptly, the perception of the image is bestowed on the human notion
of visual perception, which is a theory not yet well understood. Similarly, no standard formalism exists to assess the measure of
the quality of the image, and also, no human observer exists as an archetypal to symbolize an ideal perception of an image.

2 MOTIVATION

The image processing operation uses mathematical tools like convolution, Fourier transforms operations, run codes, and chain
codes in order to obtain digital images from analog images. Popularly, digital images are stored in commonly used image formats
like jpg, png, ti�, eps, pdf, gif, and svg. The science of design behind these file formats to store digital images is that they use
raster graphics and vector graphics. The color models that have been used traditionally are RGB for limited colors and CMYK
for image displays and prints. One of the most exciting facts about raster graphics is that an image is a representation of a
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pixel grid or a point of color intensity at the x,y intersection. Hence, the only quantity which is static and fixed while capturing
images through raster graphics is its intensity. Owing to this fact about the image during its generation process, the intensity of
the image is the basis of any mathematical operation or any digital operation performed over this image in order to compute
various image analysis tasks like average, standard deviation, minimum, maximum, median, mode, signal-to-noise ratio, etc. In
contrast to this, the vector graphics representation used to generate the digital images focuses on the graphical features of the
image. Every information postulated in the image is in fact a magnitude and a piece-let of gradient information of the contents
of that image. The factual contents of the image are actually read in the form of visual e�ects like the color, contour, lines,
fill, thickness, and stokes which enhance the visibility of the image and contribute to the human perception model about it. In
totality, since, vector graphics takes into account the visual content as well as the gradient information of the image and also
capture the metadata about the image like the date, time, camera settings, color composition, image size, and exposure into
the image generation process, therefore, various image transformation tasks are well supported on vector graphics originated
images. The vector graphics thus does not a�ect the loss of resolution anyhow and therefore are scalable without incurring
much information loss. But vector graphics provides only svg, eps, and pdf file formats and is generally used for display and
print tasks. Contrasting to this, vector graphics capture images into svg, eps, and pdf formats, in which only ti�, eps, and pdf
formats use CMYK model. In order to understand the skeptical process of image cryptography, with the basis that the theoretical
formalism to describe the image encryption process and its proof of correctness is available but is inexact, we contribute our
survey to uncover the fine granular task of image encryption and present certain principles of image cryptography and discuss
the paradigm shift in plaintext ciphering algorithms and the e�ect of their usage on image encryption. We also advocate that the
simple techniques to encrypt images are unlikely to be strongly secure and robust and therefore discuss the visualization about
strong image encryption and robust image encryption, thus concluding the design imperatives for robust image cryptographic
primitives. Hence, subjectively, we present a basis of criticism about the skeptical process of image encryption, their inherent
weaknesses, and the causes behind them. Henceforth, we present image algebra as a scientific representation of the image and its
metadata and make headway to our discussion about the cryptographic operations performed to encrypt images for decades and
thus derive the proof of inexactness in the image encryption task. We identify some of the research questions that revolve around
several schools of thought in various scientific literature on chaos-based cryptography and define them to explore, examine, and
analyze the application of the principles of chaos in robust image encryption. The objective of the proposed comprehensive and
systematic review is to comprehend the state of the research at present, in addition to any disparities and impending concerns,
but to report these in order to outline future research paths.

3 CONTRIBUTION IN RESEARCH

1. This article presents an in-depth survey of methods used in past three decades to design chaos-based cryptographic
primitives.

2. A comprehensive review on technical implementations of stochastic nonlinear systems a.k.a. chaotic maps, their benefits
and defects on analog versus digital platforms have been compared and contrasted.

3. Identification of research gap, technology gap, implementation gap and tools standardization gap into chaos based
cryptography.

4. Defining terms and techniques with respect to chaos implementation in the context of image encryption.

5. Empirical properties of chaos and its production by setting unique parameters and its consequence on finite precision
platforms.

6. Taxonomy based on analog versus digital implementation of phenomenal chaos its comparison, analysis on several image
encryption algorithms in the past thirty years.

7. Compare and contrast of permutation-only, substitution-only, permutation-substitution paradigms of chaos fixated image
encryption schemes.

8. Critical observations in classical implementations of chaos based image encryption over analog versus digital platforms
and probable solution domain in avante-garde techniques for these issues.



4 Devisha Arunadevi Tiwari, Bhaskar Mondal

4 PRELIMINARIES OF CHAOS THEORY

The “Design of Secure Chaos-based Image Encryption Algorithms” represents a critical endeavor in the realm of information
security, aiming to fortify the protection of sensitive image data against evolving cyber threats. As our reliance on digital imagery
continues to surge, ensuring the confidentiality and integrity of such data becomes paramount. This research embarks on the
creation of novel algorithms grounded in chaos theory, leveraging the intricate dynamics of chaotic systems to develop robust
encryption and decryption mechanisms. In this era of escalating cyber threats, the introduction sets the stage by elucidating
the imperative of enhancing security measures for image data. It delineates the limitations of existing encryption approaches,
particularly in the context of image-specific challenges. The motivation behind the research stems from the need to address these
limitations, o�ering solutions that not only bolster security but also account for the unique characteristics of the image data. The
scope of the study is outlined in this introduction, along with the particular issues that must be resolved and the goals that must
be met. The novel application of chaos theory is highlighted, o�ering a divergence from traditional encryption techniques. As
the narrative unfolds, readers will gain insights into the anticipated contributions of the research, the methodology employed,
and the overall structure of the subsequent chapters. The journey begins with a call to fortify the security of image data through
cutting-edge chaos-based encryption and decryption algorithms.

4.1 Overview of Chaos based Cryptography
The evolution of Chaos-based secure image encryption algorithms traces a captivating journey through the annals of cryptog-
raphy. This narrative explores the historical underpinnings, pivotal breakthroughs, and the collective e�orts of researchers who
have propelled this field from its nascent stages to its current state of intricate design and implementation. The utilization of
chaos in cryptography emerged as an avant-garde concept in the late 20th century. Early pioneers recognized the potential of
chaotic systems for generating pseudo-random sequences, a cornerstone in encryption. The groundbreaking work of researchers
like Lorenz and Mandelbrot laid the theoretical foundation for applying chaos to cryptographic algorithms. As chaos-based cryp-
tography gained momentum, researchers began exploring its application in image encryption. Initial algorithms faced challenges
related to computational e�ciency, key management, and susceptibility to attacks. Despite these hurdles, the novel approach
captivated the cryptographic community, sparking a wave of research aimed at refining and enhancing chaos-based encryp-
tion schemes. The timeline of chaos-based secure image encryption is punctuated by significant milestones. Researchers have
contributed innovative algorithms, addressing shortcomings and advancing the field. Notable contributions include algorith-
mic improvements, novel key generation methods, and adaptive strategies to counter evolving cryptanalytic techniques. These
milestones collectively shaped the landscape of chaos-based image encryption. The development of chaos-based encryption
algorithms is a testament to collaborative e�orts within the global research community. International conferences, research pub-
lications, and collaborative projects fostered an environment of knowledge exchange. Researchers from diverse backgrounds
brought expertise in chaos theory, cryptography, and image processing, enriching the collective understanding of this interdisci-
plinary field. Advancements in computational power and technological capabilities played a pivotal role in refining chaos-based
encryption algorithms. The integration of chaos-based cryptography into various technological domains, including secure com-
munication and image storage, marked a significant stride forward. Researchers leveraged technological progress to enhance
both the e�ciency and practical applicability of chaos-based encryption. Despite remarkable progress, chaos-based secure
image encryption faces contemporary challenges. Researchers grapple with issues such as quantum computing threats, scalabil-
ity concerns, and the need for standardized evaluation metrics. The ongoing pursuit of solutions to these challenges outlines the
trajectory for future research in this dynamic field. The impact of chaos-based secure image encryption on information security
is profound. From bolstering data confidentiality in image transmission to securing sensitive information in various applications,
these algorithms have carved a niche in the cybersecurity landscape. The collective contributions of researchers have positioned
chaos-based encryption as a viable and innovative approach to safeguarding digital assets. In its entirety, the evolution of chaos-
based secure image encryption algorithms reflects the story of ongoing research, teamwork, and technological innovation. The
progression from the conceptualization of chaos in cryptography to the complex architecture of modern algorithms is evidence
of the tenacity and inventiveness of researchers across.
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4.2 Taxonomy of Chaotic Systems
The study presented in this research, aims to find the di�erentiation between weak sensitive dependence and sensitive dependence
helps to deduce the chaotic states in a dynamical system. The saddle points and the empirical values of chaotic parameters play
major role in handling specific level of perturbations in single, high and fractional dimensional chaotic systems. The magnitude
of the p(t),q(t), and r(t) methods which constitute a stochastic technique as its magnitude. One can subdivide stochastic systems
into two primary categories: uni-modal and multi-modal. Researchers have developed a wide range of blended strategies to
get around the drawbacks of chaotic maps, such as fixing the matrix tensor product theory, boolean connectivity, hybrid chaos
using multiple maps and vector support devices, crossbreeding chaos and improving look-up table formation3,4, cascading or
coupling of indispensable chaotic maps5,6,7,8, and combining di�erent transformations. Compressive sensing9,10, pixel adaptive
di�usion, dynamical state variable selection11,12,11,9,10 are a few instances of finite state automata. Depending on the severity of
the chaos and the number of system elements used during the chaos generating process, chaotic systems are divided into three
types. We analyze and describe each of them based on how it is applied and how the chaos was established.

1. Low Dimension Chaotic System

When a dynamical regiment only has one positive lyapunov exponent, it is referred to as a minimal-depth chaotic sys-
tem13. A minimal-depth chaotic system is constructed by extracting a smaller portion of the overall system components.
It has a simple mathematical model and has low implementation cost. One dimensional chaotic maps are simpler in
implementation but pose limitations such as existence of periodic windows and non-uniformity13. A dynamical regiment
with minimal dimensions is a discrete iterative nonlinear environment. Chaotic behaviour is the result of establishing an
implicitly predictable process in an erratic manner13. Chaos generated in such a way is theoretically manageable.

2. High Dimension Chaotic System

When a chaotic system has more than one positive Lyapunov exponent, it is referred to as a high-dimensional chaotic
system14. As a regimen variables change, a component, for example, through a sequence of time span solitons, becomes
chaotic, and the alternative component becomes chaotic, actually resulting in an extra positive Lyapunov exponent for the
overall network14. According to numerical data, one distinguishing feature of a high dimensional chaotic system is that the
second largest Lyapunov exponent in the experimental setup goes through zero consistently iteration after iteration14. A
fractional map, an incessant flow, and a population scheme for species distribution are the most prevalently demonstrated
instances of a high-dimensional chaotic system.

Authors15,16 presented three unique continuous chaotic systems with advantageous chaotic dynamic features. Hyper-
chaotic perturbations occur frequently in irregular unsupervised dynamical systems with more than four dimensions and
quasi-stochastic processes with more than three components. This crucial characteristic designates complex nonlinear sys-
tems since they typically have at least two positive Lyapunov function indices, or15 complex nonlinear systems. A set of
equations of displacement can depict the far more extensive ephemeral aspects that a hyperchaotic system may produce14.
Two seminal specimens of multi-dimensional stochastic processes are the Lorenz and Rossler systems.

3. Fractional Order Chaotic System

Fractional-order chaotic systems exhibit extremely high chaotic behavior, but their realization involves much uncertainty
and complexity. The fractional-order chaotic system can be implemented with circuits having fractional-order elements
such as practice capacitors and switch capacitors.17, the limitation that the fractional-order chaotic systems su�er from
complexity issues arise from fractional order units present in the electronic circuits used in its design. The uncertainty is a
consequence of errors between the real and nominal values revealed in the electronic circuits. It is also a consequence of
chaotic circuits’ high unpredictability and non-linearity. Another approach to realizing a fractional-order chaotic circuit
is cascaded series using RC ladders, two-port networks, chains, and tree networks. A posterior distribution of single-pole
high-pass filter segments is employed to implement the impulse response Laplace variable required by such devices, and
the experimental setup is then partitioned. Fractional calculus uses a variety of fractional operators, such as the Riemann-
Liouville component18,19. Kilbas theory et al. 200620, Podlubny’s fractional derivative from 199921, the derivative from
Caputo and Fabrizio in 201522, the derivative from Atangana and Baleanu in 201618, the complex geometry derivative
from Atangana and Baleanu (2016), the Hilfer derivative, and numerous other variations of the preceding operators are
just a few examples. Due to its physical significance and the fact that it exhibits a higher capacity, the Caputo derivative
is preferred when simulating chaotic systems. The Riemann-Liouville integral23, its corresponding fractional operator,
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and the derivative of the Caputo fraction are discussed in this subsection. Let us a look at a chaotic system from Lu. et al.
200424, which is theoretically represented using the fractional derivative of Caputo by the following equations,

D↵
c x = ax * by * yz,D↵

c y = cx,D↵
c z = *dz + y2 (1)

The initial condition parameters decided by the authors in this model for the above equations are as follows,

x(0) = x0 = 0.2, y(0) = y0 = 0.2, z(0) = z0 = 0.2 The researchers used the above values for the fraction order
chosen in the range 0 < ↵ < 1 in modeling their fractional order proposed chaotic system. The value a = -2, b = -6.4, c = 1
and d=1 where selected. The fractional-order chaotic system exhibits hyperchaotic behavior at ↵ = 0.94 has hyperchaotic
behavior. Hence, the chaotic and hyperchaotic behavior generation depends only on the experiment’s choice of specific
fractional order.

4.3 Noteworthy Definitions
Definition 1. Chaos During his 1873 exposition, famed British researcher James Clerk Maxwell purportedly asserted that a
system’s state is deemed unstable “if a modification in the initial stage that is vanishingly little can lead to a linear interpolation
in the state of the system in a limited amount of time.”

Furthermore, Hunt and Yorke noted that it would be di�cult to predict recurrence “if the viewpoint of the present situation
was simply hazy during the arguments in 1993.”

By setting the initial values and utilising chaotic sequences to arrive at the nth outcome, chaotic sequences can be created
using the principles of chaos-based encryption.

an + 1 = f (an;S) (2)

in which an is the value after nth iteration and f(an; S) is the carefully selected chaotic map with the given specifications in set
’S’. The recurrence will occur if the stochastic model has more than one degree,

(a1n + 1, a2n + 1, .., aMn + 1) = f (a1n, a
2
n, .., a

M
n ;S) (3)

where M is the chaotic map’s dimension. After the N iterations, M chaotic sequences will have occurred. As a result, every time
Am = [am1 , am2 ,..., amN ], m = 1,2,...., M, that sequence will be used to mention the introduction from Devaney 201825.

Definition 2. Chaos by Jacques Hadamard, 1898 French mathematician Jacques Hadamard said in a symposium in 1898,
“The protracted functioning of a chaotic automata could be a�ected by an error or disagreement in the beginning conditions.”
Ruelle continued by stating that French physicist Pierre Duhem amended Hadamard’s perspective in 1906, who characterized
long-term estimates as “absolutely worthless”26,27.

Definition 3. Chaos by Henri Poincare, 1908 Henri Poincaré, a French mathematician, physicist, and philosopher, contributed
to a similar thread in 1908. He highlighted that, for all practical purposes, prediction was impossible since, “small deviations in
initial conditions might eventually lead to huge di�erences26”.

Definition 4. Chaos by Stephen H. Kellert, 1994 Stephen H. Kellert, a psychologist at the University of Chicago, claims
that chaotic components are present when the two essential traits of instability and aperiodicity occur simultaneously, and an
unpredictable regimen is present when attuned dominance on the primitive state exists. As a result, quasi conduct is defined as
the lack of a regular repetition of the amounts of the parameter estimate. Chaos appears to have unpredictable quasi behaviour
and is extremely nonlinear, as shown by Kellert in 199428.

Definition 5. Glendinning’s Definition of Chaos, 2017 The most famous ubiquitous chaotic dynamical systems are the stock
market, population growth in ecology, atmospheric turbulence, tornado, chemical reactions, the response of an electrical cir-
cuit, fluid dynamics, and mechanical systems29,30. Most of these dynamical systems, found in domains like biology, medicine,
information and communication technology, electrical and communication engineering, exhibit chaotic behaviour. As a result,
one way to conceptualize a dynamical system is as a mathematical illustration of how the state changes over time31. According
to Glendinning, 201731, a discrete-time dynamical system is also known as a map. The dynamics are then presented using a list
of numbers.
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Let’s just use x0, x1, ..., xn to represent the variable x®’s status at the nth time instance. Next, a map is displayed by,

xn+1 = F (xn) (4)
where F (xn) is the mathematical function to modulate the evolution of the system31,30. Chaos can be produced by both discrete
and continuous equations mathematically25.

Definition 6. Devaney’s Definition of Chaos, 2018 An eminent Professor in mathematics at Boston University Dr. R. L.
Devaney25 states that for a continuous system “f” to be chaotic on metric space “X”, it is mandatory that, “f” produces the
following three behaviours,

f : X ô X (5)

• “f” has a transitive relationship for every point “x” in “X”,

• “X” has dense periodic points produced from “f”,

• “f” has sensitive dependence on initial conditions such that change in them makes “f” non-deterministic.

Definition 7. Discrete Chaotic Maps The discrete structures, such as the Henon map, the standard map, the logistical networks,
and the radial networks, are often described so, bi+1 = F(bi)25.

Definition 8. Continuous Flow The expression for interconnected systems, also referred to as flows, is dx(t)_dt = F (x(t)).
Chaotic flows are represented by Edward Lorenz’s principle, the Rossler equation, the Du�ng formula, and the Chua circuit, as
cited in25. There are several commonalities between smooth flows and discontinuous lookup tables.

Definition 9. Permutation A permutation is a function that transforms a set of bits or pixels in such a way that each group has
a distinct inverse. A permutation is performed to incur di�usion. It shu�es the bits or pixels linearly using a predefined rule. A
permutation ’p’ on a set of bits or pixels in the original image OI , is a finite set of elements and is a bijection from elements of
the original image OI to itself. It is denoted by,

p : OI ô OI

There can be n! permutations on a set OI of ’n’ elements.

Definition 10. Substitution Substitution is often used to incur confusion. It is used to mask the statistical properties by introduc-
ing non-linearity, which prevents pixel values from being inferred from its neighbourhood. Substitution is a method of replacing
a pixel’s or bit’s value or position with a new one that is computationally derived with a deterministic and reversible condi-
tion. S-box, have properties such as bijection, non-linearity, rigorous cascade requirement, and bit independence constraint of
input/output bits, is used to perform substitution.

Definition 11. Confusion Confusion is the process to incorporate complexities in ciphertext statistics to depend on plaintext
data. It uncovers the link between the key and the ciphertext. It is impossible to identify the connection between the key and the
distorted image when fixed with the key elements of the design. According to the Amigo, 2007 proposition32, confusion hides
the dispersion of pixels in both the original and encrypted images.

Definition 12. Di�usion The cryptographic technique to nullify the statistical relationship between bits or pixels in original
image OI and its corresponding encrypted image EI in order to instil avalanche e�ect is termed as Di�usion33.A change in
one pixel/bit of plain image causes changes in several pixels/bits of the encrypted image using di�usion. Reliable di�usion can
be achieved using several CBP.

Definition 13. Robust Chaos Robust Chaos is incredibly susceptible to the secret key. The chaotic attractor is said to be resilient
if there is not a periodic window or co-occurring electrostatic attraction in any accessible fraction of the dimensional region and
it exists within that region. Such a chaotic convergence point cannot be substantially hampered by small changes in the threshold
or transitional period in the nearby regions. A strong stochastic momentum cannot be damaged by low-intensity perturbations.
The robustness of the cryptosystem is a necessary quality for its dependability in real-world applications. Robust chaos cannot
exist in smooth systems. A set of parameters with the same size as feature field must be discernible during system design for
the robust chaos to emerge1. A well-known example of resilient chaos application is the three-dimensional Piecewise Linear
Chaotic Map1.
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Definition 14. Chaotic Phenomenon The border collision normal form, according to Glendinning et al. 34, uses an unbounded
group of variables for which a two-dimensional anomalous phenomenon occurs. Additionally, there are unbounded groups of
the variables (⌧k, �k) , k = L,R such that if � < 0 such that the boundary collision normal form has a steady state if � < 0,
however if � > 0, it has a double strong stochastic magnetic dipole which results in robust chaos. The eigenvalue of BCNF is �,
and the feature vector of the attractor is ⌧.

As a result, one of the necessary but not su�cient conditions for the existence of robust chaos in � > 0 and a simple, stable
periodic orbit in � > 0 holds if � > 0 there is a map F such that F À BCNFRC has no equilibrium, and thus there can be no
equivalent of the equilibria to 2D attractor result. However, stable periodic orbits in � < 0 can exist at parameter values with
robust chaos. Robust chaos is visible in the attractors of Piecewise linear maps by including this additional necessary condition
for the phenomenon to occur in the border collision normal form via homoclinic intersections,31.

Definition 15. Robust Encryption An encrypted image is vulnerable to a variety of unexpected risks when connected to a
insecure channel. In the event of a metasploit, strong encryption must allow for the reconquering of the original image35. A data
encryption method must be highly sensitive to even a slight modification in the initial condition36.

Definition 16. Chaotic Keys The association between the control parameters and the initial variables, especially determine
how the innate chaotic maps will evolve over time, must be described explicitly and accurately in chaos theory2.

4.4 Primordial Chaotic Systems
Several researchers talk about various taxonomies of chaotic maps based on their properties, implementation or applicability
etc. Muthu et. al, 202137 analysed the chaotic systems and their maps from various perspectives such spatial and temporal
characteristics. In this survey, we distinguish between two types of chaotic systems: dissipative systems and conservative systems,
based on their strength and e�cacy in the cryptographic task of designing a reliable image EDA, as illustrated in figure 1 .

• Conservative Systems

The phase space components in the conservative systems do not change, in fact they neither show any region of attraction,
any fixed point, any attracting limit cycle nor any strange attractor. But still a positive K-entropy can be seen in conservative
systems where a strange attractor does exists and is mingled towards the regular regions. It does not possess attraction but
are strange chaotic regions.

• Dissipative Systems

In contrast to this, the dissipative systems possess a fractal structure. A dissipative system possess state based on given
input and move to output state based on supply rate. They have a storage function and the energy supplied to the system
gives a strong connection to lyapunov stability. Due to their huge importance in quantum mechanics, an active research on
discovering the properties of dissipative systems and mathematical ways to model their behaviors is still under research.

FIGURE 1 Types of Chaotic Systems.
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Our goal is to assist in choosing the appropriate primordial system as the best candidate in the design of Chaos based image
EDA. We do this by presenting the genesis of the primordial chaotic systems and talking about the basic properties of chaos
employed in image EDA through table 1 . Instead of applying these features directly in their original form, we clarify appro-
priately applying them through chaotification as shown in table 1 . This will strengthen the system against image EDA-related
attacks such as chosen plaintext attack (CPA), chosen ciphertext attack (CCA), and cipher only attack (COA).

4.5 Examples: Popular Chaotic Systems and their Maps
Logistic System
Pierre Verhulst first put forward the logistic equation in 184538. A logistic system is recognized with sensitive dependence on
initial conditions and is given by the equation,

Pn+1 = UPn(1 * Pn) (6)
where n is the running variable and U is a parameter, is used to identify a logistic system with sensitive reliance on initial
circumstances. The variable at the nth iteration, Pn, ranges in value from 1 to 0. A new value is generated by this recursive
equation by building on the preceding one. The maximum value is 1, while the smallest value is 0. There are n generations and
a growth rate of U.

Arnold’s System
In 1960, Vladimir Arnold devised a dynamic system that can be shown to generate predetermined chaos39. It could send itself
a garbled map from the torus. Vladimir demonstrated the outcome with a cat image. As a consequence, it became known as
“Arnold’s Cat Map”39.

4
Un + 1
Vn + 1

5
=
4
1 A
B AB + 1

5 4
U
V

5
modN (7)

Chirikov–Taylor’s System
Chirikov Taylor created a neighbourhood map for the two primary kinematic variables acceleration and vector (r, u)40. The
Chirikov Taylor’s map is described by the equations,

Çr = r +Ksinu (8)

Çu = u + Çr (9)
the hat represents the actual values of the variables after one repetition of the map, such as when K is an abysmal variable which
influences the intensity of chaos. The dynamics can be considered of as being located on a sphere by estimating x mod 2*pi
as being on a torus by computing either x and p mod 2*pi owing to the periodicity of sin x. The time-dependent Hamiltonian
equation resulted in the map.

H(r, u, t) = r2_2 +Kcos(u)�1(t), (10)
where delta1(t) is the periodic delta function with period 1 in time. The movement is caused by a series of uncontrolled
dissemination partitioned by recurrent impacts.

Lorenz’s System
Edward Lorenz41 derived a mathematical dynamical system to model atmospheric convection in 1963. The system was
represented by three ordinary di�erential equations and was termed as “Lorenz’s equations”.

p. = e(q * p) (11)

q. = gp * pr * q (12)
r. = pq * fr (13)

These sets of equations exhibit a chaotic behavior when e = 10, f = 8
3 , and g = 28 where p,q,r are the state variables and e,f,g

are machine components. Lorenz’s system is three-dimensional, non-linear, and deterministic in nature and is demonstrated to
occur on popular models like optical laser systems, electrical DC motors, and chemical reactions.



10 Devisha Arunadevi Tiwari, Bhaskar Mondal

Chen’s System
Chen discovered a chaotic attractor in 199942 in a three-dimensional autonomous system which was far di�erent from Lorenz’s
3D system. Chen’s map is represented by,

x = e(y0 * x0) (14)

y = (g * e)x0 * x0z0 + gy0 (15)

z = x0y0 * fz0 (16)
and is found to be chaotic when e = 35, f = 3, g = [20, 28].
Sine’s System
Among the most elementary nonlinear systems is the Sine chaotic map and is denominated as,

pn + 1 = ex2nsin⇡pn (17)

The axiom takes on its simplified form and produces a chaotic sequence for the region with p0 = 0.7 and e = 2.3 in the interval
(0,1).

Henon’s System
In 197643, Mitchel Henon arose with a condensed version of the Lorenz model’s Poincare segment. A discrete-time stochastic
process is the Henon map. It is one of the most explored instances of chaotic behaviour in dynamical systems. The Henon map
transforms a plane vector (xn, yn) to a specific view determined by the expression,

Pn + 1 = 1 * eQ2
n +Qn (18)

Qn + 1 = fPn (19)
The map depends on two components a and b, where e = 1.4 and f = 0.3. Henson’s map is bound to be chaotic for the classical
values.

4.6 Crypto-friendly Properties of a Chaotic System
During the 1990s, several experts, scientists, and cryptography practitioners noticed an intriguing relationship between chaos
and encryption. Several characteristics of chaotic systems have conventional cryptosystem equivalents. According to physics,
chaotic dynamics contains a subset of cryptographic features in numerous

aspects, as shown by Gonzalo Alvarez and Shujun Li in 200644. A cognitive phenomenon that varies over time is called a
transient regimen with further information. Arithmetically, a dynamical system’s states are represented as a set of variables. In
an equation that depicts the evolution of the system, the value of the baseline state reveals the mode of the emergence of the
system. This is derived from the expression beneath,

dGi(t)
dt

= Fi(Gj(t), �) (20)

F is the element method to estimate how the system explodes to bifurcate, and Gi(t) in RN is the co-ordinate ’i’ of the state of
the regimen at instance ’t’. ’X’ is an n-dimensional vector with i, j = 0,1,...,N with N g 1. Only nonlinear dynamical systems
with a nonlinear function F experiences chaos. Usually, discrete-time NLDS are used in chaotic digital cryptography and is
represented by45,

Gi+1 = F (Gi, �)
where the above equation works for time “t” as discrete. So, the above system is now purely deterministic as the values of F,
and � can be calculated from the initial state G0. It is indeed “recurrent” when applied across finite state automata or neural
networks because the subsequent entity can be simulated from the set point. Hence, both are best recognized as “deterministic
and recursive”. In an NLDS, the following terminologies formulate the characteristics of chaos, During the 1990s, several
experts, scientists, and cryptography practitioners noticed an intriguing relationship between chaos and encryption. Several
characteristics of chaotic systems have conventional cryptosystem equivalents. According to physics, chaotic dynamics contains
a subset of cryptographic features in numerous aspects, as shown by Gonzalo Alvarez and Shujun Li in 200644,46. A cognitive
phenomenon which varies over time is called a transient regimen45,27,47 with further information. Arithmetically, a dynamical
system’s states are represented as a set of variables45,27,47. In an equation that depicts the evolution of the system, the value of
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TABLE 1 Features of a Chaotic Map to Identify its Crypto-friendly Properties

Characteristic Indicated by the presence of the conditions listed below

Dynamic instability

• a.k.a “butterfly e�ect or SDIC”
• shift in initial states causes unexpected behaviour,
• should have atleast one positive Lyapunov exponent,
• should have a complex non-periodic orbit,
• A change in � leads to di�erent dynamics such as
“stochastic”, “cyclical”, “disparate” and causes bifurcation.

Deterministic

• Sensitive dependence on initial values fixes the chaotic
path,
• remains always the same till the initial values
are not modified.

Unpredictable

• is non-linear,
• has a high sensitivity to the initial state,
• a non-linear system has “predictable short-term behaviour”
but has “unpredictable long-term behaviour”
and is completely “discontinuous”.
• Presence of critical points and small modifications in them
shows an inordinate e�ect.

Non-periodic
• Appears to be random and is disorderly,
• random behaviour has a pattern and a specific order,
• it is non-periodic and non-convergent.

Topological Mixing

• a su�ciently large N for two sets A and B in X
such that fn(A) „ B ë � for every 0 f n f N is such
that dynamical system for X is chorographically mixing,
• Minimal chorographical transitivity
conditions causes this to develop.

Dense periodic orbit • Every position in the phase region becomes an amplified
periodic juncture of topological transitivity.

Ergodicity
• Presence of regular and quasi periodic motions,
• KAM theorem (Kolmo-gorov-Arnold-Moser) delineates
a progressive transition towards chaotic trajectories.

Self Similarity • The presence of a chaotic attractor makes the system
produce invariant cycles resulting in self-similarity.

the baseline state reveals the mode of emergence of the system45,27,47. This is derived in the expression beneath45,27,47,

dGi(t)
dt

= Fi(Gj(t), �) (21)

F is the element method to estimate how the regimen evokes, and Gi(t) in RN is the co-ordinate ’i’ of the state of the regimen at
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instance ’t’. ’X’ is an n-dimensional vector with i,j = 0,1,...,N with N g 1. Only non-linear dynamical systems with a non-linear
function F experience chaos45,27,47. Usually, discrete-time NLDS are used in digital chaotic cryptography and is represented
by45,27,47,

Gi+1 = F (Gi, �)
where the above equation works for time t as discrete. So, the above system is now purely ’deterministic’ as the values of F,
and � can be calculated from the initial state G0. It is indeed ’recurrent’ when applied across finite state automata or neural
networks because the subsequent entity can be simulated from the set point. Hence, both are best recognized as “deterministic
and recursive”. In an NLDS, the following terminologies formulate the characteristics of chaos,

1. Phase Space

Every system state is constrained to U œ RN and F : U ô U in this subspace of RN , where N is the degree of freedom
and is the size of the phase space. The formation of a circle results from the evolution of the original conditions of the
regimen in harmonic oscillator over moment. The discrete-time function (j0, p0), (j1,H(S0)), ...(ji,Hi(S0)) iterations are
a set of plausible integer combinations45,27,47.

2. Attractors

The protracted response of the orbits is referred to as “attractors”. It recognizes the province of dimensional space where
the machine’s orbit meets the momentary. The system is constrained in the maneuverable region known as the attractor A
= F(A), within which all transformations concur45,27,47.

3. Strange Attractor

A strange attractor is a specific type of attractor that can take the form of a juncture, a curve, a legion, or a dense set with a
recursive pattern “strange attractor”45,27,47. Ergodicity seeks to eliminate statistical relationships between the actual and
encrypted images, which is analogous to the concept of confusion in encryption.

In a broader sense, the aspect of discord is achieved by ergodicity in such a way that the encrypted image has a homoge-
neous density. The frequency distribution of an encrypted image reveals a smooth and consistent spread. This behavior
can be addressed in the prevailing encryption technology by employing the verse, “if 100 laypersons flip a coin once or
a single layperson flips a coin 100 times, the output remains the same.”48,49,30,50,51,52,53,52

FIGURE 2 Types of Attractors.
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FIGURE 3 This figure illustrates the detection of chaotic attractor in Lorenz Map at various values of a,b,c. A limit cycle is
detected at a = 10, b = 11, c = 8

3 , a torus attractor is detected at a = 10, b = 17, c = 8
3 and a strange attractor is detected at

a = 10, b = 28, c = 8
3 in Lorenz map.

One of the essential properties in chaos dynamics is sensitivity to initial conditions wherein the concept of di�usion
coincides with it one to one, in that a little deviation in the original image reflects a large deviation in the encrypted image.
Chaos dynamics are deterministic in nature and exhibit pseudo-randomness behavior, usually in digitally developed chaos
through a well-defined deterministic process. They also incur algorithmic complexity, one of the most desirable properties
of cryptography through mathematical dynamics defined in the experimental process, thus inducing structural complexity.
According to Shannon’s theory, the only means to achieve a well-defined chaos54 is the selection and incorporation of an
appropriate chaotic non-linear map. Hence, a chaotic system generated in this way is called a discrete-time chaotic system.
We discuss each essential property of chaos in detail below, as shown in figure ??. The chaotic maps possess some of
these properties each. So, the choice and selection of a chaotic map in the design of cryptographic primitive should be
bestowed on the chaotic features they possess.

4. Chaos possess dynamic instability.

The butterfly e�ect is a property of susceptible dominance on baseline states where a slight shift in one of the states of
a deterministic nonlinear system can cause substantial variations in a subsequent state. It is one of the essential charac-
teristics for chaos to exist. This implies that a slight change to initial conditions creates an unexpected behavior. It is also
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FIGURE 4 This figure illustrates the detection of the chaotic region in a Logistic map trajectory with N = 30. An initial seed
value of 0.1 with a holding drift of 0.2 in the first 10 iterations produces a periodic cycle at x = 20. A bifurcation is detected in
the next iteration at x = 30 with a holding drift of 0.2. The map shows a chaotic region at x = 40 with a holding drift of 0.2.
The trajectory between � = 0 to � = 4 is illustrated in the 6th graph.

referred to as the butterfly e�ect. This characteristic of chaos is also known as “dynamic instability.” In NLDS, the orbital
divergence is quantified using Lyapunov exponents. An N-dimensional system can be computed with N exponents. These
exponents can be employed to estimate susceptibility towards its initial conditions of a nonlinear scheme. If a process has
at least one significantly positive Lyapunov coe�cient and a complex non-periodic orbit, it is said to be chaotic. In order
to identify the zones of the system’s non-chaotic nature where recurring patterns can appear, it is helpful to look at the
coe�cients of the Lyapunov maxima as a result of the process variables, as depicted in the second equation above.

The second equation shows the impact of altering the control parameters on chaotic systems. This dependency might lead
to drastically diverse dynamics for the system, such as stochastic, cyclical, disparate, etc., depending on the values of �.
A change in the quantities of the system coe�cients27 results in a significant modification in the behavior of the system
known as a bifurcation. The bifurcations charts are used to analyze the behavior of the system as a method of operation of
the quantities of �. These depictions make it possible to identify the sections of the dimensional space where the machine
displays either periodic or chaotic behavior, depending on the values of the control parameters.
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5. Chaos is deterministic.
The deterministic nature of chaos sincerely depends on its fundamental nature of sensitivity to initial conditions stating
that determinism holds till the initial conditions remain unchanged and the chaotic path set by the initial condition values
always remains the same. Chaotic maps designed using this phenomenon are deterministic by nature.

6. Chaos is unpredictable.
Chaos is a non-linear, fairly unrelated process that is highly sensitive to its initial state. The system has predictable short-
term behaviour, but its long-term behaviour is unpredictable. A linear system is described by the principle of “sum of
causes”, which is said to possess a cumulative sum of e�ects produced by the sum of causes of each previous component’s
term. Popular examples of linear systems are growth in plants, flowers, a child from birth to adulthood, an object moving
in a trajectory, a train moving to a destination, etc. In such systems, small changes lead to minor e�ect, and large change
leads to big e�ects. Comparatively, a nonlinear system is completely discontinuous. Some popular and quantified examples
are sudden breaks in atmospheric conditions, earthquakes, and tornadoes. A curve of a nonlinear system shows breaks,
loops, and recursions which is a sign of the presence of some “turbulence”. A non-linear and dynamical system has critical
points in which a small modification will show an inordinate e�ect29. Hence, the physics behind the chaos is completely
a postulation of a non-linear system. Thus, chaos is unpredictable29.

7. Chaos appears to be random.
Chaotic maps appear random and disorderly, but their random behavior resembles a pattern and a specific order. A stochas-
tic process analogous to a non-linear dynamical system is just what chaotic phenomena resembles. It is non-periodic and
non-convergent as a consequence.

8. Chaos possess topological mixing.
When there is su�ciently large N for every two open sets A and B in X such that fn(A)

∂
Bë � for every n fN, it is stated

that a dynamical system f on X is chorographically mixing. Leading to chorographical mixtures, any given region or open
set in the subspace of the scheme inevitably coincides with any other given region. Minimal chorographical transitivity
conditions causes this to develop.

9. Chaos has dense periodic orbit.
Every position in the phase region becomes a periodic juncture as a result of topological transitivity and SDIC, which
indicates that a chaotic system will demonstrate a substantial number of irregular phenomena27,29. When the spots in the
circuit are close enough to induce curvilinear translations, an e�ect known as the “strange attractor” causes every chaotic
aspect in the pathway to reach adjacent regions in an exact chaos. This behavior is absolutely essential in encryption. Dr.
Prof. David Ruelle, in 1972, stated the phenomenon of strange attractor by saying that, “the two distinct trajectories in
the phase space never crossed across, but they appeared to create irregular cycles that were not completely concentric
and were not completely on the same plane”27,29. Attractors occur across many dynamical systems that are not chaotic,
according to his theory of thermodynamics, however the odd attractor is a description of a chaotic system with a particu-
lar parameter space. The illustration on page 12 in figure # 2 shows the four di�erent forms of attractors, which are a)
equilibria, b) limit-cycle, c) torus, and d) strange attractor. A chaotic system amplifies the initial distances in the phase
space. The changes in the system will be amplified quickly and become more chaotic if its characteristic Lyapunov time
is short. The magnitude of amplification is restricted to the phase space of the universe. The amplification phenomenon is
bound to come to an end eventually when the phase space ends. Therefore, the magnitude of randomness can be achieved
and determined within the maximum limit of phase space27,29.

10. Chaos possess ergodicity.
Dr. Kolmogorov A.N., an eminent professor in mathematics and physical sciences, revisited Poincare’s section and demon-
strated in 1954,27,29 that every integrable system possesses a quasi-periodic regular motion even in the presence of minute
perturbation which he postulated using Kolmogorov-Arnold-Moser (KAM) theorem, an indication of limits to integra-
bility. The KAM theorem also delineates a progressive transition towards chaos that has trajectories within its integrable
system with regular and quasi periodic motions. When a significant ratio of perturbation is induced, the probability of
quasi periodic behaviour decreases, thereby increasing the proportion of trajectories to become completely chaotic. As
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per the laws of physics presented by Dr. Prof Kolmogorov A.N., the remaining constant of motion at this instance is “only
energy” and the motion was called “ergodic.” Hence, in this regard, the dynamical complex system which possess this
feature are said to have “ergodicity”27,29. Chaos is a dynamical and complex system and so it possess ergodicity.

11. Chaos possess Self Similarity.
The pattern of the development of the machine in time or space is the same at numerous measurement levels. This quality
causes the system to look repeated at various observational scales27,29. Eckmann J.P in 198527 discovered that since an
attractor is by definition invariant under a dynamical evolution, this results to a self-similarity that is often quite noticeable..

4.7 Research Gaps
1. Quantitative Assessment: Many existing chaos-based image encryption algorithms lack comprehensive quantitative

assessments of their security, making it challenging to compare their e�ectiveness objectively.

2. Adversarial Analysis: Limited research addresses potential vulnerabilities to adversarial attacks, such as targeted input
manipulations or perturbations, leaving a gap in understanding the robustness of these algorithms.

3. Real-world Application Studies: There is a need for more studies examining the practical applicability of chaos-based
image encryption in real-world scenarios, assessing its performance and security in diverse environments.

4.8 Research Scope
1. Hybrid Approaches: Investigating the integration of chaos-based methods with other cryptographic techniques or machine

learning for enhanced security and adaptability.

2. Dynamic Key Management: Exploring dynamic key management schemes to improve the adaptability of chaos-based
algorithms to varying image characteristics and evolving security requirements.

3. Energy-E�cient Implementations: Exploring the feasibility of implementing chaos-based image encryption algorithms
in resource-constrained devices, such as IoT devices, with a focus on energy e�ciency.

5 RESEARCH METHODOLOGY

We searched several scientific databases namely, the Google Scholar, Web of Science, Directory of Open Access Jour-
nals,PubMed,EBSCO,CNKI,MEDLINE, ProQuest,Academic Search Complete,ACM Digital Library,The arts BIOSIS Citation
Index,Cabells, Clarivate Analytics,Crossref,Elsevier databases, Inspec, JSTOR,Asos index,CAS, PubScholar,Emerging Sources
Citation Index,Primary index, Science Citation index,Science Citation index expanded, INSPEC, J-Gate Portal, EBSCO and
retrieved quality papers based on the high quartile journal, high impact factor and minimum citations greater than 30 for each
research article and performed an in-depth comparative study based on standard metrics over the methods used in the design of
chaos based cryptographic primitives for lightweight implementations.

5.1 Research Questions
The figure 5 illustrates the research questions in order to improve the chaos dynamics for lightweight implementations.

5.2 Methods for Lightweight Implementations of Chaos based Primitives
5.2.1 Mixing Transformation
Since the 1980s, academicians from a variety of fields started gaining interest in chaos-based encryption. Many similarities
between chaotic systems and cryptosystems have been identified, particularly in the areas where these similarities might be used
to produce cryptographic primitives. We examined many chaotic system types in the discussion above according to their power,
size, complexity, and relevance. Based on the aforementioned chaotic system implementations, two categories of chaos-fixated
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FIGURE 5 Research Questions

encryptions which operate on quite di�erent chaotic notions may be recognized. In the first, chaotic systems are represented
using analog technology, whereas in the second, chaotic systems are represented using digital technology. The following is a
discussion of their use and application.

5.2.2 Analog Chaotification
Analog chaos based systems produce strong and reliable chaotification when implemented using mixing transformations as
discussed above. At the particular physical layer, an analog chaotic cryptosystem encrypts a data by camouflaging it with a
chaotic noise. The analogue chaotic cryptosystems add chaos-inducing additives to the signal. One technique for adding a
stochastic indication to the signal is additive chaotic masking. Chaotic shift keying is a di�erent technique that adds to the data
by shifting a digitized information signal between distinct nonlinear system. Furthermore, chaotic modulation is one of the ways
where the specs or phase space of the chaotic transmitter are modified using an information signal. Chaotic control is a method
of perturbing a chaotic system by intercepting an information signal in a canonical manner.

5.2.3 Chaotic Masking
Chaotic masking, which entails supplying an input plaintext message or image as a signal described by p(t) and integrating it in a
carrier frequency c(t) to create a paired dynamic signal d(t) = p(t)+c(t), is the most basic and basic type of analog chaos-fixated
encrypted transmission. Equivalent conjugative activities, such as multiplication, may substitute in place of additive depending
on the needs of the system. The plaintext signal can be retrieved by estimating p(t) and deducting it from d(t) when stochastic
synchronization has been established on the receiver section. Experiments in2 showed that in order to prevent the signal of the
obscured plaintext from adversely a�ecting chaotic synchronisation at the receiver, the energy of the plaintext message signal
p(t) should be significantly lower than that of the driving signal d(t), that is, substantially lower than the strength of c(t). The
message signal cannot be precisely obtained because the message signal interferences with the driving signal, making chaotic
synchronisation impossible. The unique feature of stochastic camouflage method is that the message signal has no impact on
the master system’s dynamics. Since an attacker can always utilise the driving signal to generate an attack, the security of
chaotic masking against di�erent attacks is dubious. Since the substantial energy of the input plaintext message or image must
be considerably less than that of the output impedance, it is di�cult to entirely solve the security vulnerability without replacing
the encryption mechanism.
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5.2.4 Chaotic Switching
Chaotic stretching, also referred to as chaotic shift keying, is frequently used to transmit digital signals. The transmitter processes
the 0- and 1-bit input plaintext message/image using two distinct chaotic systems. The plaintext message will occasionally
alter the chaotic system being employed. Only one of the two chaotic systems is required at the receiver, and whether or not
the plaintext bits may be retrieved depends on the replica variable capacity to establish chaos integration with the primary
component. It should be noted that the two chaotic systems at the transmitter end could be homogeneous or in-homogeneous.
When two homogeneous systems are employed, one dynamic system with configurable parameters operates, making chaotic
switching systems easier to use. For the primary and replica units to produce coherent chaos, the bit propagation delay of each
plaintext must be su�cient. As a result, the distribution velocity of a chaotic cross-coupled system is usually much slower than
that of a chaotic camouflaging system. The key advantage of chaotic gating is the recovery of the actual plaintext signal, provided
that the signal-to-noise proportion is not too extreme. It is well known that a number of attacks can be made against the stated
simplistic chaotic switching mechanism. Testing of the currently in use chaotic shift keying approach reveals that the chaotic
gating components at their core are useless and are easy targets for the attackers.

5.2.5 Chaotic Modulation
There is a di�erence between chaotic multiplexing processes and catastrophic attenuation. The sender system is provided the
plaintext message p(t) in a stochastic regulation method, enables the plaintext message to constantly change the dynamics of the
recipient component. In this situation, an optimised regulator is often added to the slave system in line with certain rule so that
its output, p’(t), which may also be thought of as an auxiliary random variable bidirectionally associated with the correspondent
unit, asymptotically converges to p(t). The slave system must receive the controller’s output, p(t), in the same way as the master
in order to mimic the kinetics of the central controller.Chaotic modulation can be achieved using one of two methods. Direct
modulation and dynamic attenuation are the first two. Direct modulation involves infusing one or more master system variables
with the input plaintext message /image signal p(t) without altering the regularization term. The plaintext message signal p(t)
modifies one or more control parameters in parameter regulation. When the driving signal and plaintext signal are mixed in
certain stochastic modulation systems, input from the motor pulse signal and other required changes culminate in a refined type
of stochastic attenuation. Compared to chaotic masking approaches, probabilistic attenuation algorithms can asymptotically
recover the plaintext data if certain criteria are met. According to Alvarez G. et al. 2005’s55, chaotic attenuation performs better
than chaotic gating and chaotic switching systems can only transport electronic information. If correctly developed, the chaotic
attenuation approach might really transmit several plaintext message signals. One approach is to change the ’n’ process variables
of the master system using ’n’ plaintext message signals. The main disadvantage of chaotic attenuation is that the controller
depends on how the primary and replica schemes are designed, requiring the creation of several integrators for various master
systems. In some cases, chaotic primary/replica process controllers may not even exist due to serious flaws in them.

5.2.6 Chaos based Pseudo Random Number Generator
Digital or discrete chaotic cryptosystems are the source of Pseudo Random Number Generator (PRNGs). For multimedia
security, chaos in cryptography has recently received significant interest.

5.2.7 Bit Permutation
A grayscale image is represented by an array of pixels, each having eight bits for 256 di�erent hues of grey. Each image pixel’s
bits are extracted, and then they are permuted using a key chosen from a pseudo-random generator with a chaos fixation. These
permuted pixels make up the entire array of the encrypted image. The bit permutation approach transmits the encrypted image
to the receiver across an unsecured channel. The recipient decodes the encrypted image using the same set of keys. Since each
pixel has eight bits, it is presumed that the key length is eight. Three elements must be considered for bit-level encryption to
be e�ective. First, each bit plane’s bit distribution needs to be more uniform. First, there should be more uniformity in the bit
distribution throughout each bit plane. Thirdly, the pixel values and placements should be changed, together with the second
item a reduction in the correlation among nearby higher bit planes. The figure 6 shows the colour images of size 2000 X 1500
co�ee-beans.jpg and 600 X 401 figs.jpg and their corresponding images showing permutation e�ect. The permutation keys are
generated using hybrid 3D mixed chaotic map. The output reflects a notion of encryption but using merely permutation for
encryption is astonishingly risky as it is an open door to statistical attacks.
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TABLE 2 Analysis of Chaos Based Primitives for Random Number Generation

Year Ref. RNG-type Chaotic-Map Method FPPC Entropy MSE
1963 56 PRNG 7 Middle Square Ç 7.9993 0.00053
2014 57 PRNG QCM QCM eq®s 7 7.9995 0.00010
2017 58 PRNG Hitzl-Zele Secret Pixel 7 7.9999 0.00050
2019 59 PRNG Ikeda(� = 0.701) CHAOSA 7 7.9990 0.00060
2021 60 PRNG Logistic map Turbulence padded Ç 7.9992 0.00054
2021 61 PRNG Sprott Sys®m Sprott based Ç 7.9992 0.00052
2021 62 PRNG Chaotic sequence FPGA using VHDL 7 7 0.00640
2017 63 TRNG Henon’s,Logistic Cascaded 7 0.9998 7

2021 64 TRNG FPGA F ibo®ci-R®gGaloisOsci®r 7 0.9950 7

†Note : This table presents an Analysis of Chaos based Primitives for Pseudo Random Number Generators and True Pseudo Random Number Generators. The

research gap includes techniques to generate RNG(s) at a faster rate. The quoted entropy is in bits/bytes. A “Ç” denotes the attainment of the target value, and “7”
denotes test value not discovered. The test metrics used are FPPC, Entropy test and MSE.
†Abbreviations : Finite Precision Period Calculation(FPPC),Mean Square Error (MSE).
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FIGURE 6 Permutation E�ect on Images using Chaotic Keys

5.2.8 Pixel Position Permutation
If the pixel position permutation meets the following three requirements, it can be used: (1) there must be no equilibrium in the
permutation; (2) there must be no adjacent pair mapping in the neighborhood; and (3) the enormity of the permutation must be
more than two-thirds of the shift factor in the randomization. Every set of pixels from the image is taken in this procedure. The
key that is chosen from the list of keys is used to represent the pixels in the band. When utilizing the bit randomization approach,
both the encryption and decryption processes are identical. The span of the keys, which are all the same extent, correlates to
the dimension of the pixel group. The amount of perceptual information reduces if the span of the keys exceeds the span of the
pixel clan. By periodically instantiating a chaotic map, the keys for pixel position scrambling are discovered through chaotic
sequences.

5.2.9 Pixel Value Permutation
A person, object, or work of art can all be represented by an image. Their outward appearance is defined by a group of pixels.The
intensity at a given spot in the image is stored in the intensity values at that spot. The goal of pixel value transformation tech-
niques is to eliminate the correlation between pairs of pixels. Through the use of mathematical processes like AND-ing, random
shu�ing, fractional-Mellin transformation, and random phase encoding through Fourier transform, the correlations between the
pixels are totally eradicated.

5.2.10 Block Permutation
A given image is divided up into blocks, and either a bit-level permutation or pixel-level permutation is then carried out. This
process is known as block permutation. The block sizes should be lower for more secure encryption. However, if the size is
really small, there is a big chance of information loss. One can arrange the blocks either horizontally or vertically.

Due to their lower processing complexity, permutation-only image encryption schemes have shown to be quite e�ective
because they only change the image elements’ positions, not their contents. They do not, however, provide complete security.
One of the two things that lead to security flaws is statistical assaults; the data distribution of the randomized image retains
an identical state as to those of the original image. Second, discretization is required for generating transposition keys from
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nonlinear systems. This is a serious issue since, in the majority of instances, the chaotic map changes from aperiodic to periodic,
which goes against the notion of security.

5.2.11 Chaos based Substitution Schemes
The predictable and reversible replacement of one element from an original image with another is known as substitution. The
mapping between each input and its replacement value is specified using an S-box in substitution. Chaotic S-boxes are used to
defend against statistical and divergent attacks. In the process of replacing, pixel blocks are moved to a new place determined
by keys generated randomly. An innovative approach proposed by Zhu et al. in 201165 indicates the segmentation of image
picture elements into combinations of bit streams depending on the number of image elements. Using Cat and Logistic maps,
they then adjusted and updated the targeted bits in the image element values. Unfortunately, the proposed approach underwent
cryptanalysis and was improved by Zhang in 201466. Nearly identical to this, the authors Fu.et.al67 created a system using bit-
level recombination with pixel-level replacements using a discontinuous cat map in 2011,67. This scheme was crypt-analyzed
and enhanced shortly after by Zhang et al. in 2015,68. Unexpectedly, Chen et al. in69 of the e�ective system under revealed that
it had equal permutation keys.

5.2.12 Chaos based Permutation-Substitution Schemes
The bit pattern or pixel value can be changed using the substitution technique. The security of the image is significantly decreased
by the possible combination and substitution-only image scrambling approaches. By using a replacement component that grad-
ually modifies the pixel values, the substitution cipher form of image encryption eliminates this di�culty. Since adjustments
to pixels usually rely on the consequences of all the preceding image pixels, a little modification in one data point could have
an influence on almost all of the consecutive pixels. Bit replacement and pixel replacement is a method for altering the value
of a bit or pixel. Simple procedures like exclusive disjunction and its complement, additive operations for pixel repositioning
are employed to carry out reorganization. The security of the cryptosystem is strengthened by the existence of replacement ele-
ments. But it also puts up a distinct problem. A sizeable portion of the computation workload during the replacement process
is used by the real number algebraic expression and associated downsampling needed by the key stream generation. Although
the value of such computational complexity for realistic large-image encryption is substantially diminished, the mathematical
accuracy cannot be too low due to security considerations.

5.2.13 Chaos based Particle Swarm Optimization
Enthusiastic researchers in70 Wang et.al, in 2016 introduced a novel implementation of chaotic cryptography in conjunction
with the most successful notion of applied physics, ’particle swarm optimization. Their study investigates a one-dimensional
Logistic map, DNA encoding sequences, and MOPSO-based image encryption technique. Particle swarm optimization (PSO) is
used to determine the hash code of a plaintext image, a scramble mark bit, and the sub-key sequence, which together constitute
the essence of the original study. Using a logistic map and DNA encoding, Wang et.al generated random DNA mask images.
They integrated it with the plaintext DNA encoding pattern, which was subject to block-shu�e, to produce an image encryption.
A position in the plaintext image corresponds to the position value of the component in the recurrent PSO algorithm, which
is influenced by the correlation analysis and data variance. The pro�ered encryption scheme was successfully able to pass
the (�)2 test and is fairly resilient to common attacks. A comparison investigation in71 shows that chaotic PSO outperforms
various optimization algorithms, particularly the GA, DE, and ACO. Focusing on the grazing tendencies of species, Eberhart
and Kennedy in72 established the PSO notion. A populace of ions is used in the paradigm of particle swarm optimization to
signify an object that needs to be optimized. Momentum and orientation are two characteristics that each electron carries. By
computing the relative merits of the actual state using a predetermined objective equation, the particulate positions can be
distinguished e�ectively. The objective equation value is the strongest factor for determining, via successive iterations, the right
place for every member, the objective value for the cluster, and the objective value of the band.

The figure 7 shows the pre-processed colour images of size 2000 X 1500 co�ee-beans.jpg and 600 X 401 figs.jpg and their
corresponding images showing substitution e�ect. The substitution keys are generated using hybrid 3D mixed chaotic map. The
output reflects a notion of encryption but using merely substitution for encryption is again, astonishingly risky as it is an open
door to statistical attacks and noise injection attacks. An adversarial machine learner can perform pattern analysis to discover
substitution keys by intercepting a full-zero image.
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TABLE 3 Avant Garde Radical Approaches recently used to Generate Hybrid Chaotic Maps73,71,72,74,75,76,77,78,79,80,81

Year Author&Work Objective Radical Approach Improvement
2012 Akshani et.al76 Discretization Derived map Period Doubling

using quantum represenion route to chaos.
2013 Ahmed A. Abd Encrypt Color Image Quantum Chaotic Key Optimized Finite

El Latif77 Precion Repreion
2014 Chauhan M Explore use of ANN using E�cient Generion

Prajapati R81 ANN in IE Chaos of Chaotic sequences
2016 Wang et.al73 Position Shu�ing Chaotic PSO Randomization
2017 Mondal et.al E�cient, Secure PRNG using Noise prevention

75 image transion Cellular Automata
2017 Li et.al80 Color Image Encryption ArFFT through CRPM Quantum kernel-

inverted Hilbert’s Space.
2017 Maniyath SR Expand keyspace Encoding using Chaos MSE of

et.al82 Random Phase Mask 0.01 only.
2019 Mondal et.al Confusion-Di�usion 2DSine-Cosine- Increased

74 Cross Chaotic Map Chaotic range
2019 Alawida et.al Keyspace expansion DCFSA with- Improved

83,6,12,84 multiple chaotic maps ergodicity.
2021 Zhenlong M et.al Secure T ransion 5D Chaotic system E�cient Genion

85 as kernel parameters of chaotic sequences.

a† Note: This table presents avant-garde radical approach aiding improvements in chaos-based cryptographical research to develop robust hybrid chaotic maps which can counteract in the issues faced in direct implemen-
tations of chaotic maps.

a† Abbreviations: ArFFT: Anamorphic Fractional Fourier Transform, CRPM: Chaos Random Phase Mask.
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TABLE 4 Performance Comparison of Chaos based Permutation-Di�usion Primitives (CB-PD) used in Image EDA

Performance Metric

Year Ref. Chaotic Map Key Space NPCR(%) UACI(%) CC(H) CC(V) CC(D) IE

2011 86 PWLCM 1.0368◊ 10114 99.62 33.49 -0.0574 -0.0035 +0.0578 7.9777
2011 65 Arnold’s & Logistic 1042 99.62 33.48 +0.0005 +0.0016 -0.0045 7.9999
2012 87 Chaotic Iteration ⇡ x 2106 95.81 33.36 +0.0009 +0.0029 +0.0007 7.9972
2013 88 Tent 1088 99.61 30.59 +0.0006 +0.0002 +0.0043 7.9992
2015 89 Quantum Logistic 2128 99.64 33.53 +0.0011 +0.0007 +0.0008 7.9995
2017 90 Logistic 2492 99.62 33.45 -0.0153 -0.0082 -0.0181 7.9993
2018 33 2D Baker’s 228 bit key 91.04 37.75 +0.0090 +0.0010 +0.0013 7.9993
2018 91 Skew tent 2128 99.64 33.39 +0.02238 +0.0076 +0.0295 7.9943
2019 92 Logistic-Sine 1.2219X 2626 99.60 33.46 +0.0031 +0.0005 -0.0041 7.9998
2020 93 Henon’s 2256 99.60 33.46 -0.0016 +0.0003 -0.0022 7.9987
2022 94 Logistic 2572 99.62 33.32 -0.0068 -0.0091 -0.0233 7.9975

a† Note: This table presents a comparison of chaos based permutation-di�usion primitives using classical (non-hybrid) chaotic maps and the key space achieved in the works during the decade.The standard Lena image
256X256 available at https://sipi.usc.edu/database/ is used for encryption and the empirical values discussed in the table are tested on the metrics listed below in abbreviations.

a† Table: Chaos based Permutation-Di�usion Primitives.
a† Abbreviations: Number of Pixel Change Rate (NPCR), Unified Average Changing Intensity (UACI), Correlation Coe�cient Analysis Horizontal Proximity (CCH), Vertical Proximity (CCV), Diagonal Proximity

(CCD), Information Entropy(IE)
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TABLE 5 Performance Comparison of Chaos based Permutation-Substitution-Simultaneous-Operation Primitives(CB-PSSO) used in Image EDA

Performance Metric

Year Ref. Chaotic Map Key Space NPCR(%) UACI(%) CC(H) CC(V) CC(D) IE

2011 95 Arnold’s Cat g 10156 99.80 45.66 -0.0008 +0.0016 +0.0115 7.9970
2011 96 Standard 1045 99.60 33.46 -0.0034 -0.0025 -0.0070 7.9957
2014 97 Logistic g 2256 99.68 33.40 +0.0008 +0.0023 +0.0045 7.9993
2018 75 2D Baker’s 228 bit 99.75 39.12 +0.0214 +0.0011 +0.0178 7.9992
2020 98 Henon’s 1027 99.64 33.45 +0.0001 +0.0003 +0.0002 7.9997
2021 99 Standard ˘ 2149 99.62 33.58 +0.0139 -0.0008 -0.0006 7.9986

aNote: This table presents a comparison of chaos based permutation-substitution-simultaneous-operation(CB-PSSO) primitives using classical (non-hybrid) chaotic maps and the key space achieved in the works during
the decade.The standard Lena image 256X256 available at https://sipi.usc.edu/database/ is used for encryption and the empirical values discussed in the table are tested on the metrics listed below in abbreviations.

aTable: Chaos based Permutation-Substitution-Simultaneous-Operation(CB-PSSO) Primitives.
a†Abbreviations: Number of Pixel Change Rate (NPCR), Unified Average Changing Intensity (UACI), Correlation Coe�cient Analysis Horizontal Proximity (CCH), Vertical Proximity (CCV), Diagonal Proximity (CCD),

Information Entropy(IE)
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FIGURE 7 Substitution E�ect on Images using Chaotic Keys

FIGURE 8 Confusion Di�usion E�ect on Images using Chaotic Keys

The figure 8 shows the pre-processed colour images of size 2000 X 1500 co�ee-beans.jpg and 512 X 512 mandril-color.tif,
their corresponding images showing confusion di�usion e�ect and the corresponding restored images. The confusion di�usion
keys are generated using hybrid 3D mixed chaotic map. The output reflects a notion of encryption but using merely confusion
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FIGURE 9 E�ect of Interception by Inserting a Full-Zero Image Equal to Size of Original Image on Confusion Di�usion
Scheme

di�usion is still not enough for robust encryption as discussed. Again, astonishingly taking risk of sole dependence on confusion-
di�usion scheme for CB image EDA design, is again an open door to statistical attacks, noise injection attacks, frequency analysis
and algebraic attacks. Through the process of reverse engineering, an adversarial machine learner can intercept a full-zero image
and use pattern analysis to find confusion di�usion keys.

The figure 9 shows the pre-processed colour images of size 512 X 512 mandril-color.tif and its corresponding full-zero image
showing interception e�ect on confusion-di�usion scheme. The confusion di�usion keys are generated using hybrid 3D mixed
chaotic map. During cryptanalysis of the confusion-di�usion scheme, a full-zero image as shown in 9 was intercepted into
the scheme to statistically detect and trace its pattern of confusion di�usion. The figure of mandril-color image shows success
in traceability. Thus the output when reflects a notion of encryption but using merely confusion di�usion is never enough for
robust encryption.

6 CRYPTANALYSIS OF CHAOS BASED PRIMITIVES

Cryptanalyzing and breaking a chaos based image encryption algorithm using a chaotic cryptology primitive used is a challeng-
ing task due to the inherent unpredictability of well defined chaotic systems used in their designs. In contrast to this, due to the
fact that chaos fixated designs were not constructed with consideration for either crypt-analytic or proof-based security design,
chaos-fixated image EDAs have weaker designs. Multimedia encryption decryption systems with a chaos fixation are the ones
that had not been created using a crypt-analytic design methodology. The chaotic cryptology primitives are time-tested and obey
either of the two design approaches. The chaotic cryptology primitives follow modern cryptography design considerations. As
a result, their security features do not align with the two concepts of security—provable security and practical security. Chaotic
AES and chaos based DES encryption algorithms are considered as the standard cryptographic design for encryption and have
been prominently used as benchmark methods to test the weakness of newly designed chaos based image encryption algorithms.

7 PERFORMANCE ANALYSIS AND TRADE-OFF

Table 6 outlines the limitations of chaos-focused image encryption and weakness using the primary metrics used in testing.
The concept of total security and robustness still has potential for research and advancement.
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TABLE 6 Standard Evaluation Metrics used to test image encryption decryption algorithms

Evaluation
metric

Why (Vulnerabilities) Formula Accepted range of test value

NPCR Finite precision mismatches in E(p, q) of
encrypted image and C ®(a, b) of modified original
image under test

NPCR =
≥

p,q Da,b

R<S * 100,

where D(a,b) =

T
0, if C(a, b) = C ®(a, b);
1, if C(a, b) ë C ®(a, b);

, is the variation

between pixels in the original encrypted image and the modified
image. Image width and height are represented by R and S.

NPCR must be greater than
99%.

UACI Finite precision mismatches in C(a, b) of
encrypted image and C ®(a, b) of modified original
image under test

UACI =
≥

a,b Ca,b*C ®
a,b

255<R<S * 100 UACI value must be around
33%.

PSNR Deviations in pixel coordinates and bit represen-
tation due to fluctuations in finite precision arith-
metic.

PSNR = 10aXlog10
(2n*1)2
MSE

PSNR value should be max-
imum in {0,ÿ}

at which n is the count of bits in a pixel. .
MSE Use of normalized calculations in floating point

arithmetic. Unmatched is treated as a noise signal.
MSE = 1

RS

≥a=R
p=1

≥q=H
b=1 (O(a, b)*E(a, b))2 where (a,b) = pixel

co-ordinates of the image, R x S = width and height of the image,
(PE) = Plain and Encrypted image.

MSE should be max.
between PI and EI and in
{0,ÿ}.

aNote: This table presents the evaluation metrics used scientifically to measure the accuracy of image encryption decryption algorithms.
bAbbreviations: Number of Pixel Change Rate(NPCR), Unified Average Change in Intensity (UACI), Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE).
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TABLE 6 b.continued

Evaluation
metric

Why (Vulnerabilities) Formula Accepted range of test value

RMSE Use of normalized calculations in floating point
arithmetic. Unmatched is treated as a noise signal.

RMSE =
u≥b=S

b=1 (P (a,b)*C(a,b))2

RaXS
where (a,b) = pixel co-ordinates

of the image, R x S = width and height of the image, (PE) = Plain
and Encrypted image.

RMSE should be maximum
in {0,ÿ}.

BCR Operators supporting normalized precisions cause
loss of invertibility of control parameters during
decryption.

BCR = (1 *
≥MXN

a=0,b=0 O(a,b)ªD(a,b)
MxXN

)xX 100% where (a,b) = pixel
co-ordinates of the image, W x H = width and height of the
image, O,D = Original and Decrypted image.

BCR value should be zero. it
is the di�erence between the
Original image & Decrypted
image.

SDR Use of normalized calculations in floating point
arithmetic. Unmatched is treated as a noise signal.

SDR = 10log10
≥

a,b O(a,b)2
≥

a,b(O(a,b)*D(a,b))2 SDR value should be a large
value.

CCA Use of normalized calculations in floating point
arithmetic. Unmatched is treated as a noise signal.

ra,b = C(a,b)˘
D(a)aX

˘
D(y)

where (a,b) are the adj. pixels of an image;

C(a,b) is the covariance between samples a, b;K is the no. of pixel
pairs (ai, bi);D(a) and D(b) is the Std. deviation of a & b; E(a)
=mean of ai pixel values.

CCA should be nearly equal
to zero.

aNote: This table presents the evaluation metrics used scientifically to measure the accuracy of image encryption decryption algorithms.
bAbbreviations:Root Mean Square Error (RMSE),Bit Change Ratio (BCR), Signal to Distortion Ratio (SDR), Cross-Correlation Analysis (CCA).
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The performance of a chaos based image EDA is evaluated based on the several criteria such as security where the algorithm
should resist various attacks such as statistical attacks, di�erential attacks, and brute-force attacks. The ability to withstand these
attacks indicates the strength of the encryption, the speed where the e�ciency of the algorithm in terms of processing time
should be faster but it should not compromise security. Key sensitivity where the resistance of the algorithm to changes in the
encryption key is vital. Small changes in the key should significantly a�ect the output to enhance security. Sensitivity to initial
conditions should be carefully balanced to ensure robustness and security. After decryption, the quality of the reconstructed
image should be visually similar to the original. Metrics like Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSI) are used to measure image quality. Trade-o�s considered in Chaos based image EDA include,

• Complexity vs. Security
Increasing the complexity of the algorithm may enhance security, but it could also lead to slower processing. Balancing
complexity with the need for e�cient encryption is a trade-o�.

• Key Size vs. Performance
Larger key sizes generally improve security but might slow down the encryption/decryption process. Finding the right
balance is crucial.

• Randomness vs. Predictability
Chaos based algorithms often rely on chaotic maps to generate pseudo-random sequences. Striking a balance between
randomness for security and predictability for key generation is important.

• Robustness vs. Sensitivity
Ensuring the algorithm is robust against various attacks while maintaining sensitivity to the encryption key and initial
conditions is a delicate trade-o�.

• Applicability
Consideration of the specific use case and the desired level of security. Some applications may prioritize speed, while
others may prioritize higher levels of encryption.

Evaluation and trade-o�s in Chaos based image EDA require careful consideration of these factors to meet the specific
requirements of the intended cryptosystem as discussed in table 6 .

8 DISCUSSIONS

In this comprehensive review of classical methods using chaotic concepts, it is studied that, the majority of algorithms do not use
the proper ways of incorporating chaotic theories, which results in security weaknesses. Lack of proper dispersion operations,
vulnerability to known and intentional unpredictable threats, a lack of key spectrum, improper key sequence development, the
need for numerous iteration steps, and improperly selected chaotic maps with poor statistical features, cryptographic systems,
especially those based solely on chaos, do not always provide adequate security.

Pixel value distribution and statistical correlation can be masked using two main strategies: confusion and di�usion. It
becomes increasingly challenging to distinguish between the cipher text and the key and is limited in its ability to inspect the
encrypted data for repeats and statistical trends. In contrast, di�usion propagates the plaintext repetition across the entire cipher
text, hence decreasing duplication. Even if each of these strategies are too vulnerable to attack, when coupled, they often provide
an elevated level of defence. However, classical encryption techniques like DES, IDEA, and RSA are not successful to encrypt
images due to the inherent characteristics of images, such as high pixel correlation and enormous storage capacity. Chaos-fixated
techniques are utilized to optimize the needs of existing image encryption algorithms. When implemented accurately, with a
mindful approach to use and incorporate chaos dynamics in image encryption, these can be the best candidate to develop strong
image encryption algorithms.

8.1 Findings of Research Questions
ü Findings of RQ1
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“RQ1: How to ensure that a specific spectrum of model parameters have no periodic window and that the largest Lya-
punov exponent is positive throughout the whole spectrum, preventing the system from becoming entirely periodic? Is it
feasible to use chaos based primitives for secure design of image EDA ?”

Over the past three decades, there has been several unique studies which report and reveal the scientific progress in chaotic
cryptography. Chaos has been used extensively in image encryption algorithms due to the crypto-friendly properties they
possess. These empirical works provide concrete evidence that at least one Lyapunov exponent must be positive in order
for the system to exhibit long-term chaotic behaviour. It is also important to test each and every possible value of the
parameter in order to find the Lyapunov exponent. The value of Lyapunov exponent should be fixed by adjusting it with
the system parameters. Chaos detection tests such as bifurcation diagram (BD) which is used to study the behaviour and
detects the system cycles from periodic to chaotic orbits, lyapunov exponent (LE) to test sensitivity to initial conditions,
0-1 test and three state test to detect regular, periodic or quasi-periodic cycles, sample entropy to measure the randomness
of chaotic sequences, phase portrait test to identify the attractors and note the butterfly pattern, unequal distribution in
histogram test shows weak chaos, time series analysis plots the features of data distribution with respect to time as discrete
component, kaplan-yorke or lyapunov dimension measure occurrence of fractional dimension which shows presence of
strange attractor, Poincare’s section maps shows occurrence of fixed points, periodic orbits and chaotic motion, correlation
dimension detects the strangeness of a dynamical system and checks the presence of fractals.

We explored that chaos possesses crypto-friendly properties beneficial for secure design of image encryption algorithms
but there are very few studies where the incorporation of chaos in cryptography is discussed. Research and analysis in
preliminaries of chaos for advances in cryptography is the most crucial need of the hour. In the study, we identified that the
spectrum of chaos can be controlled by setting the domain and co-domain as the control parameters. The chaos trajectories
can be fixed using system parameters. The mathematical predicates of domain, codomain as upper bound and the chain of
logical deductions should be the basis of chaos based image encryption algorithm. Chaos has been beneficial candidate
for image encryption and can be better standardized for cryptographically secure design of image encryption algorithms.

The security of chaos based image EDAs bestows only in the design of its scheme rather than the use of chaos based
primitives for several cryptographical operations involved. Chaos is a best candidate for image EDA. The weakness if
exist, they mostly are due to loose design of image EDA structures. Incorporating the necessary elements as discussed
above can help fortify existing CB image EDAs. Contradictory, to this discussion, weak designs, such as permutation-only
schemes, or reliance merely on CBP-PDO alone for encryption decryption task, degrade the chaotic maps used causing
them to become periodic thus compromising the cryptosystem.

ü Findings of RQ2
“RQ2: How to maintain the chaotic states? Do chaotic sets, and their presence in chaotic attractors play a significant role
in the maintenance of chaotic states?”

The occurrence of robust chaos is governed by the maintenance of chaotic parameter values in a well defined dimension
of chaos. Spano and Ding in 1998100, described the magneto elastic ribbon experiment on ikeda map in which the study
of saddle points and regions of chaotic attractors are the chaotic states and the values occurring at those instance of the
system parameters are the chaotic sets. Similarly, when a chaotic map is chosen, its chaotic states and chaotic sets can be
derived from the chaotic ribbon experiment which makes the resultant system reliable and robust such that the system
does not move out of chaos within a given polynomial time asymptotically.

ü Findings of RQ3
“RQ3: Are there any methods to fortify the existing image EDA(s) against the vulnerabilities prevailing due to degrada-
tion of chaotic maps used in their design? Is it indeed realistic for dynamical systems to exhibit robust chaos?”

Hybrid implementations to produce robust chaos mandates the prior system to be a dynamical system in its original form,
if not then the system has to change to hybrid form. A robust chaos does not loose its dynamics and it definitely shows stage
by stage first its periodicity, then its quasi-periodicity and gradually it becomes fully chaotic which can be tested using
three state test. Computer generated chaos is implemented using digital mathematics and therefore called “pseudo chaos”.
Eventhough pseudo chaos is considered unreliable, the stretch of randomness and required crypto-friendly properties can
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be stochastic-ally generated through hybridization and control over chaos (CoC). In section 6, we discuss the methods to
fortify the CB-image EDAs against known vulnerabilities during its design.

ü Findings of RQ4
“RQ4: What are the pre-requisites for the occurrence of robust and reliable chaos and its dependability for secure image
encryption? ”

The retention of chaotic parameter values in a strictly delineated dimension of chaos which controls the occurrence of
robust chaos. In 1998, Spano and Ding100 described the magneto elastic ribbon experiment on the Ikeda map, where the
values occurring at those instances of the system parameters are the chaotic sets and the study of saddle points and regions
of chaotic attractors are the chaotic states. The chaotic ribbon experiment can also be used to determine the chaotic states
and chaotic sets of a chaotic map, which renders the resulting system stable and durable by preventing it from escaping
chaos within a given polynomial time asymptotically. In short, the chaotic tip trajectories can be maintained by controlling
the chaos control parameters through cascading and fixation of hybrid hardcore predicates. This assures the robustness
and reliability of a chaos based system and its dependability for secure design of image EDA. The chaotic states can be
controlled and maintained by identifying the chaotic sets as described above.

9 CONCLUSION

The chaos-fixated image encryption that has been in use for over thirty years is examined and assessed in this study. The
formulation and basic properties of the cryptographic primitives used in image encryption were investigated in relation to the
study focus described in section I above. This rigorous analysis gives a thorough overview of chaos-fixated image encryption
techniques. The survey tables presents challenges dealt with, in this field by researchers on issues related to image encryption
using chaos dynamics. We deduce from the survey that the chaotic map is assumed to be resilient if it is chaotic for all possible
values of the control parameter. Traditional maps, like the atomic nonlinear system, need not be satisfactory, thus resulting in
a smaller key pool and less protection against a prominent assault. A chaotic system is determined by one positive Lyapunov
exponent. The use of atomic nonlinear stochastic systems, a.k.a. chaotic maps in finite precision platforms, causes dynamical
degradation. A thorough analysis of significant schemes from the past three decades has led to the conclusion that most classical
approaches are ine�ective because chaos is used without the proper testing for the features that are used in the schemes. Methods
which depend solely on digital chaos are uncertain and may become periodic once they cross the upper bound as the key
spectrum is not chaotified as per the control parameters of the designed algorithm. Shannon’s principle of confusion-di�usion
aims to provide randomization and mask statistical similarities, which if not tested with avalanche e�ect can leak the initial
values. Images cannot be encrypted using chaos in its natural, non-chaotified form as most of the characteristics of images are
easy to bring intercepted/duplicate image. E�ective implementation of chaos based crypto-primitives requires adhering to the
principles of Banerjee’s robust chaos discussed in the proposed work. In this survey, we thus, proclaim the optimal selection
and choice of chaos methods based on dimensions, implementation, and hardware/software precision required for chaos-fixated
image encryption algorithm and also the advanced strategies to improve the e�ciency of chaos-fixated image encryption. The
work discussed in this survey is useful to develop strong foundations for designing chaos-fixated image encryption algorithms.
Chaos is the best candidate for e�cient and secure image EDA design. Loose design imperatives such as discussed in section
5.2 a�ect the degradation of chaos causing it to become periodic thus compromising the whole cryptosystem.
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ABBREVIATIONS

GA Genetic Algorithm: A search heuristic that mimics the process of natural evolution to find optimal solutions.
DE Di�erential Evolution: An optimization algorithm based on the concept of mutation, crossover, and

selection.
ACO Ant Colony Optimization: An algorithm that simulates the behavior of ants to solve optimization problems.
DNA Di�erential Network Algorithm: A bio-inspired optimization algorithm based on the principles of DNA

computation.
PSO Particle Swarm Optimization: An optimization technique that simulates the behavior of swarms or flocks in

nature.
CMYK Cyan, Magenta, Yellow, Key (Black): A color model used in printing and digital imaging.
NPCR Number of Pixel Change Rate: A metric used to evaluate the e�ectiveness of image encryption algorithms

based on the percentage of changed pixels.
UACI Unified Average Changing Intensity: A metric used to measure the quality of encrypted images by

comparing the intensity changes.
FPPC First Pixel Prediction Correctness: A measure of the accuracy of predicting the first pixel in an encrypted

image.
MSE Mean Square Error: A metric used to quantify the average squared di�erence between original and encrypted

images.
PSNR Peak Signal-to-Noise Ratio: A measure of image quality based on the ratio between signal power and noise.
CCA Correlation Coe�cient Analysis: A technique used to evaluate the correlation between original and

encrypted images.
SDR Structural Di�erence Ratio: A metric that quantifies the structural changes between original and encrypted

images.
BCR Bit Corruption Rate: A measure of the percentage of corrupted bits in an encrypted image compared to the

original.
RMSE Root Mean Square Error: Similar to MSE, but the square root is taken to provide a more interpretable

measure of error.
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