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Abstract

A single-particle model is employed to calculate the properties of neutron excess chromium nuclei. The model predicts

that A = 57 – 78 neutron excess chromium systems are bound and have half-lives in the range of 0.287 – 7.27 ms. The

Japanese Nuclear Data Compilation predicts half-life values that are about a factor of four larger than the model

proposed in this paper. Alpha, beta, positron, electron capture, and spontaneous fission decay modes are included in

the model. However, neutron emission decay modes that have short half-lives are not evaluated. These short-lived

neutron emission modes suggest that the model results could overestimate the half-lives of neutron excess chromium

nuclei.
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1. Introduction

The construction of facilities and advances in experimental and theoretical physics has intensified interest in neutron

excess nuclei[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27]. A number of physical processes

can produce neutron excess systems, but r-process nucleosynthesis often dominates. Investigation of neutron excess

nuclei is important from a nuclear physics as well as astrophysics perspective. The production of these systems in neutron

star and black hole mergers[1][2] is a topic of active research interest.

Neutron excess chromium systems are investigated in this paper. This paper continues previous publications that

addressed neutron excess systems having Z = 9 - 23, 26, and 30[8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24]. The

systematics of these studies provides additional insight into the various nucleosynthesis mechanisms, and how these

production modes vary with atomic and mass numbers.

2. Calculational Methodology

Refs[8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24] outline the method for investigating neutron excess nuclei. The
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model utilizes the single particle approach, and incorporates the methodology of Lukasiak and Sobiczewski[26] and

Petrovich et. al.[27]. The numerical methods of Refs[28] and[29] are utilized to determine the single particle energies of

neutron excess nuclear systems.

The binding energy ENLSJ of a nucleon in the field of a nuclear core is derived from the solution of the radial Schrödinger

equation[8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24]

[(ħ2/2μ) (d2/dr2 – L(L + 1)/r2) – ENLSJ –VLSJ(r)] UNLSJ(r) = 0 (1)

In Eq. 1, r is the radial coordinate, VLSJ(r) is the model interaction, and UNLSJ(r) is the radial wave function. The quantum

numbers L, S, and J represent the orbital, spin, and total angular momentum, respectively. The radial quantum number

(N) and the reduced mass (μ) complete the specification of the calculational model.

3. Nuclear Interaction

The Rost interaction[30] forms the basis for the nuclear potential that has a central strength

V0 = 51.6 [1 ± 0.73 (N – Z)/A] MeV (2)

In Eq. 2, the positive (negative) sign applies to protons (neutrons). The spin-orbit interaction strength (Vso) is defined by

the parameter γ[30]:

Vso = γ V0 / 180 (3)

The model interaction is completed with the inclusion of the pairing correction interaction of Blomqvist and Wahlborn[31].

Refs.[32] and[33] note the difficulties in defining an appropriate interaction, and demonstrate that modifications are required

to ensure that an accurate fit to the experimental energy levels and decay characteristics. Following the methodology from

Refs.[32] and[33], the Rost central interaction strength (VA) is modified in the following manner

VA = V0 λ [1 ± a(A)] MeV (4)

In Eq. 4, a potential strength multiplier (λ) and a factor [a(A)] adjust the potential strength as a function of A. For chromium,

λ = 1.5 is selected for consistency with previous calculations[8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24]. This

value was selected to ensure agreement with available data[34][35][36].

4. Model Limitations

Based upon previous calculations[8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][26][27][37] alpha decay, beta decay,

positron decay, electron capture, and spontaneous fission are represented reasonably well by calculations summarized in

Sections 2 and 3. Although suitable for the aforementioned decay modes, single-particle models are not the best
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approach to calculate neutron emission half-lives. These neutron emission decay modes are generally shorter than the

previously noted decay modes. Accordingly, omission of neutron emission decay modes leads to results that tend to

overestimate the calculated decay half-lives.

5. Results and Discussion

Table 1 summarizes the complete set of 78 ≥ A ≥ 57 chromium isotopes considered in this paper. The 78 ≥ A ≥ 57

chromium isotopes occupy the 1f5/2 (57Cr – 62Cr), 2p1/2 (63Cr – 64Cr), 1g9/2 (65Cr – 74Cr), and 2d5/2 (75Cr – 78Cr) neutron

single-particle levels. Based on data summarized in Refs.[34][35][36], the heaviest observed system is 66Cr. Extrapolations

beyond A > 66 become more uncertain, because data is not available to guide the calculations.

5.1. 57 ≥ A ≥ 66 Chromium Isotopes with Experimental Half-Life Data

Table 1 includes the half-life of the limiting decay mode (i.e., the transition that has the shortest decay half-life). For

example, the 59Cr model indicated five beta decay transitions (i.e., allowed 1f7/2(n) to 1f7/2(p) [8.05 s], allowed 2p3/2(n) to

2p3/2(p) [18.8 s], allowed 2p3/2(n) to 2p1/2(p) [8.27 min], allowed 1f5/2(n) to 1f7/2(p) [460 ms], and allowed 1f5/2(n) to

1f5/2(p) [18.5 s]). For 59Cr, the allowed 1f5/2(n) to 1f7/2(p) [460 ms] transition is the limiting beta decay mode.

Table 1. Calculated Single-Particle and

Experimental Decay Properties of Chromium

Nuclei with 57 ≤ A ≤ 78
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Nuclide a(A)
Half-Life (Decay Mode)

Experiment a,b,c This Work

57Cr -0.0587 21.1 sc 21.3 s (β-)d

58Cr -0.0582 7.0 sc 6.96 s (β-)d

59Cr -0.0240 460 msc 460 ms (β-)d

60Cr -0.0356 490 msc 490 ms (β-)d

61Cr -0.0276 237 msc 238 ms (β-)d

62Cr -0.0334 206 msc 206 ms (β-)d

63Cr -0.0246 113 msc 113 ms (β-)d

64Cr +0.0018 43 msc 43.0 ms (β-)d

65Cr +0.0131 27 msc 27.0 ms (β-)d

66Cr +0.0570 10 msc 10.0 ms (β-)d

67Cr +0.0683 e,f 7.27 ms (β-)d

68Cr +0.0902 f,g 4.68 ms (β-)d

69Cr +0.1120 e,h 3.15 ms (β-)d

70Cr +0.1339 e,i 2.21 ms (β-)d

71Cr +0.1557 e,j 1.60 ms (β-)d

72Cr +0.1776 e,k 1.18 ms (β-)d

73Cr +0.1994 e,l 0.895 ms
(β-)d

74Cr +0.2213 e,m 0.692 ms
(β-)d

75Cr +0.2431 e 0.545 ms
(β-)d

76Cr +0.2650 e 0.434 ms
(β-)d

77Cr +0.2868 e 0.352 ms
(β-)d

78Cr +0.3087 e 0.287 ms
(β-)d

a Ref. [34].
b Ref. [35].
c Ref. [36].
d Allowed 1f5/2(n) to 1f7/2(p) beta decay transition.
e No data provided in Refs. [34][35][36].
f The Japanese data compilation[36] notes a calculated value of 31.1 ms for 67Cr.
g The Japanese data compilation[36] notes a calculated value of 17.2 ms for 68Cr
h The Japanese data compilalion[36] notes a calculated value of 11.6 ms for 69Cr.
i The Japanese data compilalion[36] notes a calculated value of 7.14 ms for 70Cr.
j The Japanese data compilation[36] notes a calculated value of 6.07 ms for 71Cr.
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k The Japanese data compilation[36] notes a calculated value of 4.12 ms for 72Cr.
l The Japanese data compilation[36] notes a calculated value of 3.80 ms for 73Cr.
m The Japanese data compilation[36] notes a calculated value of 2.80 ms for 74Cr.

 

As noted in Table 1, the model predicts the proper decay mode for the known 78 ≥ A ≥ 57 chromium systems[34][35][36].

The model half-lives are also consistent with data[34][35][36].

The 57Cr – 62Cr systems occupy the 1f5/2 neutron shell, and decay via beta emission through allowed 1f5/2(n) to 1f7/2(p)

transitions. Model predictions for the half-lives of 57Cr – 62Cr are within about 1% of the experimental half-lives[36]. The

calculated beta decay modes for 57Cr – 62Cr are in agreement with Ref.[36].

The 63Cr – 64Cr nuclei fill the 2p1/2 neutron shell. These systems also decay via beta emission through allowed 1f5/2(n) to

1f7/2(p) transitions. The 63Cr – 64Cr half-lives predicted by the model are in agreement with the experimental half-lives[36].

The model’s decay modes for 63Cr – 64Cr are consistent with Ref.[36].

65Cr and 66Cr partially fill the 1g9/2 neutron shell. The decay mode and half-life for these chromium systems are consistent

with the data[36]. These 1g9/2 systems decay via beta emission through allowed 1f5/2(n) to 1f7/2(p) transitions.

5.2. 78 ≥ A ≥ 67 Chromium Isotopes without Experimental Half-Life Data

The a(A) values for 67 ≥ A ≥ 78 chromium isotopes were derived from a linear fit based on the half-lives of 62Cr – 66Cr.

These extrapolated a(A) values are provided in Table 1.

The 67Cr – 74Cr systems complete filling the 1g9/2 neutron shell, and have beta decay half-lives between 0.692 – 7.27 ms.

These chromium systems decay through allowed 1f5/2(n) to 1f7/2(p) beta decay transitions. The calculations summarized

in the Japanese Data Compilation[36] for 67Cr – 74Cr are about a factor of 4 larger than the model results.

The 75Cr – 78Cr nuclei partially fill the 2d5/2 neutron shell and decay through allowed 1f5/2(n) to 1f7/2(p) beta decay

transitions. The 75Cr – 78Cr half-lives decrease from 0.545 to 0.287 ms, respectively. None of these 2d5/2 systems are

predicted to exist in Japanese Data Compilation calculations[36].

No chromium systems with A > 78 are predicted by either the model or the Japanese Data Compilation calculations[36].

This model limitation occurs because only 54 neutrons are bound in chromium system.

6. Conclusions

Neutron excess chromium isotopes terminate with 78Cr. The 67 ≤ A ≤78 chromium systems have predicted beta decay

half-lives in the range of 0.287 – 7.27 ms. These neutron excess chromium systems decay through allowed 1f5/2(n) to

1f7/2(p) beta decay transitions. Since the model does not include neutron emission decay modes, it likely overestimates
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the actual half-life values.
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