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Reconstructing human-object interactions (HOI) from single images is fundamental in computer

vision. Existing methods are primarily trained and tested on indoor scenes due to the lack of 3D data,

particularly constrained by the object variety, making it challenging to generalize to real-world scenes

with a wide range of objects. The limitations of previous 3D HOI datasets were primarily due to the

dif�culty in acquiring 3D object assets. However, with the development of 3D reconstruction from

single images, recently it has become possible to reconstruct various objects from 2D HOI images. We

therefore propose a pipeline for annotating �ne-grained 3D humans, objects, and their interactions

from single images. We annotated 2.5k+ 3D HOI assets from existing 2D HOI datasets and built the

�rst open-vocabulary in-the-wild 3D HOI dataset Open3DHOI, to serve as a future test set. Moreover,

we design a novel Gaussian-HOI optimizer, which ef�ciently reconstructs the spatial interactions

between humans and objects while learning the contact regions. Besides the 3D HOI reconstruction,

we also propose several new tasks for 3D HOI understanding to pave the way for future work. Data and

code will be publicly available at https://wenboran2002.github.io/3dhoi/.

1. Introduction

Human-Object Interaction (HOI) is an important area in action understanding, with numerous datasets

and methods proposed. In the 2D HOI domain, large-scale image datasets such as HICO-DET[1]  and

HAKE[2]  have been introduced. For 3D HOI, datasets like BEHAVE[3]  and InterCap[4]  have also been

proposed to study human interactions with objects in 3D. Despite achieving promising results in open-

vocabulary and in-the-wild scenarios within 2D HOI, the 3D HOI �eld faces challenges in generalizing

existing methods to real-world images due to dataset limitations and the lack of 3D open-world HOI data.
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In 3D HOI, many datasets have been introduced. Datasets such as BEHAVE[3], InterCap[4], ImHOI[5], and

PROX-S[6]  provide multi-view RGBD sequences and 3D annotations in indoor scenes. Though datasets

like WildHOI and 3DIR[7][8]  are constructed from in-the-wild images, they contain limited object

categories and unreal CAD objects. To better understand 3D HOIs and apply them to the real world, we

need to collect more realistic and diverse data on interactions with objects. Thus, in this work, we

propose a novel 3D HOI annotation method for real-world images of any objects and interactions.

In detail, we built our annotation pipeline on two bases: 1) Existing 2D HOI datasets provide rich 2D

annotations, including bounding boxes, and a wide variety of objects and actions. This diversity creates

the potential for reconstructing 3D assets from 2D HOI images. 2) The development of existing image-

based 3D object/human reconstruction techniques. We selected images with contact interactions from

existing 2D HOI datasets, e.g., HAKE[2]  and SWIG-HOI[9]. Next, we used InstantMesh[10]  and OSX[11]  to

reconstruct the objects and the human body respectively, and designed an algorithm for automatically

reconstructing rough 3D interactions. Furthermore, we developed two annotation tools: one for �ltering

the reconstruction quality and the other for annotating 3D spatial positions. We manually annotated over

2.5k+ images to create an open-vocabulary, in-the-wild HOI dataset, as the test set for future 3D HOI

studies and designed tasks and metrics to evaluate their performance. It consists of 370 3D human-object

pairs, 2,561 objects in 133categories, and 3,671 interactions in 120 categories.
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Figure 1. We aim to reconstruct 3D HOIs from arbitrary open-world images. We

propose a pipeline for annotating �ne-grained reconstructions to build a dataset.

Additionally, we introduce a new optimizer suitable for reconstructing arbitrary

objects.

Given the new dataset, we also proposed a training-free algorithm for reconstructing 3D HOIs from

monocular images. On one hand, previous training-free algorithms do not require speci�c object

categories or templates, but their optimization performance is generally limited, and they rely on manual

annotations. On the other hand, previous training-based methods perform well for speci�c object

categories and scenes but struggle to generalize to open-world environments. To this end, we leveraged

the 3D Gaussian Splatting model to propose a novel Gaussian-HOI optimizer to improve the

reconstruction quality. It utilizes Gaussian rendering capabilities to ensure that the reconstructed 3D

assets are aligned with the image from the target view and takes advantage of the opacity attribute of

Gaussians to identify contact regions, which makes the optimization of 3D interaction relationships more

effective.
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Overall, our contributions are: 1) We utilized SOTA 3D reconstruction tools to develop a 3D HOI annotation

method. 2) We built a new and extensive 3D HOI dataset Open3DHOI consisting of 2.5k+ images with rich

2D and 3D annotations. 3) We designed a 3D HOI optimizer based on 3D Gaussian Splatting to reconstruct

the spatial interactions between humans and objects from single images.

2. Related Works

2.1. HOI Benchmarks

The development of 2D HOI benchmarks[2][12][13][9][14][15][16][17][18] has made our 3D HOI reconstruction

approach possible. Datasets like HICO-DET[12] and HAKE[2] provide annotations for 80 object categories

and 117 action categories. Additionally, open-vocabulary datasets such as SWIG-HOI[9]  include

annotations for over 1,000 object categories.

In contrast, 3D HOI datasets contain signi�cantly fewer action and object categories, and most are

recorded in �xed indoor environments. BEHAVE[3], as the earliest one, introduced a method for obtaining

accurate 3D HOI annotations from multi-view videos, providing interaction data for 20 common objects.

InterCap[4] further built upon it by offering more detailed hand interaction information. Recently, several

benchmarks[8][7] for reconstructing 3D HOIs from real-world images have been proposed. However, they

have notable limitations. Their object categories are focused on a few common types—such as balls,

skateboards, and bicycles—and the number of instances is limited, with all objects derived from �xed 3D

CAD models.

2.2. 3D Reconstruction

3D reconstruction has seen rapid advancements recently, both in humans and objects. After SMPL[19],

parametric human body modeling has rapidly evolved. Currently, the SMPL-X model[20], which includes

detailed hand and facial expression modeling, is widely used in the �eld[11][21][22][23]. We utilized a state-

of-the-art one-stage model[11]  for our human body reconstruction. What’s more, image-to-3D has

emerged as a rapidly advancing area in 3D vision recently. From SDS loss optimization methods[24]

[25]  that leverage 2D diffusion priors to Multi-view Diffusion Models[26][27][28][29]  and Large

Reconstruction Models[30][31][10]  based on large-scale data, the quality and ef�ciency of 3D generation

from a single image have seen signi�cant improvements. To generate our 3D HOI dataset, we need to
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reconstruct a large volume of image data, requiring a balance between the quality and ef�ciency of

existing 3D generation methods. Ultimately, we selected InstantMesh[10] as our reconstruction model.

2.3. 3D HOI Reconstruction

Reconstructing 3D HOIs from a single image[16][32]  is a challenging task and important for many

applications[33][34][35]. It requires maintaining consistency between the spatial positions of the human

and the object within the image in the given camera view while ensuring that the spatial interactions are

realistic and coherent. Kanazawa  et al.[36]  optimizes spatial interactions through prede�ned contact

pairs, while Wang et al.[37]  leverages GPT-3’s prior knowledge to optimize spatial interactions. Xie et al.

[38]  learnt HOI spatial arrangement priors from the BEHAVE dataset. Wang  et al.[7]  learnt the prior

distribution of the 2D human-object keypoint layout and viewports to tune the relative pose between the

3D human and object.

3. 3D HOI Annotation

In this section, we introduce our new pipeline for 3D HOI annotation from single-view images.

3.1. Coarse Reconstruction Annotation

First, we used a state-of-the-art human pose estimation method[11] to obtain the 3D representation of the

human body and employed image-to-3D technique[10] to generate the 3D representation of the object.
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Figure 2. Coarse Reconstruction. We �rst obtain depth from the images and generate point clouds.

Given masks, we extract the corresponding point clouds for the person (pink) and object (blue). We

obtain a rough reconstruction by matching the MESH vertices of the person and the object with the

depth point cloud.

Second, in-the-wild HOI images often involve signi�cant occlusions between humans and objects and

between different objects. To address the critical occlusion problem in object 3D reconstruction, we

employed occlusion completion[39]  and used Stable Diffusion 1.5[40]  as the inpainting tool to obtain

complete object images.

Finally, we applied our projection algorithm to estimate the rough spatial relationship, including the

positions and sizes of the human and object. We used monocular image depth estimation[41] combined

with human and object masks, to generate depth point clouds for both the human and the object. Then,

we obtained a rough estimation of their spatial positions and size by matching the sampled point clouds

from the human and object meshes with the depth point clouds as shown in Fig. 2.

The rough reconstruction can facilitate the subsequent manual annotation. Rough reconstruction usually

has serious mesh collision issues and inaccurate scales and positions. Additionally, the object pose

provided by InstantMesh[10]  is also not accurate. Therefore, to obtain more precise 3D human-object

interaction information, we manually performed further annotations.
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3.2. Fine Reconstruction Annotation

We designed two annotation tools to facilitate manual annotating for obtaining more re�ned 3D HOI

information. Fig. 3 shows the whole process.

Filtering Tool �lters the initial reconstructions and annotates contact regions. The �ltering consists of:

�. Filtering the SMPL-X human reconstruction. We project the reconstructed SMPL-X mesh onto the

image to assess whether the pose estimation of key interaction joints is accurate. For joints not

involved in the interaction, we relax the criteria. For example, if a person is drinking water and the

target object is a cup, we focus on the accuracy of the hand pose reconstruction, while only ensuring

that the lower body pose is reasonable.

�. Filtering the object reconstruction. Given the reconstructed object mesh, we project it from six

viewpoints. Annotators evaluate the quality of the object mesh, retaining images with high-quality

reconstructions, especially paying attention to the quality of the interaction area.

�. Manual optimization of the inpainting mask. The inpainting masks obtained from occlusion

completion fail sometimes. Annotators can manually correct them using a brush, ensuring higher

accuracy. In Fig. 3, (a) shows that the annotator manually drew a mask (green part) on the poorly

reconstructed couch. After re-inpainting and reconstruction, it achieves a much better result.

Considering that some objects may only partially appear in the image, we still allow for the

completion of the object by manually editing the mask. Annotators can use a brush to �ll in the

parts of the object that are outside the image. We further divided the SMPL-X mesh into 34 human

body regions, which are used for contact area annotations. Annotating contact areas at a �ne-

grained, vertex level would be costly and dif�cult to ensure high-quality results. Therefore, we opted

for part-level contact annotations, which are suf�cient for most interaction scenarios. In Fig. 3, (a)

shows the annotation of the contact area, where the person is sitting on the couch, and the thighs

and bottom are annotated (blue part).
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Figure 3. Annotation Pipeline. (a) Filtering. Given the reconstructed human and object meshes, annotators

assess the quality. If the human reconstruction is eligible, the contact area is further annotated. If the object

reconstruction fails, the mask is redrawn manually and the reconstruction is performed again. (b) Given the

3D human interaction through coarse reconstruction, we adjust the object position in Blender. For example,

the rough annotation of the couch and the human body shows a mesh collision. We move the object to make

sure the person is correctly seated on the couch. (c) We use a �ne annotation tool to further align the

annotated human and object with the image.

Figure 4. Object category distribution in Open3DHOI. It encompasses a wide range of object

categories.
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3D Interaction Tool is designed for annotating the spatial interaction between humans and objects. We

adopted a coarse-to-�ne approach. Initially, we developed a 3D HOI annotation tool via Blender, where

volunteers can adjust the objects’ positions, rotations, and scales using a mouse. In Blender, the

annotations cannot be compared pixel-by-pixel with the images, and the focus is more on the 3D

interaction quality. Thus, we further performed detailed annotations for cases where there is a signi�cant

discrepancy when projected on the images. We built a website annotation tool based on ImageNet3D[42].

In this re�ne-annotation tool, volunteers can �netune the annotations by clicking buttons to translate,

rotate, and scale the objects based on the projection of the object on the image. To ensure the accuracy of

the 3D interactions, we provide multiple viewpoints projections of humans and objects, allowing them to

more accurately evaluate and adjust the annotations.

3.3. Open3DHOI Dataset Construction

We selected 12k+ images from HAKE-Large and 3k+ images from SWIG-HOI, totaling 15k+ images as the

database for our 3D reconstruction. We also collected some images from the website. After manual

annotation and �ltering, we obtained 2.5k+ images to form our dataset Open3DHOI. To our best

knowledge, this is the �rst in-the-wild, open-vocabulary 3D HOI dataset based on real-world images.

Datasets Objects Action Human Object Pose Contact 2D HOI

BEHAVE[3] 10 N/A SMPL+H ✔ ✔ ✘

InterCAP[4] 10 N/A SMPL-X ✔ ✔ ✘

WildHOI[7] 8 N/A SMPL ✔ ✘ ✘

3DIR[8] 21 17 SMPL+H ✘ ✔ ✔

PROX-S[6] 40 17 SMPL-X ✔ ✔ ✘

Ours 133 120 SMPL-X ✔ ✔ ✔

Table 1. Dataset comparison between previous datasets and ours.

The 2D annotations include bounding boxes, HOI triplets, object labels, and masks obtained using
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SAM[43]. The 3D annotations consist of object meshes, SMPL-X parameters for humans, the 6D poses of

both objects and humans in space, as well as human contact regions. Our dataset includes 133 object

categories and more than 120 interactions, signi�cantly surpassing the current benchmarks in terms of

semantic diversity. We referred to WordNet’s classi�cation of object categories and divided our object

categories into several major categories, as shown in Fig. 4. It can be seen that our data includes a wide

range of object categories, many of which were rarely attempted in previous 3D HOI datasets, such as food

and animals.

We compared the differences between existing 3D HOI datasets and our dataset in Tab. 1. It can be seen

that the object and action categories in the current benchmarks are much fewer than those in our

dataset. At the same time, we also provide more detailed 2D and 3D annotations.

4. Method

4.1. 3D Gaussian Splatting

3D Gaussian Splatting[44]  is advanced for rendering and reconstructing scenes by representing objects

continuously, in a volumetric manner. Instead of relying on traditional mesh-based models, it leverages a

collection of Gaussian kernels, each de�ned by its mean, covariance, and intensity, to describe the spatial

distribution of objects in 3D. These Gaussian splats, which are soft, overlapping volumetric primitives,

enable high-quality rendering while maintaining �exibility in representation. For a given pixel  , the

depth of each overlapping 3D Gaussian is computed using the viewing transformation  , resulting in a

depth-sorted list of Gaussians  . The �nal color of the pixel is then determined using alpha compositing,

expressed as:

where    denotes the color associated with the    Gaussian. The effective opacity    is got by

multiplying the learned opacity   by a Gaussian weighting function:

Here,   is the pixel’s projected coordinate and   is the projected center of the   Gaussian. Recent

works[45][46] have applied 3D Gaussian Splatting to high-quality human reconstruction, which not only

ensures rendering quality but also signi�cantly improves reconstruction speed. For example, in GauGAN-
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based approaches like Gauhuman[45], SMPL’s vertices are used as the initial point clouds for 3D Gaussian

splatting. This method simultaneously learns the SMPL pose and Linear Blend Skinning (LBS)

parameters to optimize the human Gaussians, ultimately achieving high-quality reconstruction results.

It successfully demonstrates the effectiveness of 3D Gaussian splatting for optimizing human

reconstruction based on SMPL representations. Also, work like GS-pose[47]  and 6D-GS[48]  leverage 3D

Gaussian splatting to optimize the 6D pose of objects. We reasonably infer that this approach can also be

effectively applied to reconstruct human-object interactions from a single viewpoint, potentially

replacing traditional silhouette-based optimizers[36].

4.2. HOI-Gaussian Optimizer

We developed the HOI-Gaussian optimizer speci�cally for 3D HOI reconstruction based on Gauhuman as

shown in Fig. 5. We chose 3D Gaussian over other silhouette-based optimization methods as we believe it

offers the following advantages:

�. Methods like Gauhuman have demonstrated that 3D Gaussian can be used to adjust human body

parameters. Our HOI-Gaussian optimizer can simultaneously optimize object and human poses

beyond traditional methods.

�. 3D Gaussian uses depth from point clouds better to align with the image, reducing cases where large

pose discrepancies occur despite small silhouette losses.

�. We hope to use the features rendered from the 3D Gaussian point clouds to obtain potential

contacts, thus reducing reliance on prior, such as manually annotated human-object parts pairs

introduced by methods like PHOSA.

We used the vertices from the SMPL-X model to initialize the human 3D Gaussians  , and the vertices

from the object mesh to initialize the object 3D Gaussians  . During optimizing, we follow GauHuman’s

pose re�nement and LBS offset to learn the parameters of the human model, while introducing a

learnable parameter    to optimize the object’s 6D pose. Our �nal interaction 3D Gaussian    is

derived from   and   through

where   represents the 3D position and   represents the covariance matrix.   and   are the rotation

matrix and translation vector obtained from the SMPL-X model through pose and LBS parameters.  , 
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, and   represent the object’s rotation matrix, scale factor, and translation vector, respectively, and all

three variables are learnable.

Figure 5. Our pipeline. The optimizer �rst converts the human and object into 3D Gaussian points, then

calculates a rendering loss by comparing the Gaussian-rendered image with the ground truth image. This loss

is backpropagated to update the object’s pose parameters and the human’s LBS parameters. We also calculate

an HOI loss, which includes collision, depth and contact losses, the red overlapping areas between the human

and object in the image represent collision regions and the dashed lines represent the ground truth depth and

the depth during the optimization process. Finally, we re�ne the result by optimizing the contact regions.

4.3. Contact in Gaussian Model

The rendering capability of Gaussians ensures that the reconstructed human-object interactions are

consistent with the images, while the depth information and rendering characteristics of Gaussians

enable us to obtain potential contact areas. Given that in monocular images it is dif�cult to directly

determine the contact area between the human and the object, however, we can identify areas where

there is no interaction easily, i.e., regions in the image where the human and object do not occlude each

other. This allows us to infer potential contact areas between the human and object.

In the optimization of  , the Gaussian points where   and   occlude each other tend to have lower

opacity . In Eq. 1, the color of a pixel is in�uenced by the opacity of the Gaussian points. If the opacity is

very low, the contribution of that Gaussian point to the pixel’s color becomes less. While optimizing  ,

we also simultaneously optimize   and  . Given the original 2D image   and human image   (Fig. 6),

the occluded areas between the human and the object appear as background in  , so does the object

image  . Thus, the opacity of the Gaussian points projected in these areas will tend to decrease in

rendering.

Additionally, even in regions without overlap in 2D, occlusion relations exist in 3D depth. Relative to the

camera, we consider points in the back to be potential contact areas. Without constraints, both front and

so to
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back points relative to the camera would participate in rendering. Thus, we set a very low opacity for

points facing back from the camera by calculating normals in advance when initializing Gaussians. This

approach is based on the assumption that the human pose will not undergo signi�cant changes in

optimization, effectively resolving the issue. Setting a low initial opacity allows points closer to the

camera to be prioritized in rendering. As the Gaussian point scale increases, it naturally occludes points

further back, preventing them from contributing to the rendering. In Fig. 6 (a) and (b), the blue area

represents regions with high opacity, while the red area starts with relatively high opacity. As the

optimization progresses, occluded parts of the human leg turn blue, designating them as potential

contact regions. Meanwhile, the opacity of points behind the camera remains relatively stable.

Figure 6. Contact region. (a) Opacity initialization using human normals. (b) The distribution of

human body point cloud opacity scores is visualized to identify the blue region as a potential

interaction area. (c) Based on the approximate distance between the human body and the object, the

optimized contact region is further identi�ed, shown in light blue.

Additionally, in the optimization, we will have a relatively stable positional relationship between the

human and the object before we use the contact region to further optimize. By setting a distance

threshold between human and object, we can further narrow down the potential contact area, shown in
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Fig. 6 (c). Therefore, we introduce a new attribute   into  , which represents the contact interaction score

of a Gaussian point. The calculation of   is given by

where    means the normalization of the vector to a range between 0 and 1, and    means the

Chamfer distance.

4.4. Loss Function

Our loss function is divided into two parts: Gaussian rendering loss which is used to optimize the 2D

alignment, and HOI loss which is used to optimize the spatial interaction between the human and the

object.

Rendering Loss. We adopt the training loss used in 3D Gaussian Splatting, including the L1 loss between

the rendered image and GT image, the L2 loss between the rendered mask and GT mask, as well as SSIM

(Structural SIMilarity index) loss and LPIPS (Learned Perceptual Image Patch Similarity) loss. To ensure

the rendering quality of both the human and the object individually, as well as their combined rendering,

we perform separate rendering and loss calculations for  ,  , and  :

HOI Loss. We use the HOI loss to constrain the spatial interaction between the human and the object,

ensuring its plausibility. First, we calculate the Chamfer distance between the human contact area,

obtained through the Gaussian rendering process, and the object as a contact loss. At the same time, to

ensure that the human and object meshes do not intersect, we follow [49] to add a collision loss  . We

also follow [36] by adopting an Ordinal Depth loss    to constrain the depth relationships. Our �nal

HOI loss and the total training loss are:
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5. Experiments

Figure 7. Visualization of our   Metric. For example, the Colli score focuses on the collision

between the bird and the person, while the Cont score calculates the mean Chamfer Distance

between the annotated contact part (left hand) and the bird.

5.1. Implementation Details

Experiments are conducted on our Open3DHOI test set and our method doesn’t need training as an

optimizer. Object meshes with pose before manual annotation are given. We adopt a staged optimization,

optimizing each image for 160 iterations. For the �rst 100 iterations, only the rendering loss is optimized,

and HOI loss is added in the subsequent iterations. Due to our dataset being open-vocabulary, it would be

unfair to compare methods trained for speci�c objects on our dataset, so we use the same training-free

method PHOSA[36]  as our baseline. To ensure fairness, both our method and PHOSA initialize human

body parameters using the parameters from our dataset.

Co2
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Methods Scale↓ Translation (cm)↓ Rotation↓ Cf Distance(cm)

PHOSA[36] 0.39 77.79 0.95 49.1

Ours w/o HOI Loss 0.25 38.66 0.45 16.9

Ours 0.16 38.44 0.41 19.3

Table 2. Comparison on object pose metrics.

Methods ↓ Collision↓ Contact↓

PHOSA[36] 0.431 0.105 0.326

Coarse Recon 0.248 0.083 0.165

Ours Gs only 0.287 0.136 0.151

Gs& depth 0.216 0.080 0.136

Gs& colli 0.189 0.046 0.143

Gs & depth & colli 0.188 0.045 0.143

Gs & depth & colli &cont 0.181 0.053 0.128

Table 3. Comparison on collision and contact metrics.

score Action Object

obj w/o obj action w/o action

Top-1 0.47 0.20 0.32 0.31

Table 4. Top-1 Accuracy under different prompts.

Co2
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5.2. Metrics

To more accurately evaluate the reconstruction quality, we used two metrics. First, we compared the

reconstructions with the object pose in our annotated data, evaluating the differences in scale,

translation, rotation and Chamfer Distance. The scale measures the difference between the predicted and

GT objects’ sizes. The translation is the distance between the predicted and GT objects in cm. Rotation is

the norm of the predicted rotation matrix and the eye matrix. We designed an alternative metric that

better evaluates 3D interaction quality. It combines the extent of collision between the human and the

object with the Chamfer distance between the human and the object within our annotated contact

regions. We call this metric as  (Collision-Contact) score:

where    is sigmoid function,    is the collision between human mesh and object mesh. 

 calculates the Chamfer distance between each human body part and the object.    is the object

mesh size.

5.3. Analysis

Gaussian Advantages. The results show that our method signi�cantly outperforms PHOSA. Our method

achieves a higher score in Rotation compared to PHOSA because PHOSA optimizes object pose solely

through silhouette loss. In contrast, the 3D Gaussian approach can utilize color matching and richer

features, reducing cases where there is minimal silhouette difference but signi�cant disparity from the

image. Additionally, our method with contact optimization improved the    score, particularly the

Contact score. This indicates that the contact regions derived from Gaussian depth information

effectively enhanced 3D human-object interaction quality.

C2
o

= Sig(Colli(h, o)) + Sig( (Cont(i)/Size)),C2
o ∑

i

p

(7)

Sig Colli(h, o)

Cont Size

Co2
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Figure 8. Visualization of HOI Understanding and HOI Pose Chat.

Ablation Study. Coarse Recon in Tab.  3 is the coarse reconstruction using depth and projection in B.1.

The    score using only Gaussian optimization is lower than that of Coarse Recon. Since Gaussian

optimization alone does not greatly enhance spatial interaction information, it mainly re�nes object

pose according to the image. However, after adding depth, collision, and contact losses, the 3D score

improves signi�cantly, demonstrating that HOI losses are highly effective in optimizing interactions.

After adding the contact loss, the collision score slightly decreased, but the contact score improved

signi�cantly. Because optimizing the contact area sometimes increases collision in certain images, as

objects are moved closer to the intended contact regions.   metric is to better balance this trade-off.

Co2

Co2
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Figure 9. Visualized results comparison between GT, PHOSA, and Ours.

6. More Tasks

Our dataset, with its extensive 2D and 3D annotations, can be utilized for various other tasks. In this

section, we propose two more tasks as shown in Fig. 8.

6.1. 3D HOI Understanding

Understanding 3D assets has been a long-standing area of interest, and recently some large models[50][51]

[52] have achieved impressive results in 3D object comprehension. We tested the current state-of-the-art

point clouds understanding model PointLLM[50]  on our 3D HOI data to evaluate its capability in action

understanding. We provide the model with the point clouds of annotated human and object and ask it to

answer the interaction verb between the human and the object. We then compared the output action with

GT action annotation. We ask the LLM “What is the action between the person and the [object]?” and

“What is the person [Interacting] with?”, where [object] and [Interacting] can be replaced with speci�c

verbs and object or not.
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We used the Top-1 score as a metric, the results in Tab. 4 indicate that PointLLM demonstrates a certain

level of understanding of human interaction point clouds, though it remains limited. Given object name

signi�cantly improves action answering performance because PointLLM will estimate the action

according to the object category with common sense, but given action name will not improve object

answering score, which indicates that PointLLM has limited ability to understand the interaction in the

point cloud.

6.2. HOI Pose Chat

Recently, large models have focused on integrating semantics with 3D data. ChatPose[53]  uses a

framework with LLMs to understand and infer 3D human poses from images or textual descriptions. F-

HOI[54]  leverages large models to unify various HOI tasks. Since our dataset provides 2D annotations of

HOI semantics, we tested the open-sourced large model ChatPose. To evaluate its HOI reasoning and pose

generation, we selected cases from the dataset with more than one person, provided the model with the

target object’s location, and asked it to output the SMPL pose of the person interacting with that object.

We then compared this generated SMPL pose with the GT SMPL pose from our dataset. We ask Chatpose

“What is the SMPL pose of the person [Interacting] [object] at [Location]?”.

The results in Tab.  5 indicate that ChatPose’s ability to accurately locate the target human body and

obtain the correct pose still needs improvement. In the future, we hope our dataset can help drive the

development of more powerful models capable of better understanding images and simultaneously

obtaining both human and object poses.

Prompt MPJPE↓ MPVPE ↓

Action 103.6 131.2

w/o Action 105.2 133.5

Action + Object 103.4 130.9

Table 5. ChatPose performance results under different prompts.
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7. Discussion

We propose a real-world 3D HOI annotation pipeline that provides a paradigm for obtaining rich 3D

human-object interaction data from unlimited 2D images. Our proposed annotation process relies on the

ability of 3D human and object reconstruction tools. In the future, with more advanced 3D-AIGC tools, the

annotation ef�ciency will be largely improved. Moreover, our LLM-based 3d testing tasks proved that

existing 3D general models are poor at 3D HOI understanding. As understanding 3D HOI is an important

task, it requires more �ne-annotated data to drive more general and capable models in the future.

8. Conclusion

In this work, we propose a method for annotating 3D HOIs from open-world single-view images and

create Open3DHOI. The rich annotations in our dataset can support various 3D action tasks. For 3D HOI

reconstruction, we introduce a 3D Gaussian optimizer that surpasses baselines. Results of current

methods reveal that they are not yet capable of understanding 3D HOIs well. We believe Open3DHOI will

pave the way for future 3D HOI learning.

Appendix Overview

The contents of this supplementary material are:

Sec. A: Characteristics of Open3DHOI.

Sec. B: Method Details.

Sec. 2: Additional Experiments.

Appendix A. Characteristics of Open3DHOI

A.1. Image Selection for Open3DHOI

Considering the complexity and dif�culty of the 3D HOI annotation process, we only select images with

single-person annotation from the existing 2D HOI dataset, HAKE, and SWIG-HOI. There are 63 images in

our �nal dataset that have multiple objects interacting with one person. For these images, we split the

annotation to keep one image having one HOI pair.

Interaction. Notice that we have 3,671 interactions, more than our image number, 2,561, because one

person can interact with an object with multiple actions, like drinking with and holding a bottle at the
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same time. Fig. 10 shows the co-occurrence between the major object categories and actions, and Tab. 6

shows the object list in our Open3DHOI dataset.

Object size. The object size in our dataset varies signi�cantly across different categories, and even within

the same category, there is also a variation in size. In Fig. 11, we chose object categories with more than 30

images and draw the size distribution in each category. We use the volume function from Trimesh to

compute the volume of each object mesh, then take the cube root to obtain the size. We can see that

object like elephants has larger sizes and bottles has smaller sizes. What’s more, for objects like wine

glasses, the size variation within the category is minimal, while for objects like couches, the variation is

much larger. Fig. 12 shows the size distribution of all images.

Abnormal HOI. Because our dataset is created from 2D HOI datasets, which have many abnormal HOIs

like standing on a chair, our dataset also contains many abnormal interactions. Fig. 13 shows some cases

of our abnormal HOIs.

Figure 10. Co-occurence between major object category and actions in Open3DHOI.
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Figure 11. Object size distribution in different object categories.

Figure 12. Object size distribution of all images.
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Figure 13. Abnormal HOIs in Open3DHOI.
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Object Id Object Class Object Id Object Class Object Id Object Class Object Id Object Class

0 bird 1 television 2 surfboard 3 dining table

4 mug 5 bench 6 goat 7 Gallus gallus

8 �sh 9 eggs 10 torch 11 rose

12 award 13 guitar 14 pistol 15 ashcan

16 baseball glove 17 bowl 18 shovel 19 bottle

20 cookie 21 piano 22 home plate 23 furniture

24 barrow 25 dog 26 boot 27 pot

28 handcart 29 cell phone 30 donkey 31 hair drier

32 basket 33 airplane 34 chain 35 oven

36 box 37 cup 38 truck 39 bicycle

40 snowboard 41 bucket 42 cat 43 pump

44 hammock 45 skateboard 46 stone 47 sniper ri�e

48 cattle 49 tiger 50 power drill 51 mouse

52 frisbee 53 helmet 54 violin 55 hobby

56 car 57 book 58 horse 59 camel

60 �re hydrant 61 backpack 62 backhoe 63 wine glass

64 sports ball 65 clock 66 scissors 67 pizza

68 raft 69 motorcycle 70 hammer 71 loaf of bread

72 handbag 73 teddy bear 74 suitcase 75 vacuum cleaner

76 pitcher 77 tie 78 vase 79 keyboard

80 pumpkin 81 ice cream 82 boat 83 kite

84 tarpaulin 85 umbrella 86 dinghy 87 package

88 coffee cup 89 banana 90 laptop 91 knife

92 mortar 93 hot dog 94 hairbrush 95 bed

96 �oat 97 spoon 98 cow 99 cake
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100 sandwich 101 pen 102 bouquet 103 hoe

104 jeep 105 lion 106 donut 107 apple

108 whip 109 toilet 110 elephant 111 wrench

112 tennis racket 113 liquor 114 hand glass 115 tricycle

116 remote 117 bullet 118 pipage 119 baggage

120 toothbrush 121 skis 122 chair 123 couch

124 sculpture 125 fork 126 air cushion 127 light bulb

128 sheep 129 pottery 130 carrot 131 barrel

132 �re extinguisher

Table 6. Object categories in our Open3DHOI dataset.

A.2. Contact Annotation

In our manual annotation process, we annotate the contact regions for images with quali�ed

reconstruction. We split the human SMPL-X body into 34 parts and counted the number of annotations

for each body part in Tab. 7. In Fig. 14, we show body parts on SMPL-X mesh and annotation heat map. It

can be observed that interactions involving the hands, feet, and legs occur more frequently than those

involving other body regions.

Figure 14. Body parts and annotation heat map.
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Body Part Number Body Part Number

bottom 974 head 31

left elbow 55 left foot 335

left palm 689 left hip 435

left knee 383 left lower arm 87

left lower leg 27 left shoulder 112

left upper arm 28 left upper leg 801

neck 15 right elbow 58

right foot 332 right palm 849

right hip 417 right knee 361

right lower arm 81 right lower leg 195

right shoulder 118 right upper arm 37

right upper leg 781 torso 76

left eye 1 right eye 1

left �ngers 866 right �ngers 1065

left ear 1 right ear 0

jaw 22 nose 0

mouse 32 back 270

Table 7. Body part name and annotation number.

Appendix B. Method Details

B.1. Coarse Reconstruction

In paper Fig.2, we introduce the process of coarse reconstruction. In this section, we provide additional

details about this process. After reconstructing human and object meshes, we use depth to initialize
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coarse spatial alignment. We use Zoedepth to estimate depth information for each image and convert the

depth to a point cloud  . We use an object mask to segment points of objects and place the object mesh to

the point cloud center as  . Next, we use Algorithm 1 to align the object mesh with the human

mesh.

Algorithm 1. Align object mesh with human mesh.

B.2. Annotation Tools

B.2.1. Filtering Tool

Fig. 16 (a) shows our �ltering tool. First, we judge whether human reconstruction is quali�ed using the

rendered image. There are two buttons, “Delete” and “Pass”, if human reconstruction is bad, we click on

S

Objinit
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the “Delete” button to delete this image otherwise we click on the “Pass” button and go to the next

procedure to judge object reconstruction quality. According to the six-view rendering, we choose to keep

the image and not. If the reconstruction is bad because the mask completion doesn’t work well, we will

ask the volunteer to correct the mask in the last column using a mouse brush. If the mask completion is

not bad but the reconstruction is still terrible, or if the occlusion is too serious to reconstruct, we choose

to click on the “Delete” button to delete this image. If the volunteer clicks on the “Pass” button for both

human and object, then he needs to click on the “Open App” button on the bottom to open the contact

annotation app in Fig. 17. Each body part in the app is clickable for volunteers to choose the contact part.

After selection, the volunteer needs to go back to the main page and save the �nal annotation result.

Fig. 15 shows cases with bad masks and with good masks but bad reconstructions.

Figure 15. Special cases in �ltering process.
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Figure 16. Filtering tool.

Figure 17. Contact part annotation tool.

B.2.2. 3D Interaction Tool

Blender Annotation Tool. When we have �ltered human and object meshes, then we use the coarse

reconstruction method in Sec.  B.1 to initialize 3D HOI. We designed a blender add-on for 3D HOI
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annotation. There are three buttons on the top, “Load Meshes”, “Export Object Pose and Location” and

“Save Delete and Load Next”. The �rst is to load human and object meshes and image references.

Volunteers need to adjust the objects’ positions, rotations, and scales using a mouse, while the human is

�xed. After annotating, volunteers can use the second button to save the result and load the next image,

or choose to use the third button to delete this image if it is hard to annotate.

Fine Annotation Tool. During the annotation process in Blender, the images were used as references

without precise alignment. Although we ensured reasonable 3D interaction during the Blender

annotation process, some objects’ poses still exhibit discrepancies compared to the images. Fig. 19 shows

our 3D �ne annotation tool based on ImageNet3D[42], to optimize the results from previous annotation.

We select 581 images with IoU between human-object projection and mask lower than 0.5 and project a

line set of meshes on the image. To ensure 3D interaction accuracy, we also project the meshes from three

novel views. Volunteers need to click on the buttons to move, rescale, and rotate the object until it is

aligned with the image.

Figure 18.
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Figure 19. 3D �ne annotation tool.

B.2.3. Dataset quality

1) Human-object penetration rate: we tested the penetration metric following[55] by adding human-in-

object penetration and object-in-human penetration together, which is 3.26 while PHOSA is 4.26. Notice

that only considering penetration is not fair because in some cases where objects and humans are far

away from each other also have zero penetration. Since we annotated human contact parts, so we also

tested the distance between the annotated contact part and the object divided by object size, the score of

GT after normalization is 0.058, and PHOSA is 0.326. 2) Human and object projection error: the human

projection IoU is 0.621, the object projection error is 0.384, and the H+O projection error is 0.634. Notice

that there is a signi�cant occlusion of objects and humans in wild images, especially for objects, so this

score can only serve as a reference. 3) Reconstruction quality: since there is no GT object in our dataset, it

is dif�cult to evaluate the quality of object reconstruction using traditional metrics. We use the inpainted

GT object images and the projections of the annotated object mesh to compute SSIM and LPIPS for

evaluation. Due to discrepancies between the object pose and the GT image, as well as the inherent

differences between real images and mesh projections, including lighting, noise, etc., this evaluation is

not entirely fair. However, our reconstruction scores still reached an LPIPS of 0.714 and an SSIM of 0.294,

demonstrating that the quality of our reconstruction is high.
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Figure 20. Our contact evaluation model.

Figure 21. Failure cases of HOI-Gaussian.

B.2.4. Discussion

Throughout the whole annotation process, we collected 2.5k+ images from 15k source images, resulting

in a pass rate of 17%, which indicates that most 2D HOI images are hard to reconstruct 3D

representations. In the future, the �ltering process can be accelerated by training a model to judge the

reconstruction result, and volunteers only need to �lter based on the predictions. Our annotation process

has provided enough data to train a judge model.
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At the bottom of our �ltering app, there are many object template buttons, which are designed to assign

corresponding templates for images that closely match the template but have poor reconstruction

quality. We build a template library for 58 object categories and totally 212 templates. Although we didn’t

use this library to build our Open3DHOI dataset, it is still very useful for future work.

After our 3D �ne annotation process, the IoU between human-object projection and mask increased from

0.48 to 0.57, and the IoU between object mesh projection and object mask increased from 0.32 to 0.48,

which indicates that our �ne annotation tool indeed improved the pose alignment.

Methods Micro F1-Score ↑ Hamming Loss ↓ Jaccard Index ↑

2D 0.6118 0.0874 0.4303

2D&3D 0.6207 0.0844 0.4561

Table 8. Results of our contact evaluation task.

B.3. LLM Task Setting

B.3.1. PointLLM

We used PointLLM-7B as a test model, and input our annotated human and object mesh vertices. Object

vertices have colors and human vertices are colored black. When asking, we will tell PointLLM that “The

point cloud is a person interacting with an object. The person is black.” �rst and then asks speci�c

questions. To decrease the dif�culty, we ask PointLM to generate a description �rst and use

Qwen2.5[56] to extract the exact word from our action and object list.

B.3.2. ChatPose

In Sec.6.2, we state that we select images with multiple images. Although our dataset only contains

single-person annotation, there are still many images with more than one person, we used

Detectron2[57]  to detect these images for our testing. Our task is to ask ChatPose to locate the speci�c

person interacting with the speci�c object according to its understanding of the interaction in the image.

The pose it answered has no root pose and location, so we compare the prediction with GT using the
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same root pose, zero pose at zero location. The metrics we used are MPJPE (Mean Per Joint Position Error)

and MPVPE (Mean Per Vertex Position Error), which are common metrics in human pose estimation.

Appendix C. Additional Experiments

C.1. Contact Evaluation

Since our dataset contains contact annotations, we want to evaluate whether 3D information would be

conducive to estimating contact regions compared to image only. Therefore, we design a simple pipeline

to estimate the contact regions. As Fig. 20 shows, we use clip-ViT-B/32 to encode image and pointnet++ to

encode normalized human point clouds and object point clouds respectively. Image features and point

clouds features of human and object are fused and put into an MLP decoder. We treat this problem as a

multi-label classi�cation task and use Micro F1 Score, Hamming Loss and Jaccard Index to evaluate the

accuracy. The Micro F1 Score calculates precision and recall globally across all labels. Hamming Loss

measures the fraction of incorrect label predictions over the total number of labels. Jaccard Index

evaluates the similarity between the predicted and true label sets for each sample. Our current

implementation simply concatenates 3D and 2D features and is trained on only 2,000 samples. However,

our results over multiple metrics in Tab. 8 still indicate that 3D information is bene�cial to the estimation

of contact regions.

C.2. Failure Cases

Fig.  21 shows some failure cases of our HOI-Gaussian optimizer. In these cases, human body parts

occlude each other severely, and the object happens to be located between the occluded areas, which

becomes challenging to determine which body part the object should contact with.

C.3. More Results

Fig. 22 shows more results comparison between GT, PHOSA, and Ours.
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Figure 22. More results.
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